1500立方米球罐毕业设计论文
十万立方米外浮顶储罐设计-毕业设计

十万立方米外浮顶储罐设计摘要:近一、二十年来,油罐的设计与施工技术较过去都有了更快的发展,明显的趋势是大型化,油罐大型化给人们带来许多经济利益,也带来了一些技术课题。
浮顶油罐是目前国内外在大中型油罐中最常用的一种结构形式,它几乎全部消灭了气体空间,从而大大减少了油品的蒸发损耗和大气污染等。
地区地质状况良好,适合建罐,设计基本风压为800Mpa,对钢材的选择考虑了强度,可焊性和冲击韧性三项主要要求。
罐壁厚度计算采用变点设计法,分别计算了充水和储油两种不同储存介质的情况,用它计算大容量罐时,可减少某些圈的壁厚和罐壁总用钢量。
设计中不仅包括了罐顶,罐壁,罐底的整体轮廓计算,还包括抗风圈,加强圈和密封的计算,抗风圈和加强圈设计采用我国国内标准。
油罐的抗震设计也参照国内外的设计规范,可承受8级以上的地震。
校核部分包括浮顶四个准则,强度和稳定性校核,下节点校核以及开孔补强校核。
计算部分清楚简洁,图纸清晰规范,在保证安全的前提下,经济选材是本设计的特点。
关键词:浮顶油罐,浮顶,罐壁,抗风圈,加强圈Abstract:Recent one or two decades, the design and construction of tank technology has been faster than in the past the development of a clear trend that large-scale and large-scale oil brings many economic benefits as well as a number of technical issues .Floating roof tank is the large and medium-sized oil tank at home and abroad in the most commonly used form of a structure, it eliminated almost all of the gas space, thus greatly reducing the evaporation loss of oils and atmospheric pollution. Geological in good condition and suitable for cans, for the design of the basic wind pressure 800Mpa, on the choice of the steel strength, weldability and impact toughness of the three main requirements. Calculation of tank wall thickness design method using change-point, were calculated and the reservoir water storage of two different media, the use it when calculating the large-capacity tanks can reduce certain circle tank wall thickness and the total amount of steel. Design includes not only the tank top, tank walls, tank at the end of the overall outline of the calculation, but also wind circle, strengthening and sealing ring, the wind and the strengthening of circle circle design standards in China. Seismic Design of oil tank at home and abroad is also reference to the design specifications can withstand earthquakes of more than 8. Check some of the four criteria, including floating roof, the strength and stability of calibration, the next check node and check opening reinforcement.Calculation of some clear and concise, clear drawings norms, in the premise of security, economic selection of the design characteristics.Key words: floating roof tank,floating roof,tank skin,wind circle,Circle to enhance目 录1 绪论 (5)2 油罐钢材、尺寸的选择 (7)2.1概述 (7)2.2求许用应力[]σ (7)2.3确定油罐经济直径和高度 (8)3 罐壁强度设计 (10)3.1罐壁计算的说明 (10)3.2采用变点法设计各层壁板厚度 (12)3.2.1计算充水时各层板厚 (12)3.2.2计算储油时各层板厚 (23)4 浮顶设计 (35)4.1基本数据 (35)4.2校核 (36)4.2.1第一准则校核 (36)4.2.2第三准则的计算和校核 (37)4.2.3第二准则校核 (38)4.3浮顶强度及稳定性校核 (39)4.3.1单盘的强度验算 (39)4.3.2浮船强度校核 (40)4.3.3浮船平面内稳定校核盘 (41)4.3.4浮船平面外稳定校核 (42)4.3.5关于Ae 的验算 (43)5 油罐密封及抗风设计 (45)5.1油罐的密封装置 (45)5.2抗风设计 (45)5.2.1抗风圈的设计和计算 (45)5.2.2加强圈的设计和计算 (46)6 罐底及罐基础设计 (48)6.1罐底的设计 (48)6.1.1材料及厚度 (49)6.1.2排版方法 (49)6.1.3底板的连接 (49)6.2罐基础设计 (49)7 下节点计算 (51)8 油罐抗震设计 (54)8.1倾覆力矩计算 (54)8.2罐壁压应力的计算 (54)8.3罐壁临界压应力及其校核 (55)9 油罐的附件设计及开孔补强 (56)9.1附件设计 (56)9.1.1罐顶附件 (56)9.1.2罐壁附件 (56)9.1.3罐壁附件简要介绍 (57)9.1.4 安全设施 (58)9.1.5梯子.平台和栏杆 (58)9.2开孔补强计算 (58)10 质量检验 (60)10.1罐底质量检验 (60)10.1.1罐底的平度检查 (60)10.1.2焊缝质量检查 (60)10.2罐底的质检 (60)11 油罐的消防系统选择 (61)11.1罐区泡沫灭火部分 (61)11.2罐区冷却水部分 (61)参考文献 (62)致谢 (62)1 绪论国内外研究现状伴随着世界石油工业的发展与进步,原油的储备和运输对储罐的容量提出了越来越大的要求。
毕业设计(论文)--油库设计论文[管理资料]
![毕业设计(论文)--油库设计论文[管理资料]](https://img.taocdn.com/s3/m/829b71d8915f804d2a16c14c.png)
油库平面布置主要包括储油区、铁路装卸作业区、公路装卸作业区等以及油库相关配套设施的布置。在设计铁路装卸区和公路装卸区时,根据油品的经济流速计算了输油管管径,并按照标准选取了标准管径,然后根据设计的流程进行水力计算并合理选择了装卸油泵。在消防系统设计中,对消防系统的确定和选择、设计参数的选用、消防设备的选型和设置等问题都做了较详尽的介绍。为了更清楚地表述此次设计内容,绘制了油库总平面布置图、油库工艺流程图作为补充。
[关键词]油库设计平面布置工艺流程水力计算
Huang Gangoil depot design
Student:LiChuncePetroleumEngineeringCollege
Instructor: LiXiaoyanPetroleumEngineeringCollege
[Abstract]With the increasing development of economic construction, market demand for oil is increasing, and the development of the depot is also very quickly. The investment decision-making and design of the oil depot construction of the rational can directly impact on the economic development of enterprises and the economy efficiency,and even the production safety.
十万立方米外浮顶储罐设计-毕业设计

十万立方米外浮顶储罐设计摘要:近一、二十年来,油罐的设计与施工技术较过去都有了更快的发展,明显的趋势是大型化,油罐大型化给人们带来许多经济利益,也带来了一些技术课题。
浮顶油罐是目前国内外在大中型油罐中最常用的一种结构形式,它几乎全部消灭了气体空间,从而大大减少了油品的蒸发损耗和大气污染等。
地区地质状况良好,适合建罐,设计基本风压为800Mpa,对钢材的选择考虑了强度,可焊性和冲击韧性三项主要要求。
罐壁厚度计算采用变点设计法,分别计算了充水和储油两种不同储存介质的情况,用它计算大容量罐时,可减少某些圈的壁厚和罐壁总用钢量。
设计中不仅包括了罐顶,罐壁,罐底的整体轮廓计算,还包括抗风圈,加强圈和密封的计算,抗风圈和加强圈设计采用我国国内标准。
油罐的抗震设计也参照国内外的设计规范,可承受8级以上的地震。
校核部分包括浮顶四个准则,强度和稳定性校核,下节点校核以及开孔补强校核。
计算部分清楚简洁,图纸清晰规范,在保证安全的前提下,经济选材是本设计的特点。
关键词:浮顶油罐,浮顶,罐壁,抗风圈,加强圈Abstract:Recent one or two decades, the design and construction of tank technology has been faster than in the past the development of a clear trend that large-scale and large-scale oil brings many economic benefits as well as a number of technical issues .Floating roof tank is the large and medium-sized oil tank at home and abroad in the most commonly used form of a structure, it eliminated almost all of the gas space, thus greatly reducing the evaporation loss of oils and atmospheric pollution. Geological in good condition and suitable for cans, for the