信号与系统实验报告

合集下载

北航信号与系统上机实验报告

北航信号与系统上机实验报告

信号与系统上机实验报告我是 buaa 快乐的小2B目录实验一、连续时间系统卷积的数值计算 (3)一、实验目的 (3)二、实验原理 (3)三、实验程序源代码、流图实验程序源代码 (4)4.1源代码与程序框图: (4)4.2数据与结果 (5)4.3数据图形 (6)实验二、信号的矩形脉冲抽样与恢复 (7)一、实验目的: (7)二、实验原理: (7)三、实验内容 (9)四、实验程序流程图和相关图像 (9)4.1、画出f(t)的频谱图即F(W)的图像 (9)4.2、对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信号的时域波形f(t) (11)4.3、三种不同频率的抽样 (14)4.4、将恢复信号的频谱图与原信号的频谱图进行比较 (17)实验五、离散时间系统特性分析 (21)一、实验目的: (21)二、实验原理: (21)三、实验内容 (21)四、程序流程图和代码 (22)五、实验数据: (23)5.1单位样值响应 (23)5.2幅频特性 (24)六、幅频特性和相频特性曲线并对系统进行分析。

(25)6.1幅频特性曲线 (25)6.2相频特性曲线 (26)实验一、连续时间系统卷积的数值计算一、实验目的1 加深对卷积概念及原理的理解;2 掌握借助计算机计算任意信号卷积的方法。

二、实验原理1 卷积的定义卷积积分可以表示为2 卷积计算的几何算法卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。

3 卷积积分的应用卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响应,它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。

设一个线性零状态系统,已知系统的单位冲激响应为h(t),当系统的激励信号为e(t)时,系统的零状态响应为由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁的工作,并可以获得足够的精度。

因此,信号的时域卷积分析法在系统分析中得到了广泛的应用。

卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当t )时r(t)的值,则由上式可以得到:1 1 2t = nΔt (n为正整数, nΔt 记为当 1 Δt 足够小时,( ) 2 r t 就是e(t)和h(t)卷积积分的数值近似,由上面的公式可以得到卷积数值计算的方法如下:1、将信号取值离散化,即以Ts 为周期,对信号取值,得到一系列宽度间隔为Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;2、将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0 时的卷积积分的值。

信号与系统实验报告总结

信号与系统实验报告总结

信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。

实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。

方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。

方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。

方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。

幅值较一二次谐波大为减少。

方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。

幅值较三次谐波再次减小。

方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。

幅值减少到0.3以内,几乎可以忽略。

综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。

分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。

二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。

可知,方波信号可分解为多个谐波。

方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。

方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。

综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

《信号与系统》专题研究性学习实验报告

《信号与系统》专题研究性学习实验报告

信号与系统MATLAB专题研究性学习专题一信号时域分析1.基本信号的产生,语音的读取与播放【研讨内容】1)生成一个正弦信号,改变正弦信号的角频率和初始相位,观察波形变化;2)生成一个幅度为1、基频为2Hz、占空比为50%的周期方波,3)观察一定时期内的股票上证指数变化,生成模拟其变化的指数信号,4)录制一段音频信号,进行音频信号的读取与播放【题目分析】(1) 正弦信号的形式为Acos(ω0t+ψ)或Asin(ω0t+ψ),分别用MATLAB的内部函数cos和sin表示,其调用形式为*phitsin(w=。

