MATLAB神经网络工具箱函数
(完整word版)Matlab的神经网络工具箱入门

Matlab的神经网络工具箱入门在command window中键入help nnet>> help nnetNeural Network ToolboxVersion 7.0 (R2010b) 03-Aug-2010神经网络工具箱版本7.0(R2010b)03八月,2010图形用户界面功能。
nnstart - 神经网络启动GUInctool - 神经网络分类工具nftool - 神经网络的拟合工具nntraintool - 神经网络的训练工具nprtool - 神经网络模式识别工具ntstool - NFTool神经网络时间序列的工具nntool - 神经网络工具箱的图形用户界面。
查看- 查看一个神经网络。
网络的建立功能。
cascadeforwardnet - 串级,前馈神经网络。
competlayer - 竞争神经层。
distdelaynet - 分布时滞的神经网络。
elmannet - Elman神经网络。
feedforwardnet - 前馈神经网络。
fitnet - 函数拟合神经网络。
layrecnet - 分层递归神经网络。
linearlayer - 线性神经层。
lvqnet - 学习矢量量化(LVQ)神经网络。
narnet - 非线性自结合的时间序列网络。
narxnet - 非线性自结合的时间序列与外部输入网络。
newgrnn - 设计一个广义回归神经网络。
newhop - 建立经常性的Hopfield网络。
newlind - 设计一个线性层。
newpnn - 设计概率神经网络。
newrb - 径向基网络设计。
newrbe - 设计一个确切的径向基网络。
patternnet - 神经网络模式识别。
感知- 感知。
selforgmap - 自组织特征映射。
timedelaynet - 时滞神经网络。
利用网络。
网络- 创建一个自定义神经网络。
SIM卡- 模拟一个神经网络。
初始化- 初始化一个神经网络。
Matlab工具箱中地BP与RBF函数

Matlab工具箱中的BP与RBF函数Matlab神经网络工具箱中的函数非常丰富,给网络设置适宜的属性,可以加快网络的学习速度,缩短网络的学习进程。
限于篇幅,仅对本章所用到的函数进展介绍,其它的函数与其用法请读者参考联机文档和帮助。
1 BP与RBF网络创建函数在Matlab工具箱中有如表1所示的创建网络的函数,作为示例,这里只介绍函数newff、newcf、newrb和newrbe。
表 1 神经网络创建函数(1) newff函数功能:创建一个前馈BP神经网络。
调用格式:net = newff(PR,[S1S2...S Nl],{TF1 TF2...TF Nl},BTF,BLF,PF)参数说明:•PR - R个输入的最小、最大值构成的R×2矩阵;•S i–S NI层网络第i层的神经元个数;•TF i - 第i层的传递函数,可以是任意可导函数,默认为 'tansig',可设置为logsig,purelin等;•BTF -反向传播网络训练函数,默认为 'trainlm',可设置为trainbfg,trainrp,traingd等;•BLF -反向传播权值、阈值学习函数,默认为 'learngdm';•PF -功能函数,默认为'mse';(2) newcf函数功能:创建一个N层的层叠(cascade)BP网络调用格式:net = newcf(Pr,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)参数同函数newff。
(3) newrb函数功能:创建一个径向基神经网络。
径向基网络可以用来对一个函数进展逼近。
newrb函数用来创建一个径向基网络,它可以是两参数网络,也可以是四参数网络。
在网络的隐层添加神经元,直到网络满足指定的均方误差要求。
调用格式:net = newrb(P,T,GOAL,SPREAD)参数说明:•P:Q个输入向量构成的R×Q矩阵;•T:Q个期望输出向量构成的S×Q矩阵;•GOAL:均方误差要求,默认为0。
【最新精选】MATLAB神经网络之各函数介绍

绘制三维图形clear all;[x,y]=meshgrid(-8:0.1:8);z=sinc(x);mesh(x,y,z); 效果图如下set(gcf,'color','w'); 设置图形窗口背景为白色修改z的赋值clear all;[x,y]=meshgrid(-10:0.3:10);r=sqrt(x.^2+y.^2)+eps;z=sin(r)./r;mesh(x,y,z)初始化函数clear all;net=newp([0,1;-2,2],1);disp('³õʼ»¯Ö®Ç°µÄȨֵÊÇ£º ')w1=net.iw{1,1}disp('³õʼ»¯Ö®Ç°µÄ·§ÖµÎª')b1=net.b{1}net.iw{1,1}=[5,6];disp('¡£¡£¡£È¨ÖµÎª')w2=net.iw{1,1}net.b{1}=7;disp('·§ÖµÎª')b2=net.b{1}net=init(net); 利用网络初始化复原网络权值和阀值w3=net.iw{1,1}b3=net.b{1}例子:利用init函数将网络输入的权值与阀值改变为随机数>> clear all;net=newp([0,1;-2,2],1);net.inputweights{1,1}.initFcn='rands';net.biases{1}.initFcn='rands';net=init(net); 检验权值和阀值w=net.iw{1,1}b=net.b{1}w =0.8116 -0.7460b =0.6294>>plotpv函数:用于在坐标中绘制给定的样本点及其类别plotpc函数:用于绘制感知器分界线clear all;p=[-0.5,-0.5,0.3,-0.1,-0.8;-0.5,0.5,-0.5,1.0,0.0];t=[1,1,0,0,0];plotpv(p,t); 绘制样本节点net=newp([-40,1;-1,50],1);hold onlinehandles=plotpc(net.IW{1},net.b{1});net.adaptParam.passes=3;linehandle=plotpc(net.IW{1},net.b{1});for a=1:25[net,y,e]=adapt(net,p,t);linehandle=plotpc(net.iw{1},net.b{1},linehandle); drawnow;endtitle('the kind of xiangliang')在matlab中提供了sim函数,对于神经网络进行仿真,格式:[y,pf,af,perf]=sim(net,p,pi,ai,t)[y,pf,af]=sim(net,{q ts},pi,ai)设计一个输入为二维向量的感知器网络,其边界值已定。