design of the basic wind pressure 800Mpa, on the choice of the steel strength, weldability and impact toughness of the three main requirements. Calculation of tank wall thickness design method using change-point, were calculated and the reservoir water storage of two different media, the use it when calculating the large-capacity tanks can reduce certain circle tank wall thickness and the total amount of steel. Design includes not only the tank top, tank walls, tank at the end of the overall outline of the calculation, but also wind circle, strengthening and sealing ring, the wind and the strengthening of circle circle design standards in China. Seismic Design of oil tank at home and abroad is also reference to the design specifications can withstand earthquakes of more than 8. Check some of the four criteria, including floating roof, the strength and stability of calibration, the next check node and check opening reinforcement.Calculation of some clear and concise, clear drawings norms, in the premise of security, economic selection of the design characteristics.Key words: floating roof tank,floating roof,tank skin,wind circle,Circle to enhance目 录1 绪论 (5)2 油罐钢材、尺寸的选择 (7)2.1概述 (7)2.2求许用应力[]σ (7)2.3确定油罐经济直径和高度 (8)3 罐壁强度设计 (10)3.1罐壁计算的说明 (10)3.2采用变点法设计各层壁板厚度 (12)3.2.1计算充水时各层板厚 (12)3.2.2计算储油时各层板厚 (23)4 浮顶设计 (35)4.1基本数据 (35)4.2校核 (36)4.2.1第一准则校核 (36)4.2.2第三准则的计算和校核 (37)4.2.3第二准则校核 (38)4.3浮顶强度及稳定性校核 (39)4.3.1单盘的强度验算 (39)4.3.2浮船强度校核 (40)4.3.3浮船平面内稳定校核盘 (41)4.3.4浮船平面外稳定校核 (42)4.3.5关于Ae 的验算 (43)5 油罐密封及抗风设计 (45)5.1油罐的密封装置 (45)5.2抗风设计 (45)5.2.1抗风圈的设计和计算 (45)5.2.2加强圈的设计和计算 (46)6 罐底及罐基础设计 (48)6.1罐底的设计 (48)6.1.1材料及厚度 (49)6.1.2排版方法 (49)6.1.3底板的连接 (49)6.2罐基础设计 (49)7 下节点计算 (51)8 油罐抗震设计 (54)8.1倾覆力矩计算 (54)8.2罐壁压应力的计算 (54)8.3罐壁临界压应力及其校核 (55)9 油罐的附件设计及开孔补强 (56)9.1附件设计 (56)9.1.1罐顶附件 (56)9.1.2罐壁附件 (56)9.1.3罐壁附件简要介绍 (57)9.1.4 安全设施 (58)9.1.5梯子.平台和栏杆 (58)9.2开孔补强计算 (58)10 质量检验 (60)10.1罐底质量检验 (60)10.1.1罐底的平度检查 (60)10.1.2焊缝质量检查 (60)10.2罐底的质检 (60)11 油罐的消防系统选择 (61)11.1罐区泡沫灭火部分 (61)11.2罐区冷却水部分 (61)参考文献 (62)致谢 (62)1 绪论国内外研究现状伴随着世界石油工业的发展与进步,原油的储备和运输对储罐的容量提出了越来越大的要求。
一万立方米拱顶油罐设计说明书

根据这些特点和本次设计的要求选择固定球顶储罐。
1.3
储罐储液的损耗日益受到人们的重视,损耗不但使资源浪费,降低了储液质量,造成经济损失,而且严重污染环境,危害人们的生活质量和生存,因此就要有效控制和尽量减少储液的损耗。
China's large-scale tank is booming,vaultedtank as a simple structure, a number of tanks,and theconstruction of relatively easy and relatively inexpensive cost,Will take advantage of our tanks.Therefore, we must design and construction of its more skilled, and further research and innovation.
