五线电阻式触摸屏工作原理

合集下载

电阻式触摸屏的工作原理

电阻式触摸屏的工作原理

电阻式触摸屏的工作原理
电阻式触摸屏是一种常见的触摸屏技术,其工作原理是利用两层透明导电膜之间的电阻变化来检测触摸位置。

电阻式触摸屏由上下两层透明导电膜组成,上层膜为ITO薄膜,下层膜为玻璃或PET基板上的ITO薄膜。

当手指或触控笔接触到上层膜时,上层膜和下层膜之间的电阻值会发生变化,这种变化会被控制器检测到并转换成坐标信息。

电阻式触摸屏的控制器通常采用四线或五线结构,其中四线结构包括两条X轴线和两条Y轴线,五线结构则在四线结构的基础上增加了一条接地线。

控制器通过对X轴和Y轴线的电压变化进行检测,可以确定触摸点的坐标位置。

电阻式触摸屏的优点是价格相对较低,且可以使用手指或触控笔进行操作。

但是由于其结构较为复杂,需要较高的精度和稳定性,同时也容易受到外界环境的影响,如温度、湿度等因素。

总的来说,电阻式触摸屏是一种常见的触摸屏技术,其工作原理是利用两层透明导电膜之间的电阻变化来检测触摸位置。

虽然存在一些缺点,但其价格相对较低,且可以使用手指或触控笔进行操作,因此在一些应用场景中仍然得到广泛应用。

电阻触摸屏工作原理

电阻触摸屏工作原理

电阻触摸屏工作原理电阻触摸屏是一种常见的触摸屏技术,它通过电阻感应原理实现对触摸位置的检测。

本文将详细介绍电阻触摸屏的工作原理和相关技术细节。

一、电阻触摸屏的基本结构电阻触摸屏通常由两层透明导电膜组成,这两层膜之间通过绝缘的弱小间隙隔开。

上层导电膜被分成一系列纵向导电条,而下层导电膜则被分成一系列横向导电条。

当用户触摸屏幕时,上层导电膜和下层导电膜之间会发生接触,形成一个电阻。

二、电阻触摸屏的工作原理电阻触摸屏的工作原理基于电阻分压原理。

当用户触摸屏幕时,上层导电膜和下层导电膜之间的电阻会发生变化。

触摸点附近的导电条会形成一个电阻分压网络,导致电流在触摸点附近的位置发生变化。

通过测量电流的变化,可以确定用户触摸的位置。

三、电阻触摸屏的工作流程1. 电流输入:当用户触摸屏幕时,触摸点的位置会引起电流的变化。

触摸点所在位置的导电条会形成一个电阻分压网络。

2. 电流检测:触摸屏控制器会通过一对电流检测引脚,测量电流的变化。

通常,电流检测引脚位于触摸屏的四个角落,以确保对触摸位置的准确检测。

3. 信号处理:触摸屏控制器会将检测到的电流信号转换成数字信号,并进行处理。

这些数字信号表示用户触摸的位置坐标。

4. 数据传输:触摸屏控制器将处理后的数据传输给计算机或者其他设备。

计算机或者其他设备会根据这些数据来执行相应的操作,例如挪移光标或者执行特定的命令。

四、电阻触摸屏的特点1. 精确性:电阻触摸屏可以提供较高的定位精度,可以检测到触摸位置的坐标。

2. 多点触控:一些先进的电阻触摸屏支持多点触控,可以同时检测多个触摸点的位置。

3. 可靠性:电阻触摸屏结构简单,没有机械挪移部件,因此具有较高的可靠性和耐用性。

4. 兼容性:电阻触摸屏可以与各种显示屏幕技术兼容,包括液晶显示器、有机发光二极管(OLED)等。

五、电阻触摸屏的应用领域电阻触摸屏广泛应用于各种电子设备中,包括智能手机、平板电脑、个人电脑、汽车导航系统等。

四线五线电阻式触摸屏的工作原理

四线五线电阻式触摸屏的工作原理

四线五线电阻式触摸屏的工作原理四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。

