四线电阻式触摸屏

合集下载

五线电阻式触摸屏工作原理

五线电阻式触摸屏工作原理

五线电阻式触摸屏工作原理在讲述五线触摸屏工作原理之前先回顾一下四线电阻式触摸屏的工作原理,四线的结构图如图一所示,触摸屏的四边为两组平行的电极,分别在菲林和玻璃上面,当在Rx 两端加图一:四线电阻式触摸屏工作原理电压0V 时,触摸中间一点,那么这一点的电压相应为:1012Rx Vx V Rx Rx =+; 同理在Ry 两端加上0V 时,1012y Ry V V Ry Ry =+ 这样就可以判断出触摸点的位置。

五线的工作原理与四线的相同,也是通过判断触摸点的电压来判断触摸点的位置,在四线中由于电极的电阻很小(<1Ω),这时可以忽略电极的电阻,从理论上讲(ITO 面均匀,电极电阻为0),四线的线性度<<1%,由于菲林上ITO 的稳定性比玻璃的差,且其容易发生断裂,所以四线的线性型只能保证在1.5%的范围之内。

五线电阻式触摸屏工作时,电压加在玻璃上的四个角(UL 、UR 、DL 、DR ),当UL 与UR图二:五线电阻式触摸屏结构V 输入点Rx1 Rx2Ry1Ry2 -x –y +x +yRx2 Rx1 R y RyE同时为5v时,DL与DR同时为0v,这时要使测得的位置很准,就需要减小UL与UR之间电极的电阻,同时测X轴的位置时需要减小UL与DL之间电极的电阻,这样玻璃上的电极就类似与菲林上的电极,但由于电极电阻很小,于是丝印时会使其不均匀且会使得触摸屏工作时的电流过大。

那么,可以适当的增加电极的电阻,通过模拟可以知道,当电极电阻增加后会出现图三所示的扭曲。

图三:电极电阻与线性度的关系在设计五线电阻式触摸屏的电极时采用了如下的方案,如图四所示。

图四:五线电阻式触摸屏电极图通过EWB软件模拟可以知道,当电极电阻的取值为发生变化时,触摸屏的线性度是不一样的,于是可以确定一个电阻值使图三中的a线的电压差<1.3%,这时b、c、d三条线的电压差也<1.3%。

在图四中主要采用了两种电极结构,如图五所示。

在选购昆仑通态时,有哪些型号可供选择

在选购昆仑通态时,有哪些型号可供选择

日进电气- 门机变频器, 奥托尼克斯, 松下神视, 昆仑通态
在选购昆仑通态时,有哪些型号可供选择
昆仑通态TPC1162Hi是一套以嵌入式低功耗CPU为核心(主频600MHz)的高性能嵌入式一体化触摸屏。

该产品设计采用了10.4英寸高亮度TFT液晶显示屏(分辨率800×600),四线电阻式触摸屏(分辨率1024×1024)。

昆仑通态TPC7062Hi是一套以嵌入式低功耗CPU为核心(主频600MHz)的高性能嵌入式一体化触摸屏。

该产品设计采用了7英寸高亮度TFT液晶显示屏(分辨率800×480),四线电阻式触摸屏(分辨率1024×1024)。

昆仑通态TPC1262Hi是一套以嵌入式低功耗CPU为核心(主频600MHz)的高性能嵌入式一体化触摸屏。

该产品设计采用了12.1英寸高亮度TFT液晶显示屏(分辨率800×600),四线电阻式触摸屏(分辨率1024×1024)。

昆仑通态TPC1561Hi是一套以嵌入式低功耗CPU为核心(主频600MHz)的高性能嵌入式一体化触摸屏。

该产品设计采用了15英寸高亮度TFT液晶显示屏(分辨率1024*768),四线电阻式触摸屏(分辨率1024×1024)。

触摸屏的基本原理及应用

触摸屏的基本原理及应用

触摸屏的基本原理及应用1 触摸屏原理和主要结构:触摸屏技术方便了人们对计算机的操作使用,是一种极有发展前途的交互式输入技术,触摸屏通常与显示器相结合,通过触摸屏上的传感元件(可以是电学的,光学的,声学的)来感应出触摸物在触摸屏上或显示器上的位置,从而达到无需键盘,鼠标即可直观地对设备或机器进行信息输入或操作的目的。