生成正弦信号为y+A**phi=、)*)cos(tAy+wy=5sin(t),再依次改变其角频率和初相,用matlab进行仿真。

(2) 幅度为1,则方波振幅为0.5,基频w0=2Hz,则周期T=pi,占空比为50%,因此正负脉冲宽度比为1。

(3) 将波形相似的某一段构造成一个指数函数,在一连续时间内构造不同的2~3个不同指数函数即可大致模拟出其变化。

(4) 录制后将文件格式转化为wav ,再用wavread 函数读取并播放,用plot 函数绘制其时域波形。

【仿真】 (1) 正弦信号 正弦信号1:A=1;w0=1/4*pi;phi=pi/16; t=-8:0.001:8; xt1=A*sin(w0*t+phi); plot(t,xt1)title('xt1=sin(0.25*pi*t+pi/16)')-8-6-4-22468-1-0.8-0.6-0.4-0.200.20.40.60.81xt1=sin(0.25*pi*t+pi/16)正弦信号2(改变1中频率) A=1;w1=1/4*pi;w2=1*pi;phi=pi/16; t=-8:0.001:8; xt1=A*sin(w1*t+phi); xt2=A*sin(w2*t+phi); plot(t,xt1,t,xt2)-8-6-4-22468-1-0.8-0.6-0.4-0.200.20.40.60.81正弦信号3(改变1中相位)A=1;w=1/4*pi;phi1=pi/16;phi2=pi/4; t=-8:0.001:8; xt1=A*sin(w*t+phi1); xt3=A*sin(w*t+phi2)plot(t,xt1,t,xt3)-8-6-4-22468-1-0.8-0.6-0.4-0.200.20.40.60.81(2) 方波信号 t=-100:0.01:100; T=0.5; f=1/T;y=square(2*pi*f*t,50); plot(t,y); axis([-2 2 -3 3]);-2-1.5-1-0.500.51 1.52-3-2-1123(3) 模拟股票上证指数变化的指数信号 x1=0:0.001:5; y1=2500+1.8*exp(x1); x2=5:0.001:10;y2=2847-1.5*exp(0.8*x2); x3=10:0.001:15;y3=2734+150*exp(-0.08*x3); x4=15:0.001:20;y4=2560-156*exp(-0.08*x4); x=[x1,x2,x3,x4]; y=[y1,y2,y3,y4]; plot(x,y);2468101214161820-2000-1500-1000-500050010001500200025003000(4) 音频信号的读取与播放[x,Fs,Bits]=wavread('C:\Users\Ghb\Desktop\nanshen g.wav')sound(x,Fs,Bits) plot(x)00.51 1.52 2.53 3.54 4.55x 105-0.8-0.6-0.4-0.200.20.40.60.8[x,Fs,Bits]=wavread('C:\Users\Ghb\Desktop\nvsheng .wav')sound(x,Fs,Bits) plot(x)123456x 105-1-0.8-0.6-0.4-0.200.20.40.60.812.信号的基本运算(语音信号的翻转、展缩) 【研讨内容】 1) 将原始音频信号在时域上进行延展、压缩, 2) 将原始音频信号在频域上进行幅度放大与缩小, 3)将原始音频信号在时域上进行翻转,【题目分析】用matlab 的wavread 函数读取录制的音频,用length 函数计算出音频文件的长度,最后计算出时间t ,然后用plot 函数输出录制的音频信号(1) 延展与压缩分析把时间t 变为原来的一半,信号就被延展为原来的2倍,把时间他变为原来的2倍,信号就被压缩为原来的一半。

成都理工大学信号与系统实验报告材料

成都理工大学信号与系统实验报告材料

信号与系统实验报告姓名:学号:学院:班级:指导老师:时间:实验一MATLAB一、实验性质验证性实验二、实验目的1、掌握MATLAB编程及绘图的基本知识;2、能表示在信号与系统中常用的连续及离散时间信号。

三、实验内容与步骤1、画出x(t)=cos(2*t)的波形,并判断x(t)是否为周期信号,若是周期信号,确定其周期。

同时画出cos(2*t)*u(t)的波形。

解、x(t)=cos(2*t)图形为:所以,是周期信号,周期是pi.x(t)=cos(2*t)*u(t)的波形为:2、画出X(n)=cos(2*n)的波形,并判断X(n)是否为周期信号,确定其周期若是周期信号,确定其周期。

解、X(n)=cos(2*n)的波形为:所以,是周期信号,周期是pi.3、画出(t-1)*u(t)的波形解、y=(t-1)*u(t)的波形为:4、产生单位脉冲序列,写出相应的程序并画出波形。

解、单位脉冲序列的程序δ(n-5)及u(n)的波形为;实验二线性非时变系统的时域分析一、实验性质验证性实验二、实验目的掌握在时域中对连续和离散时间线性时变系统响应进行分析的方法。

三、实验内容与步骤1、已知系统的微分方程如下,用MATLAB画出该系统的冲激响应及该系统在输入信号e(t)=e^-2u(t)时的零状态响应。

(改变取样的时间间隔P观察仿真的效果)解、①冲激响应:②零状态响应:时间间隔p=0.05时,波形图如下:时间间隔p=0.5时,波形图如下:2、已知离散系统的差分方程为:y(n)+y(n-1)+0.25y(n-2)=x(n)用MATLAB画出该系统的单位函数响应及单位阶跃响应的波形。