总共需四根电缆。

高解析度,高速传输反应。

表面硬度处理,减少擦伤、刮伤及防化学处理。

具有光面及雾面处理。

一次校正,稳定性高,永不漂移。

五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。

五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。

解析度高,高速传输反应。

表面硬度高,减少擦伤、刮伤及防化学处理。

同点接触3000万次尚可使用。

导电玻璃为基材的介质。

一次校正,稳定性高,永不漂移。

五线电阻触摸屏有高价位和对环境要求高的缺点。

五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命但是工艺成本较为高昂。

镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。

不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。

电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。

不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。

电阻触摸屏的精度只取决于A/D转换的精度,因此都能轻松达到4096*4096·比较而言,五线电阻比四线电阻在保证分辨率精度上还要优越,但是成本代价大,因此售价相对比较高。

五线电阻屏介绍特点

五线电阻屏介绍特点

五线电阻屏介绍特点五线触摸屏使用了一个阻性层和一个导电层。

导电层有一个触点,通常在其一侧的边缘。

阻性层的四个角上各有一个触点。

为了在X轴方向进行测量,将左上角和左下角偏置到VREF,右上角和右下角接地。

由于左、右角为同一电压,其效果与连接左右侧的总线差不多,类似于四线触摸屏中采用的方法。

为了沿Y轴方向进行测量,将左上角和右上角偏置为VREF,左下角和右下角偏置为0V。

由于上、下角分别为同一电压,其效果与连接顶部和底部边缘的总线大致相同,类似于在四线触摸屏中采用的方法。

这种测量算法的优点在于它使左上角和右下角的电压保持不变;但如果采用栅格坐标,X轴和Y轴需要反向。

对于五线触摸屏,最佳的连接方法是将左上角(偏置为VREF)接ADC的正参考输入端,将左下角(偏置为0V)接ADC的负参考输入端。

五线电阻屏特点:解析度高,高速传输反应。

表面硬度,减少擦伤、刮伤及访化学处理。

同点接触3000万次尚可使用。

导电玻璃为基材的介质。

一次校正,稳定性高,永不漂移。

五线电阻模拟量技术把两个方向的电压通过电阻网络加在靠里的那层金属层上,靠既检测电压又检测电流的的方法测得触摸点的位置,而外层ITO仅当作导体层,共需五根电缆。

二、表面声波技术触摸屏表面声波技术是利用声波在物体的表面进行传输,当有物体触摸到表面时,阻碍声波的传输,换能器侦测到这个变化,反映给计算机,进而进行鼠标的模拟。

表面声波屏特点:清晰度较高,透光率好。

高度耐久,抗刮伤性良好。

一次校正不漂移。

反应灵敏。

适合于办公室、机关单位及环境比较清洁的场所。

表面声波屏需要经常维护,因为灰尘,油污甚至饮料的液体沾污在屏的表面,都会阻塞触摸屏表面的导波槽,使波不能正常发射,或使波形改变而控制器无法正常识别,从而影响触摸屏的正常使用,用户需严格注意环境卫生。