触摸屏根据不同的原理而制作的触摸屏可分为以下几类:1.1电阻触摸屏电阻触摸屏由上下两片ITO相向组成一个盒,盒中间有很小的间隔点将两片基板隔开,上板ITO是由很薄的PET ITO薄膜或很薄的ITO 基板构成,当触摸其上板时形成其变形,形成其电学上的变化,即可到触摸位置。

电阻式触摸屏又可分为数字式电阻式触摸屏和模拟式电阻触摸屏:数字式电阻触摸屏将上下板的ITO分为X及Y方向的电极条,当在某一个方向的电极上施加电压时,则在另一方向某条位置上电极可探测到的电压变化。

由于数字式电阻触摸屏是在一个方向输入信号,在另一个方向检测信号,理论上可以实现多点触摸的检测。

数字式电阻触摸屏最常见用于机器设备控制面板,自动售票机的人机输入界面。

其优点为:成本低,适合应用于低分辨率的场合。

单点控制IC成熟,商品化高。

其缺点为:耐用性不好(PET不够耐磨)光学透过率不高(有15%-20%的光损失)模拟式电阻触摸屏是由上下两面ITO相向组成盒,上下两面的ITO 分别在X及Y方向引出长条电极,在一个方向的电极上施加一个电压,用另一面的ITO检测其电压,所测得的电压与触摸点的位置有关。

模拟式电阻式触摸屏只能进行单点触摸,尤其适合用笔尖进行触摸,可进行书写输入。

由于测量值是模拟值,其精度可以很高,主要取决于ITO的线性度。

模拟式电阻式触摸屏应用范围为中小尺寸2"-26"其优点为:成本低,应用范围广。

控制IC成熟,商品化高。

其缺点为:耐用性不好(PET不够耐磨)光学透过率不高(有15%-20%的光损失)需校准,不能实现多点触摸1.2 电容式触摸屏电容式触摸屏分为表面电容式和投射电容式。

第二章触摸屏的工作原理

第二章触摸屏的工作原理

• 触摸屏控制器ADS7843 • 触摸屏的控制芯片要完成两件事情:一是 完成电极电压的切换,二是采集接触点处的 电压值(即A/D值)。 • 可通过连结触摸屏X-将触摸信号输入到A/D转换器,同
时打开Y+和Y-驱动,然后数字化X+的电压,从而得到当前Y 位置的测量结果。同理也可得到X方向的坐标。它具有同步 串行接口的12位模数转换取样,以其低功耗和高速率等特性, 被广泛应用在采用电池供电的小型手持设备上。
• (1)ADS7843的内部结构

ADS7843是一个内置12位模数转换、低导通电阻模开 关的串行接口芯片。供电电压2.7~5V,参考电压VREF为 1V~+Vcc,转换电压的输入范围为0~Vref,最高转换速 率为125kHz。在125KHz吞吐速率和2.7V电压下的功耗为 750 µW,而在关闭模式下的功耗仅为0.5 µW。ADS7843 采用SSOP-16引脚封装形式, • 温度范围是-10~85℃。 • ADS7843的引脚配置如图2.7所示。
2.2液晶显示屏控制电路
• 液晶显示器原型发明人是美国人 乔治· 海尔迈 耶 • 为了提高液晶显示屏的亮度,现在的大屏幕液 晶显示屏都采用了荧光灯管作为背光光源。这 种荧光灯管的供电电压一般为交流1000V左 右,而电流很小。通常背光电压由+5V通过一 个升压变压器来产生。在液晶显示屏的功耗中, 背光灯的功耗占了大部分。并且如果长时间背 光灯处于打开状态,则会引起液晶屏过热,缩 短液晶和背光灯的使用寿命。因此,必须对背 光灯进行控制,如果一定时间内没有液晶触摸 屏操作,则关闭背光灯。
• 当手指触摸屏幕时,平常相互绝缘的两导 电层就在触摸点位置有了一个接触,因其 中一面导电层接通Y轴方向的5V均匀电压场, 使得侦测层的电压由零变为非零,控制器 检测到这个接通后,进行A/D转换,将测 量电压值与5V电压相比较,得到触摸点的Y 轴坐标,同理可以得出X轴的坐标,这就是 所有电阻技术触摸屏的基本工作原理。