(3)立式圆柱形储罐按罐顶的形式又可分为固定顶储罐和浮顶储罐两种类型
1.锥顶储罐可分为子支撑锥顶和支撑锥顶两种。储罐容量一般小于1000m3。
2.拱顶储罐的罐顶是一种接近于球形形状的一部分,有加强肋拱顶容积大于10000 m3。
3.伞形顶储罐是子支撑拱顶的变种,其任何水平截面都具有规则的多边形。
4.网壳顶储罐由于带类拱顶超过10000m3以上时,罐顶单位面积用钢量增加很多。
5.按形式分类:可分为立式储罐、卧式储罐等。
6.按结构分类:可分为固定顶储罐、浮顶储罐、球形储罐等。
7.按大小分类:100m3以上为大型储罐,多为立式储罐;100m3以下的为小型储罐,多为卧式储罐。
2000立方米大型球罐设计说明书

课程设计资料标签资料编号:题目球形储罐设计姓名学号专业材料成型指导教师成绩资料清单注意事项:1、存档内容请在相应位置填上件数、份数,保存在档案盒内。
每盒放3-5名学生资料,每份按序号归档,如果其中某项已装订于论文正本内,则不按以上顺序归档。
各专业可依据实际情况适当调整保存内容。
2、所有资料必须保存三年。
课程设计论文(说明书)装订格式可参照毕业设计论文装订规范要求。
3、资料由学院资料室统一编号。
编号规则是:年度—资料类别代码·学院代码·学期代码—顺序号,顺序号由四位数字组成(参照《西安理工大学实践教学资料整理归档要求》)。
4、各院、系应在课程设计结束后一个月内按照规范进行资料归档。
5、特殊情况请在备注中注明,并把相关资料归档,应有当事人和负责人签名。
课程与生产设计(焊)设计说明书设计题目球形储罐设计专业材料成型及控制工程班级学生指导教师2016 年秋学期目录一、设计说明课程设计任务书-------------------------------------------------------------------------------11.1 选材-----------------------------------------------------------------------------------------------21.2 球壳计算----------------------------------------------------------------------------------------21.3 球壳薄膜应力校核---------------------------------------------------- --------------------31.4 球壳许用外力----------------------------------------------------------------------- ----------41.5 球壳分瓣计算----------------------------------------------------------------------------------5二、支柱拉杆计算2.1 计算数据---------------------------------------------------------------------------------------92.2 支柱载荷计算---------------------------------------------------------------------------------102.3 支柱稳定性校核-----------------------------------------------------------------------------132.4 拉杆计算---------------------------------------------------------------------------------------14三、连接部位强度计算3.1 销钉直径计算-----------------------------------------------------------------------------------153.2 耳板和翼板厚度计算-------------------------------------------------------------------------153.3 焊缝剪应力校核-------------------------------------------------------------------------------153.4 支柱底板的直径和厚度计算---------------------------------------------------------------163.5 支柱与球壳连接处的应力验算------------------------------------------------------------163.6 支柱与球壳连接焊缝强度计算------------------------------------------------------------18四、附件设计4.1 人孔结构-----------------------------------------------------------------------------------------194.2 接管结构-----------------------------------------------------------------------------------------194.3 梯子平台---------------------------------------------------------------------------------------194.4 