(优选)阿基米德三角形在高考中的应用ppt讲解
高中数学《第二讲古希腊数学四数学之神──阿基米德》52PPT课件 一等奖名师公开课比赛优质课评比试2

质课评比试
聪明出于勤奋,天才在于积累
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
பைடு நூலகம்
(成稿)奇妙的切点弦方程及阿基米德三角形

又∵点 P(x0, y0 ) 均在切线 PA , PB 上,
3
(2 Ax0 By0 D)x1 (2Cy0 Bx0 E) y1 Dx0 Ey0 F 0. ②
(2 Ax0 By0 D)x2 (2Cy0 Bx0 E) y2 Dx0 Ey0 F 0. ③
交点为 M ,那么交点 M 的轨迹方程为:
Ax0x B
x0 y 2
y0 x
Cy0 y
D
x0 x 2
E
y0 2
y
F
0.
证明:令 M (x, y) , A1(xA, yA), B1(xB , yB ) ,
由定理知弦 A1B1 所在直线方程为: (2 Ax By D)x动 (2Cy Bx E) y 动 Dx Ey F 0.
线的一条弦 AB,分别过 A、B 作切线 AM、BM.两切线的交点为 M,那交点 M 的轨迹方程又是
什么呢?
推论(二):如图(9),点 P(x0, y0 ) 为二次曲线 Ax2 Bxy Cy2 Dx Ey F 0
内一定点,过定点 P 任作二次曲线的一条弦 AB ,分别过 A, B 作切线 AM , BM .两切线的
2x 5 y 8 0. (此法简单,易于操作,运算量小)
说明:由定理中的切点弦方程,很容易想到,当点 P 逐渐靠近二次曲线时,如图(4)
相应的切点 A , B 也逐渐靠近,当点 P 移至二次曲线上时,切点 A 、B 也就自然重合到 P 点, 此时切点弦方程 AB 所在的直线方程即刻变为过点 P 的切线方程.
如图(3),已知圆: ( x 3)2 ( y 2)2 4外一点P(1,7) ,
阿基米德三角形的性质