解、差分方程的程序单位函数响应:四、实验总结(1)在用matlab时,有些变量不用定义就能用,比较随意,感觉不太严谨。

(2)第二题的有个“单位函数响应”,是错误的。

(3)书上有些知识介绍的不全面,必须上网查资料才行。

实验四系统的零极点分析一、实验性质验证性实验二、实验目的1、掌握系统函数及零极点的概念;2、掌握对连续和离散系统的稳定性进行分析的方法。

抽样定理实验报告(信号与系统)

抽样定理实验报告(信号与系统)

实验五抽样定理实验内容及步骤1、阅读范例程序Program5_2,在这个程序中,选择的信号的最高频率是多少?这个频率选择得是否恰当?为什么?答:选择信号的最高频率为100Hz。

这个频率选择恰当,因为f>2f max。

2、在1—8 之间选择抽样频率与信号最高频率之比,即程序Program5_2 中的a 值,反复执行范例程序Program5_2,观察重建信号与原信号之间的误差,通过对误差的分析,说明对于带限信号而言,抽样频率越高,则频谱混叠是否越小?解:a=1时图1a=3时图2a=8时图3第四幅图error代表着原信号与重建信号之间的误差。

由此得到结论,凡是带限信号,抽样频率越高,误差越小。

3、画出连续时间信号的时域波形及其幅频特性曲线,信号为:x=cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(25*pi*t)(1)、对信号进行采样,得到采样序列,画出采样频率分别为15Hz,30 Hz,60 Hz 时的采样序列波形;解:代码如下:tmax= 4;dt = 0.01;t = 0:dt:tmax;Ts = 1/15;ws= 2*pi/Ts;w0 = 25*pi;dw= 0.1;w = -w0:dw:w0;n = 0:1:tmax/Ts;x = cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(w0*t);xn =cos(5*pi*n*Ts)+1.5*sin(8*pi*n*Ts)+0.5*cos(w0*n*Ts);subplot(221)plot(t,x);title('A continuous-time signal x(t)');xlabel('Time t');grid onsubplot(223)stem(n,xn,'.');title('The sampled version x[n] of x(t)'),xlabel('Time index n');axis([0,tmax/Ts,0,1]),grid onxa= x*exp(-j*t'*w)*dt;X = 0;for k = -8:8;X = X + x*exp(-j*t'*(w-k*ws))*dt;endsubplot(222)plot(w,abs(xa))title('Magnitude spectrum of x(t)'),grid onaxis([-60,60,0,1.8*max(abs(xa))])subplot(224)plot(w,abs(X))title('Magnitude spectrum of x[n]');xlabel('Frequency in radians/s'),grid onaxis([-60,60,0,1.8*max(abs(xa))])图像如下:Ts=1/15时:图4 Ts=1/30时:图5Ts=1/60时:图6(2)、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。

信号与系统实验报告资料

《信号与系统》实验报告湖南工业大学电气与信息工程学院实验一用同时分析法观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。

二、实验设备1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型;2、双踪示波器三、实验原理1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的2、3、4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。

2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分,3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示Um1351/91/51/71/3790ωωωωωω图1-1 方波频谱图表2-1 各种不同波形的傅立叶级数表达式UmtTU 2τ方波Um0TU 2τ正弦整流全波UmTU 2τ三角波Um0T2τ正弦整流半波t tUm0tT U 2τ矩形波U1、方波 ())7s i n 715s i n 513s i n 31(s i n 4 ++++=t t t t u t u mωωωωπ 2、三角波())5s i n 2513sin 91(sin 82++-=t t t u t u mωωωπ3、半波())4c o s 1512cos 31sin 421(2 +--+=t t t u t u m ωωωππ 4、全波 ())6c o s 3514cos 1512cos 3121(4 +---=t t t u t u m ωωωπ5、 矩形波())3cos 3sin 312cos 2sin 21cos (sin 2 ++++=t T t T t T U T U t u m m ωτπωτπωτππτ实验装置的结构如图1-2所示DC20f f f f f f 3456图1-2信号分解于合成实验装置结构框图图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。

信号系统MATLAB实验报告

信号与系统实验报告桂林理工大学信息科学与工程学院 电子信息工程实验二 信号及其表示【实验目的】了解各种常用信号的表达方式掌握部分绘图函数【实验内容】一、绘出连续时间信号x(t)=t e 707.0 sin 32t 关于t 的曲线,t 的范围为 0~30s ,并以递增。

MATLAB 源程序为:t=0::30; %对时间变量赋值x=exp*t).*sin(2/3.*t); %计算变量所对应得函数值 plot(t,x);grid; %绘制函数曲线ylabel('x(t)');xlabel('Time(sec)')二、产生周期为的方波。