液面计--------------------------------------------------------------------------------------------20五、工厂制造及现场组装5.1 工厂制造----------------------------------------------------------------------------------------215.2 现场组装--------------------------------------------------------------------------------------------22六、焊接与检查6.1 钢材的可焊性----------------------------------------------------------------------------------------236.2 焊接工艺的确定------------------------------------------------------------------------------------236.3 焊后热处理-------------------------------------------------------------------------------------------24七、检查7.1 支柱尺寸精度检查---------------------------------------------------------------------------------247.2 竣工检查----------------------------------------------------------------------------------------------247.3 气密性试验-------------------------------------------------------------------------------------------257.4 开罐检查----------------------------------------------------------------------------------------------25参考文献----------------------------------------------------------------------------------------------------26《生产设计与实践》课程设计任务书一、设计题目球形储罐设计二、主要设计参数内径Dn=15.7m,体积V=2000m3设计压力P=0.69MPa; 工作压力Pg=0.64MPa,水压试验压力P gx=1.03 MPa水压试验总重:2200吨,立柱数:12根实际温度:20℃自选参数:充装系数K= 0.95模拟使用地点(西安)三、设计内容1、选材2、整体设计3、焊材选择4、焊接设备选择5、焊接工艺6、检验及质量标准四、提交内容1、设计说明书2、主要焊缝焊接工一、 选材1、选材 根据设计条件及GB12337-2014《钢制压力容器》 表4 球壳材料选取Q345R[]189tMpa σ=。
课程设计(论文)10000m3立式储油罐结构设计

课程设计任务书1 储罐及其发展概况油品和各种液体化学品的储存设备—储罐是石油化工装置和储运系统设施的重要组成部分。
由于大型储罐的容积大、使用寿命长。
热设计规范制造的费用低,还节约材料。
20世纪70年代以来,内浮顶储油罐和大型浮顶油罐发展较快。
第一个发展油罐内部覆盖层的施法国。
1955年美国也开始建造此种类型的储罐。
1962年美国德士古公司就开始使用带盖浮顶罐,并在纽瓦克建有世界上最大直径为187ft(61.6mm)的带盖浮顶罐。
至1972年美国已建造了600多个内浮顶罐。
1978年国内3000m3铝浮盘投入使用,通过测试蒸发损耗标定,收到显著效果。
近20年也相继出现各种形式和结构的内浮盘或覆盖物[1]。
世界技术先进的国家,都备有较齐全的储罐计算机专用程序,对储罐作静态分析和动态分析,同时对储罐的重要理论问题,如大型储罐T形焊缝部位的疲劳分析,大型储罐基础的静态和动态特性分析,抗震分析等,以试验分析为基础深入研究,通过试验取得大量数据,验证了理论的准确性,从而使研究具有使用价值。
近几十年来,发展了各种形式的储罐,尤其是在石油化工生产中大量采用大型的薄壁压力容器。
它易于制造,又便于在内部装设工艺附件,并便于工作介质在内部相互作用等。
2 设计方案2.1 选择设计方法正装法此种方法的特点是指把钢板从罐底部一直到顶部逐块安装起来,它在浮顶罐的施工安装中用得较多,即所谓充水正装法,它的安装顺序是在罐低及二层圈板安装后,开始在罐内安装浮顶,临时的支撑腿,为了加强排水,罐顶中心要比周边浮筒低,浮顶安装完以后,装上水除去支撑腿,浮顶即作为安装操作平台,每安装一层后,将上升到上一层工作面,继续进行安装。
倒装法先从罐顶开始从上往下安装,将罐顶和上层罐圈在地面上安装,焊好以后将第二圈板围在第一罐圈的外围,以第一罐圈为胎具,对中点焊成圆圈后,将第一罐圈及罐顶盖部分整体吊至第一、二罐圈相搭接的位置,停于点焊,然后在焊死环焊缝。
400m球罐设计毕业设计

400m3丁烷球罐的设计摘要球罐球壳结构材料橘瓣式本次毕业设计的课题是400m3丁烷球罐的设计,球罐的直径为9200mm,设计压力为0.6MPa,其遵循的设计标准为:①GB12337—1998《钢制球形储罐》;②GB50094—1998《球形储罐施工及验收规范》;③GB150—1998《钢制压力容器》;④《压力容器安全技术监察规程》。