电阻式、电容式、压电式触摸屏优劣简单介绍

电阻式、电容式、压电式触摸屏优劣简单介绍

首先介绍备受推崇的电容屏电容技术触摸屏CTPCapacity Touch Panel是利用人体的电流感应进行工作的。

电容屏是一块四层复合玻璃屏玻璃屏的内表面和夹层各涂一层ITO纳米铟锡金属氧化物最外层是只有0.0015mm厚的矽土玻璃保护层夹层ITO 涂层作工作面四个角引出四个电极内层ITO为屏层以保证工作环境。

电容屏工作原理当用户触摸电容屏时由于人体电场用户手指和工作面形成一个耦合电容因为工作面上接有高频信号于是手指吸收走一个很小的电流这个电流分别从屏的四个角上的电极中流出且理论上流经四个电极的电流与手指头到四角的距离成比例控制器通过对四个电流比例的精密计算得出位置。

可以达到99的精确度具备小于3ms的响应速度。

电容屏主要有自电容屏与互电容屏两种以现在较常见的互电容屏为例内部由驱动电极与接收电极组成驱动电极发出低电压高频信号投射到接收电极形成稳定的电流当人体接触到电容屏时由于人体接地手指与电容屏就形成一个等效电容而高频信号可以通过这一等效电容流入地线这样接收端所接收的电荷量减小而当手指越靠近发射端时电荷减小越明显最后根据接收端所接收的电流强度来确定所触碰的点。

电容屏要实现多点触控靠的就是增加互电容的电极简单地说就是将屏幕分块在每一个区域里设置一组互电容模块都是独立工作所以电容屏就可以独立检测到各区域的触控情况进行处理后简单地实现多点触控。

电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层再在导体层外加上一块保护玻璃双玻璃设计能彻底保护导体层及感应器同时透光率更高。

代表产品就是苹果iPod touch和iPad系列产品拥有其他产品难以超越的非凡触控体验为电容屏的成功推广立下了汗马功劳。

电阻式触摸屏因为电容屏已经被苹果抬高地位加上本身成本确实低于电容屏比较常出现在中低端产品上所以电阻屏也无奈屈尊于低配系列。

电阻屏是一种传感器其屏体部分是一块多层复合薄膜加上玻璃的结构薄膜和玻璃相邻的一面上均涂有ITO纳米铟锡金属氧化物涂层当触摸操作时薄膜下层的ITO会接触到玻璃上层的ITO经由感应器传出相应的电信号经过转换电路送到处理器通过运算转化为屏幕上的坐标值从而完成选点的动作并呈现在屏幕上。

电容式触摸屏与电阻式触摸屏的区别

电容式触摸屏与电阻式触摸屏的区别

电容式触摸屏与电阻式触摸屏的区别电容式触摸屏与电阻式触摸屏有什么区别电容触摸屏的介绍电容式触摸屏的结构主要就是在玻璃屏幕上镀一层透明化的薄膜体层,再在导体层外加之一块维护玻璃,双玻璃设计能够全盘维护导体层及感应器。

电容式触摸屏在触摸屏四边均镀上狭长的电极,在导电体内构成一个低电压交流电场。

在鼠标屏幕时,由于人体电场,手指与导体层间可以构成一个耦合电容,四边电极收到的电流可以流向触点,而电流高低与手指至电极的距离成正比,坐落于触摸屏幕后的控制器便可以排序电流的比例及高低,精确算是出来鼠标点的边线。