必须经常擦抹屏的表面以保持屏面的光洁,并定期作一次全面彻底擦除。

三、电容技术触摸屏利用人体的电流感应进行工作。

用户触摸屏幕时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。

电阻式触摸屏工作原理

电阻式触摸屏工作原理

电阻式触摸屏工作原理
电阻式触摸屏是一种常见的触摸屏技术,其工作原理基于电阻效应,实现对触摸位置的检测。

下面将详细介绍其工作原理。

电阻式触摸屏由两层特殊涂层的透明导电材料构成,这两层彼此平行但不直接接触。

一层位于屏幕上方,另一层位于底部。

这两层称为感应层和载流层。

当没有触摸屏幕时,系统中的控制器向载流层的四个角施加电流,并测量在感应层的四个角产生的电压。

由于载流层和感应层没有直接接触,所以感应层的电压较低。

当用户触摸屏幕时,手指或其他导电物体会导致感应层和载流层之间发生电流。

这个电流会在触摸位置附近集中,并且会改变感应层的电压分布。

控制器能够通过测量感应层上四个角的电压变化,确定触摸位置。

它可以根据欧姆定律计算所需测量电流的大小,并使用触摸位置与电流大小的关系来确定具体的触摸点。

通过这种方式,电阻式触摸屏能够实现对触摸位置的准确检测。

然而,它对压力敏感,需要用户用一定的压力来触摸屏幕。

另外,这种触摸屏无法实现多点触控,只能实现单点触控。

总结起来,电阻式触摸屏的工作原理是利用电阻效应,通过测量感应层和载流层之间的电流变化来确定触摸位置。

它具有较高的准确性,但对压力敏感且无法实现多点触控。

电阻式触摸屏

电阻式触摸屏

一、 二、
① ② ③
待命状态下,CPU 以极快的频率轮流将+5V 电压供给上层 Y 轴与下层 X 轴,当一层导 电时,另一层接地以读取电压值。Film 上的电压值持续地由 A/D 转换器做转换,并由 控制卡上的 CPU 监控。 待命状态下,Glass 上的四条线会送出+5伏电流,ITO Film 上的电压值为0。ITO Film 上的电压值持续地由 A/D 转换器做转换,且由控制卡上的 CPU 监控着。屏幕被触碰时, Film 与 Glass 上的 ITO 接触通电,Film 上的壹条线会送出该点的电压,微处理器侦 测到后,进行下述的转换处理: 微处理器首先供给 X 轴+5V,并将 Y 轴接地,当触碰时,Film 会送出该点在 X 轴的电 压值,A/D 转换器将电压值数字化,计算出 X 轴的坐标位置。 接下来,微处理器首先供给 Y 轴+5V,并将 X 轴接地,当触碰时,Film 会送出该点在 Y 轴的电压值,A/D 转换器将电压值数字化,计算出 Y 轴的坐标位置。 利用底层基板进行 X 和 Y 轴测量,柔软表层的作用是仅仅作为一个测量电压的探针。 这就意味着触摸屏能够保持连续工作,即便表层的导电涂层不均匀。采用该技术的结 果是触摸屏可以精确、持久、稳定可靠的测量和无漂移的工作。
/车载电话/行動電話等小规格产品
业控制/医疗仪器/游戏机/触摸查询终端等
‖屏幕尺寸
普通显示器 CRT 代码 触摸尺寸 275*205
5W-150C mm 320*236
5W-170C mm 360*270
5W-190C mm 400*300
5W-210C mm
内围尺寸 291*218 mm 340*260 mm 370*280 mm 416*316 mm