本次400m3球罐的设计计算,充分考虑了各种载荷的影响,包括:设计内压、球罐自重、储存介质的重力载荷、附属设备的重力载荷、风载荷、雪载荷、地震载荷以及支柱对球壳的反作用力等,充分考虑支柱与球壳连接最低处的组合应力(薄膜应力+剪切应力)的校核和管口补强校核,并对球罐的附件(如梯子平台、喷淋装置和安全阀等)和球罐的支柱进行了较为全面的核算,从而确保球罐的安全性和可靠性。
摘要 (I)1 概论 (1)1.1 球罐的特点 (1)1.2 球罐的分类 (1)2 球罐的优化设计 (2)2.1 橘瓣式球罐 (2)2.2 混合式球罐 (2)2.3 总结 (3)3 材料的选用 (3)3.1 球罐的选材的基本原则 (3)3.1.1 钢材的力学性能 (3)3.1.2 经济性 (5)3.2 选材 (5)3.2.1 钢材 (5)3.2.2 焊接材料 (6)3.3 壳体用钢 (6)3.4 锻件用钢 (7)4 结构设计 (7)4.1 概况 (7)4.1.1 球罐的分类 (8)4.1.2 球罐的构造 (8)4.2 球壳的设计 (9)4.2.1 各种球罐的特点 (9)4.2.2 桔瓣式球罐的瓣片设计和计算 (11)4.2.3 坡口设计 (17)4.3 支座设计 (18)4.3.1 球罐支座的结构和特点 (18)4.3.2 拉杆的设计 (19)4.4 人孔和接管 (20)4.5 球罐的附件 (20)4.5.1 梯子平台 (20)4.5.2 水喷淋装置 (22)4.5.3 安全阀的设计 (23)5 强度计算 (24)5.1 设计条件 (25)5.2 球壳计算 (25)5.2.1 计算压力 (25)5.2.2 球壳各带得厚度计算 (27)5.3 球罐质量计算 (28)5.3.1 计算系数 (28)5.3.2 计算过程 (28)5.4 地震载荷的计算 (29)5.4.1 自震周期 (29)5.4.2 地震力 (29)5.5 风载荷计算 (30)5.6 弯矩计算 (31)5.7 支柱计算 (31)5.7.1 单个支柱的垂直载荷 (31)5.7.2 组合载荷 (33)5.7.3 单个支柱弯矩 (33)5.7.4 支柱稳定性校核 (35)5.8 地脚螺栓计算 (37)5.8.1 拉杆作用在支柱上的水平力 (37)5.8.2 支柱底板与基础的摩擦力 (37)5.8.3 地脚螺栓 (37)5.9 支柱地板 (38)5.9.1 支柱底板直径 (38)5.9.2 底板厚度 (39)5.10 拉杆计算 (39)5.10.1 拉杆螺纹小径的计算 (39)5.10.2 拉杆连接部位的计算 (39)5.11 支柱与球壳连接最低点a的应力校核 (42)5.11.1 a点的剪切应力 (42)5.11.2 a点的纬向应力 (42)5.11.3 a点的应力校核 (43)5.12 支柱与球壳连接焊缝的强度校核 (43)5.13 孔和开孔补强 (44)5.13.1 公称直径小于100的管口的开孔补强 (44)5.13.2 DN500 人孔 (44)5.13.3 DN100 开孔补强(平衡口、安全阀、储罐气出口) (46)5.13.4 DN150 开孔补强(备用口、放空口) (49)5.13.5 DN200 开孔补强(气体出口、入口) (51)6 工厂制造及现场组装 (53)6.1 工厂制造 (53)6.1.1 球壳板用钢板的验收 (53)6.1.2 对板壳的下料和成形 (54)6.2 现场组装 (54)7 焊接 (54)8 焊后热处理 (55)9 竣工检查 (55)9.1压力试验 (55)9.1.1 液压试验 (55)9.1.2 气压试验 (56)9.2 气密性试验 (56)致谢.......................................................................................................... 错误!未定义书签。
球罐设计_精品文档

球罐设计第一章确定设计参数、选择材料一、确定设计参数(一)设计温度储罐放在室外,罐的外表面用150mm的保温层保温。
在吉林地区,夏季可能达到的最高气温为40℃。
最低气温(月平均)为-20℃。
(二)设计压力罐内储存的是被压缩且被冷却水冷凝的液氨。
氨蒸汽被压缩到0。
9,1、4MPa,被冷却水冷凝。
液氨40℃时的饱和蒸汽压由[1]查得为:P汽=1、55MPa(绝对压力)。
为保证安全,在罐顶装有安全阀,故球罐设计压力为安全阀的启动压力,即:P=(1、05-1、1)P汽=(1、05-1、1)1、45=1、523,1、595MPa取设计压力P=1、6MPa(三)焊缝系数球罐采用坡口,双面对接焊,并进行100%的无损探伤,由[2]知=1、0(四)水压试验压力由[4]知水压试验压力为:PT=1、25Pt球壳材料为16MnDR,初选板厚为36mm,由[3]表3查得=157MPa,PT=1、25P157、157=1、251、61=2、06MPat=157MPa则试验时水温不得低于5℃。
(五)球罐的基本参数球罐盛装量为170吨/台。
液氨-20℃的密度为0。
664吨/M3,40℃时0。
58吨/M3。
球罐所需容积(按40℃计)为:V=1700。
58=293、1M31700。
5已给盛装系数为0。
5,即不得装满,故实际所需容积为:V==340M3,其小于400M3,余容较大,足够用,相差17。
6%,符合标准要求。
按公称容积4003设计,由[2]附录一P41查得球罐基本参数如表一1-1公称容积内径㎜几何容积m支座型式支柱根数分带数3表,1-1球罐基本参数400各上极带9200408赤道正切式85带球心角45°/345°/1645°/1645°/1645°/3上温带赤道带下温带各带下极带分块数1二.材料的选择按操作条件要求及各种材料的性能特点,分别选择如下。