Matlab神经网络工具箱介绍与数值试验

Matlab神经网络工具箱介绍与数值试验第一章Matlab神经网络工具箱介绍与数值试验1.1Matlab神经网络工具箱中BP网络相关函数介绍MATLAB神经网络工具箱中包含了许多用于BP网络分析和设计的函数。
BP网络的常用函数如表4-1所示。
[10,12]表4-1 BP网络的常用函数1.2数值试验1.2.1.“异或”问题“异或”问题(XOR)是典型的非线性划分问题。
这里以它为例,简单介绍BP网络的应用。
在Matlab7.0环境下,建立一个三层的BP神经网络,其中输入层和隐层分别各有两个神经元,输出层有一个神经元。
现要求训练这一网络,使其具有解决“异或”问题的能力。
“异或”问题的训练输入和期望输出如表5-1。
表5-1 异或问题的训练输入和期望输出1)基于标准BP 算法结果如下及图5.1所示:横轴表示迭代次数,纵轴表示误差。
迭代到第240次时达到预设精度。
迭代停止时,误差为9.97269e-005,此时的梯度为0.00924693。
5010015020010-410-310-210-110101240 EpochsT r a i n i n g -B l u e G o a l -B l a c kPerformance is 9.97269e-005, Goal is 0.0001图5.1 基于标准BP 算法的“异或”问题2)基于共轭梯度法结果如下及图5.2所示:横轴表示迭代次数,纵轴表示误差。
迭代到第16次时达到预设精度。
迭代停止时,误差为9.0770e-005,此时的梯度为0.00318592。
024681012141610-410-310-210-11010116 EpochsT r a i n i n g -B l u e G o a l -B l a c k Performance is 9.07705e-005, Goal is 0.0001图5.2 基于共轭梯度法的“异或”问题3)基于LM 算法结果如下及图5.3所示:横轴表示迭代次数,纵轴表示误差。
matlab神经网络工具箱简介和函数及示例

目前,神经网络工具箱中提供的神经网络模型主 要应用于:
函数逼近和模型拟合 信息处理和预测 神经网络控制 故障诊断
神经网络实现的具体操作过程:
• 确定信息表达方式; • 网络模型的确定; • 网络参数的选择; • 训练模式的确定; • 网络测试
• 确定信息表达方式:
将领域问题抽象为适合于网络求解所能接受的 某种数据形式。
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
三、BP网络学习函数
learngd 该函数为梯度下降权值/阈值学习函数,通过神经 元的输入和误差,以及权值和阈值的学习速率, 来计算权值或阈值的变化率。
调用格式; [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
二、神经元上的传递函数
传递函数是BP网络的重要组成部分,必须是连续可 微的,BP网络常采用S型的对数或正切函数和线性函数。
• Logsig 传递函数为S型的对数函数。 调用格式为: • A=logsig(N)
N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1) 中
② info=logsig(code)
问题形式的种类:
数据样本已知; 数据样本之间相互关系不明确; 输入/输出模式为连续的或者离散的; 输入数据按照模式进行分类,模式可能会 具有平移、旋转或者伸缩等变化形式; 数据样本的预处理; 将数据样本分为训练样本和测试样本
MATLAB神经网络工具箱函数

18
3. 神经网络某一层的权值和偏值初始化函数initwb( ) 利用初始化函数initwb( )可以对一个已存在的
神经网络的NET某一层i的权值和偏值进行初始化修 正,该网络对每层的权值和偏值是按照设定的每层 的初始化函数来进行修正的。其调用格式为:
net=initwb(NET,i) 4. 神经网络训练函数train( )
5
人工神经元模型
神经元是构成神经网络的最基本单元 (构件)。
人工神经元模型应该具有生物神经元的 基本特性。
人工神经元模型
网络结构—神经元的层
输入
S个神经元的层
p1
w1,1
n1
f
a1
p2
b1 1
p3
n2
f
a2
b2 1
pR
wS,R
nS
f
aS
bS 1
多层神经网络(3层)
输入
p1 w11,1
p2
Z=concur(b,q) 式中,b为N1维的权值向量;q为要达到一致化所需要 的长度;Z为一个已经一致化了的矩阵。
22
例1-1 利用netsum( )函数和netprod( )函数,对两个加权
输入向量Z1和Z2进行相加和相乘。
解 MATLAB的程序如下。
Z1=[1 2 4;3 4 1];Z2=[-1 2 2;-5 -6 1]; %提供两个加权输入向量
2到2)单神经元感知器。而一旦建立了模型我们就可
以得到其权值和阈值。
net = newp([0 1;-2 2],1);
net.iw{1,1}
net.b{1}
对感知器进行训练,改变其权值和阈值。
matlab 2011b 神经网络工具箱函数汇总