MATLAB源程序为:Fs=100000;t=0:1/Fs:1;x1=square(2*pi*50*t,20);x2=square(2*pi*50*t,80);subplot(2,1,1),plot(t,x1),axis([0,,,]); subplot(2,1,2),plot(t,x2),axis([0,,,]);三、产生sinc(x)函数波形。

MATLAB源程序为:x=linspace(-4,4);y=sinc(x);plot(x,y)四、绘制离散时间信号的棒状图。

其中x(-1)=-1,x(0)=1,x(1)=2,x(2)=1,x(3)=0,x(4)=-1,其他时间x(n)=0。

MATLAB源程序为:n=-3:5; %定位时间变量x=[0,0,-1,1,2,1,-1,0,0];stem(n,x);grid; %绘制棒状图line([-3,5],[0,0]); %画X轴线xlabel('n');ylabel('x[n]')五、单位脉冲序列δ(n-0n )={00...1...0n n n n =≠直接实现:x=zeros(1,N);x(1,n0)=1;函数实现:利用单位脉冲序列)(0n n -δ的生成函数impseq,即 function[x,n]=impseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)==0];plot(n,x);stem(n,x);输入参数:impseq(0,0,9)——连续图形012345678900.10.20.30.40.50.60.70.80.91输入参数:impseq(0,0,9)——离散图形六、单位阶跃序列ε(n-0n )={00...1...0n n n n ≥<直接实现:n=[ns:nf];x=[(n-n0)>=0];函数实现:利用单位阶跃序列)(0n n -ε的生成函数stepseq ,即 Function[x,n]=stepseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)>=0];plot(n,x);七、实指数序列=,∀)(x n∈,Ranna直接实现:n=[ns:nf]:x=a.^n;函数实现:利用实指数序列n a(的生成函数rexpseq,即n)x=Function[x,n]=rexpseq(a,ns,nf)n=[ns:nf];x=a,^n:八、复指数序列n e n x n j ∀=+,)()(ωδ直接实现:n=[ns:nf];x=exp((sigema+jw)*n);函数实现:利用复指数序列n j e n x )()(ωδ+=的生成函数cexpseq,即 Function[x,n]=cexpseq(sigema,w,ns,nf)n=[ns:nf];x=exp((sigema+j*w)*n);0123456789-3000-2000-1000100020003000400050006000九、正(余)弦序列n wn n x ∀+=),cos()(θ直接实现:n=[ns:nf];x=cos(w*n+sita);函数实现:利用正(余)弦序列x(n)=cos(wn+θ)的生成函数cosswq,即Function[x,n]=cosseq(w,ns,nf,sita)n=[ns:nf];x=cos(w*n+sita);输入参数:cosseq,0,9,30)——连续信号0123456789-0.2-0.15-0.1-0.0500.050.10.150.2输入参数:cosseq,0,9,30)——离散信号0123456789实验三信号的运算【实验目的】了解信号处理的基本操作。