(一)球壳钢板操作最低气温为-20℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁石油化工大学顺华能源学院毕业设计(论文)用纸 摘 要 随着世界各国综合国力和科学技术水平的提高,球形容器的制造水平也正在高速发展。近年来,我国在石油化工,合成氨,城市燃气的建设中,大型化球形容器得到了广泛应用。 这次设计主要按照GB12337—1998《钢制球形储罐设计》进行设计。本设计共分两部分,第一部分包括球罐的设计;第二部分为外文资料及其对应的中文翻译。其中第一部分介绍了球罐的发展状况和应用场合、材料选择、球罐设计、结构确定、强度计算、绘图等内容。以结构强度的设计计算为主,从基础理论、设计方法、结构分析、标准规定等方面进行了系统的阐述。 本球罐在1.77MPa的设计压力、常温的设计温度下设计,设计厚度为46mm。压力试验采用水压试验,水压试验压力为2.22MPa。球壳材料选Q345R,支柱采用赤道正切式支柱式支承。为了承受风载荷和地震载荷,保证球罐的稳定性,在支柱之间设置拉杆相连,球壳采用的是三带混合式,球壳分块少,板材利用率高,制造工作量小,焊缝短,焊缝个数少,检验量小,施工速度快,使球罐的施工质量易于保证,拉杆结构采用可调节式拉杆,使球罐平衡易于调节。 关键词:球形储罐,压力容器,支柱结构 辽宁石油化工大学顺华能源学院毕业设计(论文)用纸 Abstract With the improvement of comprehensive national strength and the world of science and technology level, the manufacturing level of spherical tank is high-speed development. In recent years, China's petrochemical industry, synthetic ammonia, the building of city gas, large-scale spherical tank is widely used. Designed in accordance with the GB12337-1998 “Design of steel spherical tank”. This design is divided into two parts,the first part includes an overview and design of spherical tank including the calculation of spherical tank; the second part of foreign materials and their corresponding Chinese translation. The first section describes the development of the sphere and applications, material selection, spherical design, structure identification, strength calculation and so on. The most important is the calculation, and I also introduce the structural design, the basic theory, design methods, structural analysis, standards. The spherical tank in 1.77MPa design pressure, design temperature of room temperature, the design thickness is 46mm. Pressure test using hydraulic pressure test, the hydraulic pressure test with 2.22MPa. Spherical shell material selection Q345R, I use the equator tangent pillar strut-type support. In order to bear wind and seismic loads and ensure the stability of spherical, I set a rod between the pillars, and the three mixed spherical shell is made up with only several parts. The using rate of the plate is small. There are a small number of welds and the length of the welds is small. There is no need to do much test, so it is easy to make. In order to adjust the balance of the tank, that is easy to adjust spherical tank balance. Key words:Storage tanks, Pressure vessels, Support structure 辽宁石油化工大学顺华能源学院毕业设计(论文)用纸 目录 1.