Graphical user interface functions.nnstart - Neural Network Start GUInctool - Neural network classification toolnftool - Neural Network Fitting Toolnntraintool - Neural network training toolnprtool - Neural network pattern recognition toolntstool - NFTool Neural Network Time Series Toolnntool - Neural Network Toolbox graphical user interface.view - View a neural network.Network creation functions.cascadeforwardnet - Cascade-forward neural network.competlayer - Competitive neural layer.distdelaynet - Distributed delay neural network.elmannet - Elman neural network.feedforwardnet - Feed-forward neural network.fitnet - Function fitting neural network.layrecnet - Layered recurrent neural network.linearlayer - Linear neural layer.lvqnet - Learning vector quantization (LVQ) neural network.narnet - Nonlinear auto-associative time-series network.narxnet - Nonlinear auto-associative time-series network with external input.newgrnn - Design a generalized regression neural network.newhop - Create a Hopfield recurrent network.newlind - Design a linear layer.newpnn - Design a probabilistic neural network.newrb - Design a radial basis network.newrbe - Design an exact radial basis network.patternnet - Pattern recognition neural network.perceptron - Perceptron.selforgmap - Self-organizing map.timedelaynet - Time-delay neural network.Using networks.network - Create a custom neural network.sim - Simulate a neural network.init - Initialize a neural network.adapt - Allow a neural network to adapt.train - Train a neural network.disp - Display a neural network's properties.display - Display the name and properties of a neural networkadddelay - Add a delay to a neural network's response.closeloop - Convert neural network open feedback to closed feedback loops.formwb - Form bias and weights into single vector.getwb - Get all network weight and bias values as a single vector. noloop - Remove neural network open and closed feedback loops. openloop - Convert neural network closed feedback to open feedback loops. removedelay - Remove a delay to a neural network's response.separatewb - Separate biases and weights from a weight/bias vector.setwb - Set all network weight and bias values with a single vector.Simulink support.gensim - Generate a Simulink block to simulate a neural network. setsiminit - Set neural network Simulink block initial conditionsgetsiminit - Get neural network Simulink block initial conditionsneural - Neural network Simulink blockset.Training functions.trainb - Batch training with weight & bias learning rules.trainbfg - BFGS quasi-Newton backpropagation.trainbr - Bayesian Regulation backpropagation.trainbu - Unsupervised batch training with weight & bias learning rules. trainbuwb - Unsupervised batch training with weight & bias learning rules. trainc - Cyclical order weight/bias training.traincgb - Conjugate gradient backpropagation with Powell-Beale restarts. traincgf - Conjugate gradient backpropagation with Fletcher-Reeves updates. traincgp - Conjugate gradient backpropagation with Polak-Ribiere updates. traingd - Gradient descent backpropagation.traingda - Gradient descent with adaptive lr backpropagation.traingdm - Gradient descent with momentum.traingdx - Gradient descent w/momentum & adaptive lr backpropagation. trainlm - Levenberg-Marquardt backpropagation.trainoss - One step secant backpropagation.trainr - Random order weight/bias training.trainrp - RPROP backpropagation.trainru - Unsupervised random order weight/bias training.trains - Sequential order weight/bias training.trainscg - Scaled conjugate gradient backpropagation.Plotting functions.plotconfusion - Plot classification confusion matrix.ploterrcorr - Plot autocorrelation of error time series.ploterrhist - Plot error histogram.plotfit - Plot function fit.plotinerrcorr - Plot input to error time series cross-correlation.plotperform - Plot network performance.plotregression - Plot linear regression.plotresponse - Plot dynamic network time-series response.plotroc - Plot receiver operating characteristic. plotsomhits - Plot self-organizing map sample hits. plotsomnc - Plot Self-organizing map neighbor connections. plotsomnd - Plot Self-organizing map neighbor distances. plotsomplanes - Plot self-organizing map weight planes. plotsompos - Plot self-organizing map weight positions. plotsomtop - Plot self-organizing map topology. plottrainstate - Plot training state values.plotwb - Plot Hinton diagrams of weight and bias values.Lists of other neural network implementation functions.nnadapt - Adapt functions.nnderivative - Derivative functions.nndistance - Distance functions.nndivision - Division functions.nninitlayer - Initialize layer functions.nninitnetwork - Initialize network functions.nninitweight - Initialize weight functions.nnlearn - Learning functions.nnnetinput - Net input functions.nnperformance - Performance functions.nnprocess - Processing functions.nnsearch - Line search functions.nntopology - Topology functions.nntransfer - Transfer functions.nnweight - Weight functions.Demonstrations, Datasets and Other Resourcesnndemos - Neural Network Toolbox demonstrations. nndatasets - Neural Network Toolbox datasets.nntextdemos - Neural Network Design textbook demonstrations. nntextbook - Neural Network Design textbook information.。
Matlab神经网络工具箱函数

MATLAB神经网络工具箱函数说明:本文档中所列出的函数适用于MATLAB5.3以上版本,为了简明起见,只列出了函数名,若需要进一步的说明,请参阅MATLAB的帮助文档。
1. 网络创建函数newp 创建感知器网络newlind 设计一线性层newlin 创建一线性层newff 创建一前馈BP网络newcf 创建一多层前馈BP网络newfftd 创建一前馈输入延迟BP网络newrb 设计一径向基网络newrbe 设计一严格的径向基网络newgrnn 设计一广义回归神经网络newpnn 设计一概率神经网络newc 创建一竞争层newsom 创建一自组织特征映射newhop 创建一Hopfield递归网络newelm 创建一Elman递归网络2. 网络应用函数sim 仿真一个神经网络init 初始化一个神经网络adapt 神经网络的自适应化train 训练一个神经网络3. 权函数dotprod 权函数的点积ddotprod 权函数点积的导数dist Euclidean距离权函数normprod 规范点积权函数negdist Negative距离权函数mandist Manhattan距离权函数linkdist Link距离权函数4. 