信号与系统实验报告

信号与系统实验报告好啦,今天咱们来聊聊信号与系统实验报告。

这话题有点儿“高大上”,但咱们不妨来点轻松的,把它聊得有趣一些。

先说说信号是什么。

信号其实就是一种信息传递的方式,可能是声音,可能是光,甚至是你手机屏幕上刷过的每一条消息。

简单来说,信号就是承载着信息的载体。

你看,像咱们日常生活中,电台广播,手机接收到的短信,甚至你家电视里放的广告,它们都是信号的一种表现形式。

啊,听起来有点儿复杂吧?其实不难,就像你一收到朋友发来的微信,手机屏幕上跳出来的就是一个信号。

信号怎么才能“正常工作”呢?这就得说到“系统”了。

系统呢,说白了就是一套能够处理信号的工具。

你想啊,信号如果没有一个合适的“平台”去接收、传递和处理,那就变得一团乱麻了。

就像是你给朋友发了个短信,但他手机坏了,信号接收不进去,结果信息就白发了。

系统在这里就相当于是一个“修理工”,它能让信号顺利通过、准确无误地到达目的地。

接下来说说我们在实验中的“主角”——信号与系统。

你看,实验嘛,往往让我们有点“心慌慌”。

不过,信号与系统的实验其实有点像玩拼图。

你得先弄清楚信号的各种“形状”,然后用系统去“加工处理”,让它变得符合要求。

比如,咱们常用的模拟信号,它是一个连续的过程,类似于咱们生活中的声音一样,是没有间断的。

而数字信号呢,就像你手机屏幕上的数字,离散的,断断续续的。

每种信号都有自己独特的“脾气”,你得了解它们的特点,才能搭配合适的系统。

你要是觉得这些实验有点儿复杂,那就来点儿幽默的比喻吧。

信号就像是你的朋友说的话,而系统就是你听的耳朵。

朋友说话的声音,可能因为距离远近,语速快慢,甚至音量的大小而有所不同。

系统就得根据这些变化去处理,比如调节音量、清晰度,甚至过滤掉不必要的噪声。

你想想,假如你能在嘈杂的环境下清楚地听到朋友的声音,那就是系统给你提供的帮助。

信号与系统的实验,就是在这种“听”和“说”之间找到平衡点。

咱们得说说实验中的一些基本工具了。

北京理工大学信号与系统实验实验报告

北京理工大学信号与系统实验实验报告信号与系统实验报告姓名:肖枫学号:1120111431班号:05611102专业:信息对抗技术学院:信息与电子学院12实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MATLAB表示及其可视化方法。