电容触摸屏的双玻璃不但能够维护导体及感应器,更有效地避免外在环境因素对触摸屏导致影响,即使屏幕沾存有污秽、尘埃或油渍,电容式触摸屏依然能够精确算是出来鼠标边线。

电容式触摸屏是在玻璃表面贴上一层透明的特殊金属导电物质。

当手指触摸在金属层上时,触点的电容就会发生变化,使得与之相连的振荡器频率发生变化,通过测量频率变化可以确定触摸位置获得信息。

由于电容随温度、湿度或接地情况的不同而变化,故其稳定性较差,往往会产生漂移现象。

该种触摸屏适用于系统开发的调试阶段。

编辑本段电容触摸屏的瑕疵电容触摸屏的透光率和清晰度优于四线电阻屏,当然还不能和表面声波屏和五线电阻屏相比。

电容屏反光严重,而且,电容技术的四层复合触摸屏对各波长光的透光率不均匀,存在色彩失真的问题,由于光线在各层间的反射,还造成图像字符的模糊。

电容屏在原理上把人体当做一个电容器元件的一个电极采用,当存有导体紧邻与夹层ito工作面之间耦合出来足够多量容值的电容时,流进的电流就足够多引发电容屏的误动作。

我们知道,电容值虽然与极间距离成反比,却与相对面积成正比,并且还与介质的的绝缘系数有关。

因此,当较大面积的手掌或手持的导体物靠近电容屏而不是触摸时就能引起电容屏的误动作,在潮湿的天气,这种情况尤为严重,手扶住显示器、手掌靠近显示器7厘米以内或身体靠近显示器15厘米以内就能引起电容屏的误动作。

触摸屏工作原理

触摸屏工作原理

0 引言随着信息技术的飞速发展,人们对电子产品智能化、便捷化、人性化要求也不断提高,触摸屏作为一种人性化的输入输出设备,在我国的应用范围非常广阔,是极富吸引力的多媒体交互没备。

目前,触摸屏的需求动力主要来自于消费电子产品,如手机、PDA、便携导航设备等。

随着触摸屏技术的不断发展,它在其他电子产品中的应用也会得到不断延伸。

现在市面上已有的触摸屏控制器普遍价格比较高且性能相对比较固定,一些场合下无法满足用户的实际需求。

本文基于上述考虑,根据电阻式触摸屏的工作原理,选用51系列单片机作为控制核心,设计一种实用且低成本的触摸屏控制系统。

1 触摸屏的工作原理触摸屏由触摸检测部件和触摸屏控制器件组成(如图1所示);触摸检测部件用于检测用户触摸位置,接收后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息送给控制器,它同时能接收控制器发来的命令并加以执行。

触摸屏的主要3大种类是:电阻技术触摸屏、表面声波技术触摸屏、电容技术触摸屏。

其中,电阻式触摸屏凭借低廉的价格以及对于手指及输入笔触摸的良好响应性,涵盖了100多家触摸屏元件制造商中的2/3,成为过去5年中销售量最高的触摸屏产品。

在这里根据要设计应用的触摸屏控制器,重点介绍一下四线电阻式触摸屏。

电阻触摸屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。

当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5 V均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A/D转换,并将得到的电压值与5 V相比即可得到触摸点的Y轴坐标,同理得出X轴的坐标,这就是四线电阻式触摸屏基本原理,其原理如图2所示。