电阻触摸屏工作原理

电阻触摸屏工作原理

电阻触摸屏工作原理电阻触摸屏是一种常见的触摸屏技术,广泛应用于各种电子设备中,如智能手机、平板电脑、导航系统等。

它通过电阻效应来实现触摸操作的检测和定位。

电阻触摸屏由两层透明导电膜组成,中间夹有弱小的间隙。

一层为外层导电膜,另一层为内层导电膜。

两层导电膜之间的间隙填充有导电物质,如ITO(铟锡氧化物)等。

当用户触摸屏幕时,外层导电膜和内层导电膜之间的电阻值会发生变化。

电阻触摸屏的工作原理如下:1. 电流传导:当用户触摸屏幕时,手指会导电。

电流从一侧的导电膜流入手指,然后从另一侧的导电膜流回触摸屏。

2. 电阻变化:由于两层导电膜之间的间隙填充有导电物质,触摸屏的电阻值会随着手指触摸的位置发生变化。

触摸点附近的导电物质会与手指接触,形成一个电阻器。

触摸点离开的地方,电阻值较大。

3. 电压测量:触摸屏上的控制电路会对两层导电膜之间的电压进行测量。

通过测量电压的变化,可以确定触摸点的位置。

4. 坐标计算:通过测量多个触摸点的电压,可以计算出触摸点的坐标。

通常,电阻触摸屏可以支持多点触控,即同时检测和定位多个触摸点。

5. 数据传输:触摸屏的控制电路会将触摸点的坐标信息传输给设备的处理器。

处理器根据这些信息来实现相应的操作,如挪移、缩放、点击等。

电阻触摸屏的优点包括:1. 精准度高:电阻触摸屏可以实现较高的触摸精度,能够准确地检测和定位触摸点的位置。

2. 可靠性强:电阻触摸屏的结构相对简单,没有复杂的电子元件,因此具有较高的可靠性和稳定性。

3. 兼容性好:电阻触摸屏可以适合于各种操作系统和设备,具有较好的兼容性。

4. 支持多点触控:电阻触摸屏可以同时检测和定位多个触摸点,支持多点触控操作。

然而,电阻触摸屏也存在一些缺点:1. 透光性差:由于电阻触摸屏需要两层导电膜,因此会影响屏幕的透光性,可能会降低显示效果。

2. 灵敏度较低:相比于其他触摸屏技术,电阻触摸屏的灵敏度较低,可能需要较大的触摸力才干实现触摸操作。

激光打印和显示器工作原理以及电阻式和电容式的工作原理

激光打印和显示器工作原理以及电阻式和电容式的工作原理

一、电阻式触摸屏工作原理和优缺点1. 电阻式触摸屏的工作原理电阻式触摸屏包含上下叠合的两个透明层,四线和八线触摸屏由两层具有相同表面电阻的透明阻性材料组成,五线和七线触摸屏由一个阻性和一个导电层组成,通常还实用一种弹性材料来将两层隔开。

当触摸屏表面受到的压力(如通过笔尖或者手指进行按压)足够大时,顶层与底层之间会产生接触。

所有的电阻式触摸屏都采用分压器原理来产生代表 X 坐标和Y 坐标的电压。

电阻触摸屏的工作原理主要是通过压力感应原理来实现对屏幕内容的操作和控制的,这种触摸屏屏体部份是一块与显示器表面非常电阻式触摸屏配合的多层复合薄膜,其中第一层为玻璃或者有机玻璃底层,第二层为隔层,第三层为多元树脂表层,表面还涂有一层透明的导电层,上面再盖有一层外表面经硬化处理、光滑防刮的塑料层。

在多元脂表层表面的传导层及玻璃层感应器是被许多弱小的隔层所分隔电流通过表层,轻触表层压下时,接触到底层,控制器同时从四个角读出相称的电流及计算手指位置的距离。

这种触摸屏利用两层高透明的导电层组成触摸屏,两层之间距离仅为 2.5 微米。

当手指触摸屏幕时,寻常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通 Y 轴方向的 5V 均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行 A/D 转换,并将得到的电压值与 5V 相比,即可得触摸点的 Y 轴坐标,同理得出 X 轴的坐标,这就是所有电阻技术触摸屏共同的最基本原理。

为了在电阻式触摸屏上的特定方向测量一个坐标,需要对一个阻性层进行偏置:将它的一边接 VREF,另一边接地。

同时,将未偏置的那一层连接到一个 ADC 的高阻抗输入端。

当触摸屏上的压力足够大,使两层之间发生接触时,电阻性表面被分隔为两个电阻。

它们的阻值与触摸点到偏置边缘的距离成正比。

触摸点与接地边之间的电阻相当于分压器中下面的那个电阻。

因此,在未偏置层上测得的电压与触摸点到接地边之间的距离成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五线电阻式触摸屏工作原理
在讲述五线触摸屏工作原理之前先回顾一下四线电阻式触摸屏的工作原理,四线的结构图如图一所示,触摸屏的四边为两组平行的电极,分别在菲林和玻璃上面,当在Rx 两端加
图一:四线电阻式触摸屏工作原理
电压0V 时,触摸中间一点,那么这一点的电压相应为:
1012
Rx Vx V Rx Rx =+; 同理在Ry 两端加上0V 时,10
12y Ry V V Ry Ry =+ 这样就可以判断出触摸点的位置。

五线的工作原理与四线的相同,也是通过判断触摸点的电压来判断触摸点的位置,在四线中由于电极的电阻很小(<1Ω),这时可以忽略电极的电阻,从理论上讲(ITO 面均匀,电极电阻为0),四线的线性度<<1%,由于菲林上ITO 的稳定性比玻璃的差,且其容易发生断裂,所以四线的线性型只能保证在1.5%的范围之内。