2. 掌握信号基本时域运算的MATLAB实现方法。

3. 利用MATLAB分析常用信号,加深对信号时域特性的理解。

二、实验原理与方法1. 连续时间信号的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。

在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。

从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。

表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。

例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。

如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。

例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形10.80.60.40.2-0.2-0.4-0.6-0.8-1012345678910Time(seconds)图1 利用向量表示连续时间信号3sin(t)10.5-0.5-1-6-4-20246t图 2 利用符号对象表示连续时间信号常用的信号产生函数函数名功能函数名功能 heaviside 单位阶跃函数 rectpuls 门函数 sin 正弦函数 tripuls 三角脉冲函数 cos 余弦函数 square 周期方波 sinc sinc函数 sawtooth 周期锯齿波或三角波 exp 指数函数2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三常见信号的MATLAB 表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法;在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了;1.连续时间信号从严格意义上讲,MATLAB 并不能处理连续信号;在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号;在MATLAB 中连续信号可用向量或符号运算功能来表示; ⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔;向量f 为连续信号()f t 在向量t 所定义的时间点上的样值; ⑵ 符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot 等函数来绘出信号的波形; ⑶ 常见信号的MATLAB 表示 单位阶跃信号单位阶跃信号的定义为:10()0t u t t >⎧=⎨<⎩方法一: 调用Heavisidet 函数首先定义函数Heavisidet 的m 函数文件,该文件名应与函数名同名即;%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为y function y= Heavisidety=t>0; %定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别;方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号的函数,即stepfun 函数,它是用数值计算法表示的单位阶跃函数()u t ;其调用格式为:stepfunt,t0其中,t 是以向量形式表示的变量,t0表示信号发生突变的时刻,在t0以前,函数值小于零,t0以后函数值大于零;有趣的是它同时还可以表示单位阶跃序列()u k ,这只要将自变量以及取样间隔设定为整数即可; 符号函数符号函数的定义为:10sgn()1t t t >⎧=⎨-<⎩在MATLAB 中有专门用于表示符号函数的函数sign ,由于单位阶跃信号 t 和符号函数两者之间存在以下关系:1122()sgn()t t ε=+,因此,利用这个函数就可以很容易地生成单位阶跃信号;2.离散时间信号离散时间信号又叫离散时间序列,一般用()f k 表示,其中变量k 为整数,代表离散的采样时间点采样次数;在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem 函数,而不能用plot 函数; 单位序列()k δ单位序列()k δ的定义为10()0k k k δ=⎧=⎨≠⎩单位阶跃序列()u k单位阶跃序列()u k 的定义为10()0k u k k ≥⎧=⎨<⎩3.卷积积分两个信号的卷积定义为:MATLAB 中是利用conv 函数来实现卷积的;功能:实现两个函数1()f t 和2()f t 的卷积;格式:g=convf1,f2说明:f1=f 1t,f2=f 2t 表示两个函数,g=gt 表示两个函数的卷积结果;三、实验内容1.分别用MATLAB 的向量表示法和符号运算功能,表示并绘出下列连续时间信号的波形: ⑴ 2()(2)()tf t e u t -=- ⑵[]()cos()()(4)2tf t u t u t π=--1 t=-1::10;t1=-1::; t2=0::10;f1=zeros1,lengtht1,ones1,lengtht2;f=2-exp-2t.f1; plott,faxis-1,10,0, syms t;f=sym'2-exp-2theavisidet'; ezplotf,-1,10;2t=-2::8;f=0.t<0+cospit/2.t>0&t<4+0.t>4; plott,f syms t;f=sym'cospit/2heavisidet-heavisidet-4 '; ezplotf,-2,8;2.分别用MATLAB 表示并绘出下列离散时间信号的波形: ⑵ []()()(8)f t k u k u k =-- ⑶()sin()()4k f k u k π= 2 t=0:8; t1=-10:15;f=zeros1,10,t,zeros1,7; stemt1,faxis-10,15,0,10; 3 t=0:50; t1=-10:50;f=zeros1,10,sintpi/4; stemt1,faxis-10,50,-2,23.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*,并与例题比较;t1=-1::0; t2=0::1; t3=-1::1;f1=onessizet1; f2=onessizet2; g=convf1,f2;subplot3,1,1,plott1,f1; subplot3,1,2,plott2,f2; subplot3,1,3,plott3,g;与例题相比较,gt 的定义域不同,最大值对应的横坐标也不同;4.