前言…………………………………………………………………………… 1.1球罐的国内外发展情况………………………………………………… 1.2球罐的特点………………………………………………………………… 1.3球罐的分类…………………………………………………………………… 1.3.1 按储藏温度分类…………………………………………………… 1.3.2 按结构形式分类…………………………………………………… 1.4 球罐的设计要求………………………………………………………… 1.5 球罐的设计参数…………………………………………………………… 1.5.1 压力…………………………………………………………………11 1.5.2 温度…………………………………………………………………12 1.5.3 厚度…………………………………………………………………12 1.5.4设计的一般规定………………………………………………………14 1.5.5许用应力………………………………………………………14 1.5.6焊接接头系数………………………………………………………14 1.5.7压力试验……………………………………………………………15 1.5.8气密性试验……………………………………………………… 2.材料选用……………………………………………………………………16 2.1 球罐材料准则…………………………………………………………16 2.2壳体用钢板………………………………………………………………17 2.3 锻件用钢………………………………………………………………21 2.4钢管的选用………………………………………………………………21 2.5螺柱和螺母………………………………………………………………21 2.6焊接材料………………………………………………………………21 3.结构设计……………………………………………………………… 辽宁石油化工大学顺华能源学院毕业设计(论文)用纸 3.1概况……………………………………………………………… 3.2球壳的设计……………………………………… 3.3支座的设计……………………………………… 3.4拉杆结构……………………………………… 3.5人孔和接管……………………………………… 3.5人孔和接管……………………………………… 3.5.1人孔结构……………………………………… 3.5.2接管结构……………………………………… 4.强度计算…………………………………………………………………………33 4.1 设计条件……………………………………………………………………33 4.2 球壳计算…………………………………………………………………33 4.3 球罐的质量计算……………………………………………………………35 4.4 地震载荷计算………………………………………………………………36 4.4.1 自振周期…………………………………………………………36 4.4.2 地震力……………………………………………………37 4.5 风载荷计算…………………………………………………………………38 4.6 弯矩计算……………………………………………………………………38 4.7 支柱的计算………………………………………………………………39 4.7.1 单个支柱的垂直载荷…………………………………………………39 4.7.2 组合载荷………………………………………………………………40 4.7.3 单个支柱弯矩………………………………………………………40 4.7.4 支柱稳定性校核……………………………………………………42 4.8 地脚螺栓计算……………………………………………………………44 4.9 支柱底板………………………………………………………………45 4.9.1 支柱底板直径…………………………………………………………45 辽宁石油化工大学顺华能源学院毕业设计(论文)用纸 4.9.2 底板厚度…………………………………………………………………46 4.10 拉杆计算……………………………………………………………………46 4.10.1 拉杆载荷计算…………………………………………………………46 4.10.2 拉杆连接部位的计算…………………………………………………47 4.10.3 翼板的厚度……………………………………………………………47 4.10.4 焊接强度验算…………………………………………………………48 4.11 支柱与球壳连接最低点a的应力校核……………………………………49 4.11.1 a点的应力………………………………………………………………49 4.11.2 a点的应力校核………………………………………………………50 4.12 支柱与球壳连接焊缝的强度校核…………………………………………50 5.工厂制造及现场组装……………………………………………50 5.1 工厂制造 ……………………………………………………………51 5.2现场组装 ……………………………………………………………51 5.3 组装方案……………………………………………………………51 6.焊接 ………………………………………………………………………………51 6.1 焊接工艺的确定 ……………………………………………………………51 6.2 焊后热处理 …………………………………………………………………52 7.检查 ………………………………………………………………………………51 8.结论 ……………………………………………………………………40 参考文献 …………………………………………………………………42 谢 辞………………………………………………………………………41