网络输入函数netsum 网络输入函数的求和dnetsum 网络输入函数求和的导数5. 传递函数hardlim 硬限幅传递函数hardlims 对称硬限幅传递函数purelin 线性传递函数tansig 正切S型传递函数logsig 对数S型传递函数dpurelin 线性传递函数的导数dtansig 正切S型传递函数的导数dlogsig 对数S型传递函数的导数compet 竞争传递函数radbas 径向基传递函数satlins 对称饱和线性传递函数6. 初始化函数initlay 层与层之间的网络初始化函数initwb 阈值与权值的初始化函数initzero 零权/阈值的初始化函数initnw Nguyen_Widrow层的初始化函数initcon Conscience阈值的初始化函数midpoint 中点权值初始化函数7. 性能分析函数mae 均值绝对误差性能分析函数mse 均方差性能分析函数msereg 均方差w/reg性能分析函数dmse 均方差性能分析函数的导数dmsereg 均方差w/reg性能分析函数的导数8. 学习函数learnp 感知器学习函数learnpn 标准感知器学习函数learnwh Widrow_Hoff学习规则learngd BP学习规则learngdm 带动量项的BP学习规则learnk Kohonen权学习函数learncon Conscience阈值学习函数learnsom 自组织映射权学习函数9. 自适应函数adaptwb 网络权与阈值的自适应函数10. 训练函数trainwb 网络权与阈值的训练函数traingd 梯度下降的BP算法训练函数traingdm 梯度下降w/动量的BP算法训练函数traingda 梯度下降w/自适应lr的BP算法训练函数traingdx 梯度下降w/动量和自适应lr的BP算法训练函数trainlm Levenberg_Marquardt的BP算法训练函数trainwbl 每个训练周期用一个权值矢量或偏差矢量的训练函数 11. 分析函数maxlinlr 线性学习层的最大学习率errsurf 误差曲面12. 绘图函数plotes 绘制误差曲面plotep 绘制权和阈值在误差曲面上的位置plotsom 绘制自组织映射图13. 符号变换函数ind2vec 转换下标成为矢量vec2ind 转换矢量成为下标矢量 14. 拓扑函数gridtop 网络层拓扑函数hextop 六角层拓扑函数randtop 随机层拓扑函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB神经网络工具箱函数
说明:本文档中所列出的函数适用于MATLAB5.3以上版本,为了简明起见,只列出了函数名,若需要进一步的说明,请参阅MATLAB的帮助文档。
1. 网络创建函数
newp 创建感知器网络
newlind 设计一线性层
newlin 创建一线性层
newff 创建一前馈BP网络
newcf 创建一多层前馈BP网络
newfftd 创建一前馈输入延迟BP网络
newrb 设计一径向基网络
newrbe 设计一严格的径向基网络
newgrnn 设计一广义回归神经网络
newpnn 设计一概率神经网络
newc 创建一竞争层
newsom 创建一自组织特征映射
newhop 创建一Hopfield递归网络
newelm 创建一Elman递归网络
2. 网络应用函数
sim 仿真一个神经网络
init 初始化一个神经网络
adapt 神经网络的自适应化
train 训练一个神经网络
3. 权函数
dotprod 权函数的点积
ddotprod 权函数点积的导数
dist Euclidean距离权函数normprod 规范点积权函数negdist Negative距离权函数mandist Manhattan距离权函数linkdist Link距离权函数
4. 网络输入函数
netsum 网络输入函数的求和dnetsum 网络输入函数求和的导数
5. 传递函数
hardlim 硬限幅传递函数hardlims 对称硬限幅传递函数purelin 线性传递函数
tansig 正切S型传递函数
logsig 对数S型传递函数
dpurelin 线性传递函数的导数
dtansig 正切S型传递函数的导数
dlogsig 对数S型传递函数的导数
compet 竞争传递函数
radbas 径向基传递函数
satlins 对称饱和线性传递函数
6. 初始化函数
initlay 层与层之间的网络初始化函数
initwb 阈值与权值的初始化函数
initzero 零权/阈值的初始化函数
initnw Nguyen_Widrow层的初始化函数
initcon Conscience阈值的初始化函数
midpoint 中点权值初始化函数
7. 性能分析函数
mae 均值绝对误差性能分析函数
mse 均方差性能分析函数
msereg 均方差w/reg性能分析函数
dmse 均方差性能分析函数的导数
dmsereg 均方差w/reg性能分析函数的导数
8. 学习函数
learnp 感知器学习函数
learnpn 标准感知器学习函数
learnwh Widrow_Hoff学习规则
learngd BP学习规则
learngdm 带动量项的BP学习规则
learnk Kohonen权学习函数
learncon Conscience阈值学习函数
learnsom 自组织映射权学习函数
9. 自适应函数
adaptwb 网络权与阈值的自适应函数
10. 训练函数
trainwb 网络权与阈值的训练函数
traingd 梯度下降的BP算法训练函数
traingdm 梯度下降w/动量的BP算法训练函数
traingda 梯度下降w/自适应lr的BP算法训练函数
traingdx 梯度下降w/动量和自适应lr的BP算法训练函数trainlm Levenberg_Marquardt的BP算法训练函数
trainwbl 每个训练周期用一个权值矢量或偏差矢量的训练函数
11. 分析函数
maxlinlr 线性学习层的最大学习率
errsurf 误差曲面
12. 绘图函数
plotes 绘制误差曲面
plotep 绘制权和阈值在误差曲面上的位置plotsom 绘制自组织映射图
13. 符号变换函数
ind2vec 转换下标成为矢量
vec2ind 转换矢量成为下标矢量
14. 拓扑函数
gridtop 网络层拓扑函数
hextop 六角层拓扑函数
randtop 随机层拓扑函数。