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和 ;N=4; M=5; L=N+M-1; f1=1,1,1,2;f2=1,2,3,4,5; g=convf1,f2; kf1=0:N-1; kf2=0:M-1; kg=0:L-1;subplot1,3,1,stemkf1,f1,'k';xlabel'k'; ylabel'f1k';grid onsubplot1,3,2,stemkf2,f2,'k';xlabel'k'; ylabel'f2k';grid onsubplot1,3,3;stemkg,g,'k';xlabel'k'; ylabel'gk';grid on 实验心得:第一次接触Mutlab 这个绘图软件,觉得挺新奇的,同时 ,由于之前不太学信号与系统遇到一些不懂的问题,结合这些图对信号与系统有更好的了解;实验四 连续时间信号的频域分析一、实验目的1.熟悉傅里叶变换的性质 2.熟悉常见信号的傅里叶变换3.了解傅里叶变换的MATLAB 实现方法二、实验原理从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法;1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier f 对ft 进行傅里叶变换,其结果为Fw F =fourierf,v 对ft 进行傅里叶变换,其结果为Fv F=fourier f,u,v 对fu 进行傅里叶变换,其结果为Fv ②傅里叶反变换f=ifourier F 对Fw 进行傅里叶反变换,其结果为fx f=ifourierF,U 对Fw 进行傅里叶反变换,其结果为fu f=ifourier F,v,u 对Fv 进行傅里叶反变换,其结果为fu 注意:1在调用函数fourier 及ifourier 之前,要用syms 命令对所有需要用到的变量如t,u,v,w 等进行说明,即要将这些变量说明成符号变量;对fourier 中的f 及ifourier 中的F 也要用符号定义符sym 将其说明为符号表达式;2采用fourier 及fourier 得到的返回函数,仍然为符号表达式;在对其作图时要用ezplot 函数,而不能用plot 函数;3fourier 及fourier 函数的应用有很多局限性,如果在返回函数中含有δω等函数,则ezplot 函数也无法作出图来;另外,在用fourier 函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达的式子,则此时当然也就无法作图了;这是fourier 函数的一个局限;另一个局限是在很多场合,尽管原时间信号ft 是连续的,但却不能表示成符号表达式,此时只能应用下面介绍的数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求的频谱函数只是一种近似值;2、傅里叶变换的数值计算实现法严格说来,如果不使用symbolic 工具箱,是不能分析连续时间信号的;采用数值计算方法实现连续时间信号的傅里叶变换,实质上只是借助于MATLAB 的强大数值计算功能,特别是其强大的矩阵运算能力而进行的一种近似计算;傅里叶变换的数值计算实现法的原理如下: 对于连续时间信号ft,其傅里叶变换为:其中τ为取样间隔,如果ft 是时限信号,或者当|t|大于某个给定值时,ft 的值已经衰减得很厉害,可以近似地看成是时限信号,则上式中的n 取值就是有限的,假定为N,有: 若对频率变量ω进行取样,得: 通常取:02k k k MM ωπωτ==,其中0ω是要取的频率范围,或信号的频带宽度;采用MATLAB 实现上式时,其要点是要生成ft 的N 个样本值()f n τ的向量,以及向量k j n eωτ-,两向量的内积即两矩阵的乘积,结果即完成上式的傅里叶变换的数值计算;注意:时间取样间隔τ的确定,其依据是τ必须小于奈奎斯特Nyquist 取样间隔;如果ft 不是严格的带限信号,则可以根据实际计算的精度要求来确定一个适当的频率0ω为信号的带宽;三、 实验内容1.编程实现求下列信号的幅度频谱1 求出1()(21)(21)f t u t u t =+--的频谱函数F 1jω,请将它与上面门宽为2的门函数()(1)(1)f t u t u t =+--的频谱进行比较,观察两者的特点,说明两者的关系;2 三角脉冲21||||1()0||1t t f t t -≤⎧=⎨>⎩3 单边指数信号3()()tf t e t ε-=4 高斯信号23()t f t e -=1 syms t w Gt=sym'Heaviside2t+1-Heaviside2t-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0与()(1)(1)f t u t u t =+--的频谱比较,1()(21)(21)f t u t u t =+--的频谱函数F 1jω最大值是其的1/2; 2syms t w;Gt=sym'1+tHeavisidet+1-Heavisidet+1-tHeavisidet-Heavisidet-1'; Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi 0 3syms t w Gt=sym'exp-tHeavisidet';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; FFP=absFFw; ezplotFFP,-10pi 10pi;grid; axis-10pi 10pi -1 2 4syms t w Gt=sym'exp-t^2';Fw=fourierGt,t,w;FFw=maple'convert',Fw,'piecewise'; ezplotFFw,-30 30;grid; axis-30 30 -1 22.利用ifourier 函数求下列频谱函数的傅氏反变换122()16F j j ωωω=-+ 222()58()()65j j F j j j ωωωωω+-=++1syms t w Fw=sym'-i2w/16+w^2'; ft=ifourierFw,w,t; ft运行结果: ft =-exp4theaviside-t+exp-4theavisidet 2syms t wFw=sym'iw^2+5iw-8/iw^2+6iw+5'; ft=ifourierFw,w,t; ft运行结果: ft =diract+-3exp-t+2exp-5theavisidet实验心得matlab 不但具有数值计算能力,还能建模仿真,能帮助我们理解不同时间信号的频域分析;实验五 连续时间系统的频域分析一、实验目的1. 学习由系统函数确定系统频率特性的方法;2. 学习和掌握连续时间系统的频率特性及其幅度特性、相位特性的物理意义;3.