五线电阻式触摸屏工作时,电压加在玻璃上的四个角(UL 、UR 、DL 、DR ),当UL 与UR
图二:五线电阻式触摸屏结构
V 输入点
Rx1 Rx2
Ry1
Ry2 -x –y +x +y
Rx2 Rx1 R y R
y
E
同时为5v时,DL与DR同时为0v,这时要使测得的位置很准,就需要减小UL与UR之间电极的电阻,同时测X轴的位置时需要减小UL与DL之间电极的电阻,这样玻璃上的电极就类似与菲林上的电极,但由于电极电阻很小,于是丝印时会使其不均匀且会使得触摸屏工作时的电流过大。

那么,可以适当的增加电极的电阻,通过模拟可以知道,当电极电阻增加后会出现图三所示的扭曲。

图三:电极电阻与线性度的关系
在设计五线电阻式触摸屏的电极时采用了如下的方案,如图四所示。

图四:五线电阻式触摸屏电极图
通过EWB软件模拟可以知道,当电极电阻的取值为发生变化时,触摸屏的线性度是不一样的,于是可以确定一个电阻值使图三中的a线的电压差<1.3%,这时b、c、d三条线的电压差也<1.3%。

在图四中主要采用了两种电极结构,如图五所示。

图五:五线电极结构
在图五中主要是用A 结构减小电极电阻,B 结构平衡电压使得电压均匀下降。

设1、2之间交叉的长度为l ,间距为w ,方块电阻为ρ,则1、2之间的电阻为:
R w l
ρ=⨯ 这里忽略了部分电阻,因为它不影响整个电压的均匀度。

由电阻网络的特性可知,当电极上的压降≤1.3%时,视区内与电极平衡方向的压降<1.3%,且越靠近中间,这个压降越小。

通过模拟电阻网络可以知道对于1:1.3尺寸的触摸屏,电极总电阻≤35Ω,这时可以根据电极总长度L ,电极与边框之间的距离a ,电极宽度b 、b1,电极之间的间距w ,可以计算出电极块的个数以及电极块的长度,当计算出的电极块个数不是整数时,需要对其进行取整。

图六:图五B 的等效电路
由于图三中1、2电极块的长度“太大”,加电压后会形成“大片”的等势区,因此,采用图四所示的电极对其进行分压,对于5、6、7、8四块电极可以等效为图六所示的电路。

在图六中由对称性可以知道,r56=r58,r67=r78,因此整个电路构成一个桥式电路,因此有V5=V7(断开5、7之间的连接),同时由对称性可以知道V6=(V9+V5)/2,V8=(V5+V10)/2,设V9=1伏,V10=2伏,则上排电极为(1、1.5、2),下排电极为(1、1.25、1.5、1.75、2),减小了压降的幅度以及等势区域。

设上排电极数目为n1,下排为n2,则有如下的关系式:
n2=2×n1-1;
在本设计中,图五B 结构为三排,靠近视区的电极块的个数为41,靠近电极块的线性度为1/(41*2)=1.22%。

在触摸屏的四个角上采用了图七所示的设计,由图中可以看出ab =2*cd ,在本设计中图五A 结构一共有6个,根据其特性可知各块的电压分别为5v 、4v 、3v 、2v 、1v 、0v ,当在UL 与UR 处加上5v 的电压时通过前面的分析可知D V =4.75V 、E V =4.5V 、F V =4.25V 、
图七:转角处电极设计
G V =4V 、H V =3.75V ,同时可以知道/10OE L L =。

这里假设O 、A 、B 、C 的电压均为5V ,则:
20.9 4.512
AE A A R V V V V R R ==⨯=+=BE V =CE V =E V 这样,触摸屏的线性度就能很好。

在UL 和UR 加上5V 的电压时,A 、B 、C 三点的电压是小于5V 的。

因为AC 和ab 之间是有一个电阻的,但B a V V =,这样,虽然有一个压降,由ITO 面电阻网络的性质可以判断出在离电极块一段距离后线性度会变好,具体情况有待试验结果出来。

相关文档
最新文档