智能手机触控显示屏幕知识大搜罗

智能手机触控显示屏幕知识大搜罗

智能手机触控显示屏幕知识大搜罗相信大家很多都用上了“触”屏手机,那么,大家对自已手机的屏幕又了解多少呢?这里为大家简单讲解一下。

目前的 TOUCH 屏主流是分两种屏幕,一种是“电容屏” 一种是“电阻屏”电容屏欲称“硬屏”像主流的几款手机如苹果IPHONE , GOOGLE 的 G1,G2.HERO 黑莓的9500国产强机魅族M8等电阻屏欲称“软屏”像使用 Windows Mobile系统各系例品牌手机,如HTC多普达三星摩托罗拉等使用Windows Mobile系统的智能手机,还有大家熟悉的NOKIA 5800也是使的软屏为了让大家更好的了解,本人从网上面转裁一份更详细的对比供大家学习:电阻触屏俗称“软屏”,多用于Windows Mobile系统的手机;电容触屏俗称“硬屏”,如iPhone和 G1 等机器采用这种屏质的。

==========================================================================================================一、室内可视效果两者通常很好。

二、触摸敏感度1 、电阻触屏:需用压力使屏幕各层发生接触,可以使用手指(哪怕带上手套),指甲,触笔等进行操作。

支持触笔在亚洲市场很重要,手势和文字识别在哪里都被看重。

2、电容触屏:来自带电的手指表层最细微的接触也能激活屏幕下方的电容感应系统。

非生命物体、指甲、手套无效。

手写识别较为困难。

三、精度1、电阻触屏:精度至少达到单个显示像素,用触笔时能看出来。

便于手写识别,有助于在使用小控制元素的界面下进行操作。

2、电容触屏:理论精度可以达到几个像素,但实际上会受手指接触面积限制。

以至于用户难以精确点击小于 1cm2 的目标。

四、成本1、电阻触屏:很低廉。

2 、电容触屏:不同厂商的电容屏价格比电阻屏贵10% 到 50% 。

这点额外成本对旗舰级产品无所谓,但可能会让中等价位手机望而却步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四线电阻式触摸屏
四线电阻式触摸屏,是一种常见的触摸屏技术,被广泛应用于手机、平板电脑、机顶盒等设备中。

它通过感应用户手指触摸位置的电流,从而实现对设备的控制。

原理
四线电阻式触摸屏由四项组成:触摸板、透明导电层、电气接口、控制电路。

其中,透明导电层是关键。

透明导电层通常由两项材料组成:ITO(氧化铟锡)玻璃或 PET(聚酯)膜和
铜线格栅阵列。

ITO玻璃或 PET膜是一种透明的材料,其表面涂有一层透明的导
电层,一般是氧化铟锡(ITO)。

ITO 导电层有很好的透明性和导电性,能够感知
用户触摸位置,而铜线格栅阵列可以将感应到的信号转化为数字信号,传输给控制电路。

四线电阻式触摸屏的工作原理是,当用户用手指等带有电导性的物体触摸到屏
幕时,ITO 导电层会感测到电流的流动,而这股电流被感应到后便会传输到控制电
路中进行处理。

控制电路会根据感应到的电流大小和位置计算出用户的输入信息,从而转化为具体的指令发送给操作系统,触发各种功能和操作。

优点
四线电阻式触摸屏的优点包括:
1.反应速度快,用户操作流畅自然。

2.防抖动性能好,不容易受外界干扰。

3.灵敏度高,能够快速准确地感应到触摸位置。

4.成本低廉,可以广泛应用于许多设备中。

缺点
四线电阻式触摸屏的缺点主要有:
1.略微厚重,会占用一些空间。

2.无法支持多点触控,只能实现单点操作。

3.对电容不敏感,因此无法实现手写输入等高级操作。

4.寿命相对较短,需要更频繁的更换。

应用
四线电阻式触摸屏由于其简单的设计和高性价比,已经成为一些常用设备的标配,例如:
1.手机和平板电脑
2.机顶盒和智能电视
3.汽车导航屏幕
4.运动设备、游戏机等电子产品
总之,四线电阻式触摸屏作为一种经典的触摸屏技术,依然在现代电子设备中得到广泛的应用。

虽然它有一些缺陷,但其稳定性、灵敏度和成本优势,仍然让它成为一种不可或缺的屏幕技术。

相关文档
最新文档