通过本实验了解低通、高通、带通、全通滤波器的性能及特点;二、实验原理及方法频域分析法与时域分析法的不同之处主要在于信号分解的单元函数不同;在频域分析法中,信号分解成一系列不同幅度、不同频率的等幅正弦函数,通过求取对每一单元激励产生的响应,并将响应叠加,再转换到时域以得到系统的总响应;所以说,频域分析法是一种变域分析法;它把时域中求解响应的问题通过 Fourier 级数或 Fourier 变换转换成频域中的问题;在频域中求解后再转换回时域从而得到最终结果;在实际应用中,多使用另一种变域分析法:复频域分析法,即 Laplace 变换分析法;所谓频率特性,也称频率响应特性,是指系统在正弦信号激励下稳态响应随频率变化的情况,包括幅度随频率的响应和相位随频率的响应两个方面;利用系统函数也可以确定系统频率特性,公式如下:幅度响应用()ωj H 表示,相位响应用)(ωϕH 表示;本实验所研究的系统函数Hs 是有理函数形式,也就是说,分子、分母分别是m 、n 阶多项式; 要计算频率特性,可以写出为了计算出()ωj H 、)(ωϕH 的值,可以利用复数三角形式的一个重要特性: 而⎥⎦⎤⎢⎣⎡+=2sin 2cosππωωj j ,则()⎥⎦⎤⎢⎣⎡+=2sin 2cos ππωωn j n j n n利用这些公式可以化简高次幂,因此分子和分母的复数多项式就可以转化为分别对实部与虚部的实数运算,算出分子、分母的实部、虚部值后,最后就可以计算出幅度()ωj H 、相位)(ωϕH 的值了;三、实验内容a)sm m ms H )(1)(2-+=,m 取值区间 0,1,绘制一组曲线 m=,,,,; b) 绘制下列系统的幅频响应对数曲线和相频响应曲线,分析其频率特性; a %figurealpha=,,,,;colorn='r' 'g' 'b' 'y' 'k'; % r g b y m c k 红,绿,蓝,黄,品红,青,黑 for n=1:5b=0 alphan; % 分子系数向量a=alphan-alphan^2 1; % 分母系数向量 printsysb,a,'s' Hz,w=freqsb,a; w=w./pi; magh=absHz;zerosIndx=findmagh==0; maghzerosIndx=1; magh=20log10magh; maghzerosIndx=-inf; angh=angleHz;angh=unwrapangh180/pi; subplot1,2,1plotw,magh,colornn;hold onsubplot1,2,2plotw,angh,colornn;hold onendsubplot1,2,1hold offxlabel'特征角频率\times\pi rad/sample' title'幅频特性曲线 |Hw| dB';subplot1,2,2hold offxlabel'特征角频率 \times\pi rad/sample' title'相频特性曲线 \thetaw degrees';b1 %b=1,0; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';2 %b=0,1,0; % 分子系数向量a=1,3,2; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';3 %b=1,-1; % 分子系数向量a=1,1; % 分母系数向量printsysb,a,'s'Hz,w=freqsb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';实验心得:虽然之前用公式转换到频域上分析,但是有时会觉得挺抽象的,不太好理解;根据这些图像结合起来更进一步对信号的了解;同时,这个在编程序时,虽然遇到一些问题,但是总算解决了;实验六离散时间系统的Z域分析一、 实验目的1. 学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义;2. 深入理解离散系统频率特性和对称性和周期性;3. 认识离散系统频率特性与系统参数之间的系统4.通过阅读、修改并调试本实验所给源程序,加强计算机编程能力; 二、 实验原理及方法对于离散时间系统,系统单位冲激响应序列)(n h 的 Fourier 变换)(ωj e H 完全反映了系统自身的频率特性,称)(ωj eH 为离散系统的频率特性,可由系统函数)(z H 求出,关系式如下:ωωj j e z z H e H ==)()( 6 – 1由于ωj e是频率的周期函数,所以系统的频率特性也是频率的周期函数,且周期为π2,因此研究系统频率特性只要在πωπ≤≤-范围内就可以了;∑∑∑∞-∞=∞-∞=∞-∞=--==n n n j j n n h j n n h en h e H )sin()()cos()()()(ωωωω6 – 2容易证明,其实部是ω的偶函数,虚部是ω的奇函数,其模ωj e H (的ω的偶函数,相位[])(arg ωj e H 是ω的奇函数;因此研究系统幅度特性)(ωj e H 、相位特性[])(arg ωj e H ,只要在πω≤≤0范围内讨论即可;综上所述,系统频率特性)(ωj eH 具有周期性和对称性,深入理解这一点是十分重要的;当离散系统的系统结构一定,它的频率特性)(ωj e H 将随参数选择的不同而不同,这表明了系统结构、参数、特性三者之间的关系,即同一结构,参数不同其特性也不同; 例如,下图所示离散系统,其数学模型由线性常系数差分方程描述:)()1()(n x n ay n y +-=系统函数:a z az z z H >-=,)(系统函数频率特性:ωωωωωsin )cos 1(1)(ja a a e e e H j j j +-=-=幅频特性:ωωcos 211)(2a a eH j -+=相频特性:[]ωωωcos 1sin arctan)(arg a a eH j --= 容易分析出,当10<<a 时系统呈低通特性,当01<<-a 时系统呈高通特性;当0=a 时系统呈全通特性;同时说明,在系统结构如图所示一定时,其频率特性随参数a 的变化而变化;三、 实验内容a 2281.011)(----=z z z H ;b 1.04.06.01.03.03.01.0)(2323+++-+-=z z z z z z z Hc 2181.011)(--+-=zz z H a %b=1,0,-1; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通b %b=,,,; % 分子系数向量a=1,,,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';高通c %b=1,-1,0; % 分子系数向量a=1,0,; % 分母系数向量printsysb,a,'z'Hz,w=freqzb,a;w=w./pi;magh=absHz;zerosIndx=findmagh==0;maghzerosIndx=1;magh=20log10magh; % 以分贝maghzerosIndx=-inf;angh=angleHz;angh=unwrapangh180/pi; % 角度换算figuresubplot1,2,1plotw,magh;grid onxlabel'特征角频率\times\pi rad/sample'title'幅频特性曲线 |Hw| dB';subplot1,2,2plotw,angh;grid onxlabel'特征角频率 \times\pi rad/sample'title'相频特性曲线 \thetaw degrees';带通实验心得:本来理论知识不是很强的,虽然已经编出程序得到相关图形,但是不会辨别相关通带,这让我深刻地反省;。

相关文档
最新文档