阿基米德三角形的性质切线方程:1.过抛物线px y 22=上一点),(00y x M 的切线方程为:)(00x x p y y +=2.过抛物线px y 22-=上一点),(00y x M 的切线方程为:)(00x x p y y +-=3.过抛物线py x 22=上一点),(00y x M 的切线方程为:)(00y y p x x +=4.过抛物线py x 22-=上一点),(00y x M 的切线方程为:)(00y y p x x +-=【概念】一、阿基米德三角形:抛物线(圆锥曲线)的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形(如图一SAB ∆即为阿基米德三角形).重要结论:抛物线与弦之间所围成区域的面积(图二中的阴影部分)为阿基米德三角形面积的三分之二.图(一) 图(二)阿基米德运用逼近的方法证明了这个结论. 【证明】:如图(三)SM 是SAB ∆中AB 边上的中线,则SM 平行于x 轴(下面的性质1证明会证到),过M '作抛物线的切线,分别交SA 、SB 于,A B '',则A AM ''∆、B BM ''∆也是阿基米德三角形,可知A C '是A AM ''∆中AM '边上的中线,且A C '平行于x 轴,可得点A '是SA 的中点,同理B '是SB 的中点,故M '是SM 的中点,则SA B S ''∆是M AB S '∆的12,由此可知:A A C S '''''∆是C M A S ''∆的12,B B D S '''''∆是D M B S ''∆的12,以此类推,图(二)中蓝色部分的面积是红色部分而知的12,累加至无穷尽处,便证得重要结论.【性质1】 阿基米德三角形底边上的中线平行于抛物线的轴. 【证明】:设),(11y x A ,),(22y x B ,M 为弦AB 的中点,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,联立方程,1212px y =,2222px y =,解得两切线交点)2,2(2121y y p y y Q + 【性质2】若阿基米德三角形的底边即弦AB 过抛物线内的定点C ,则另一顶点Q 的轨迹为一条直线; 【证明】:设),(11y x A ,),(22y x B ,00(,)C x y 为抛物线内的定点,弦AB 的过定点C ,则过A 的切线方程为)(11x x p y y +=,过B 的切线方程为)(22x x p y y +=,则设另一顶点(),Q x y '',满足11()y y p x x ''=+且22()y y p x x ''=+,故弦AB 所在的直线方程为()yy p x x ''=+,又由于弦AB 过抛物线内的定点00(,)C x y ,故00()y y p x x ''=+,即点Q 的轨迹方程为直线00()y y p x x =+ . 【性质3】 抛物线以C 点为中点的弦平行于Q 点的轨迹; 【证明】:由【性质2】的证明可知:点Q 的轨迹方程为直线00()y y p x x =+ .因为点C 为弦AB的中点,故Q 的轨迹方程为121222y y x x y p x ++⎛⎫=+ ⎪⎝⎭,斜率122p k y y =+;而弦AB 所在的直线方程为()yy p x x ''=+,由【性质1】的证明可知:122y y y +'=,122y y x p '=,故弦AB 所在的直线方程为121222y y y y y p x p ⎛⎫+=+ ⎪⎝⎭,斜率122p k y y =+,又因为直线AB 与Q 的轨迹方程不重合,故可知两者平行. 【性质4】 若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点(若直线l 方程为:0ax by c ++=,则定点的坐标为,c bp C aa ⎛⎫- ⎪⎝⎭;【证明】:任取直线l :0ax by c ++=上的一点()0,o Q x y ,则有000ax by c ++=,即00a cy x b b=--┅①,过点Q 作抛物线22y px =的两条切线,切点分别为,A B ,则又由【性质2】的证明可知:弦AB 所在的直线方程为00()y y p x x =+,把①式代入可得:()00ac x y p x x bb ⎛⎫--=+ ⎪⎝⎭,即0a c y p x px y b b ⎛⎫--=+ ⎪⎝⎭,令0a y p b --=且0c px y b +=,可得:弦AB 所在的直线过定点,c bp C aa ⎛⎫- ⎪⎝⎭.【性质5】 底边为a 的阿基米德三角形的面积最大值为pa 83;【证明】:AB a =,设Q 到AB 的距离为d ,由性质1知: 22212121212122()22444x x y y y y y y y y d QM p p p p++-≤=-=-=(直角边与斜边),设直线AB 的方程为 x my n =+,则a =所以2322121()428a a y y a d s ad p p-≤⇒≤⇒=≤. 【性质6】 若阿基米德三角形的底边过焦点,顶点Q 的轨迹为准线,且阿基米德三角形的面积最小值为2p ;【证明】:由性质2,若底边过焦点,则00,02p x y ==,Q 点的轨迹方程是2px =-,即为准线;易验证1QA QB k k ⋅=-,即QA QB ⊥,故阿基米德三角形为直角三角形,且Q 为直角顶点。
抛物线——阿基米德三角形

解析几何——阿基米德三角形知识点:抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形。
因为阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的2/3预备知识:1.过抛物线px y 22=上一点),(00y x M 的切线方程为:)(00x x p y y +=2.过抛物线px y 22-=上一点),(00y x M 的切线方程为:)(00x x p y y +-=3.过抛物线py x 22=上一点),(00y x M 的切线方程为:)(00y y p x x +=4.过抛物线py x 22-=上一点),(00y x M 的切线方程为:)(00y y p x x +-=阿基米德三角形有一些有趣的性质:性质1:阿基米德三角形底边上的中线平行于抛物线的轴.证明:设11(,)A x y ,22(,)B x y ,M 为弦AB 中点,则过A 的切线方程为11()y y p x x =+,过B 的切线方程为22()y y p x x =+,联立方程组得1122211222()()22y y p x x y y p x x y px y px =+⎧⎪=+⎪⎨=⎪⎪=⎩解得两切线交点Q (122y y p ,122y y +),进而可知QM ∥x 轴.性质2:QM 的中点P 在抛物线上,且P 处的切线与AB 平行.证明:由性质1知Q (122y y p ,122y y +),M 1212(,22x x y y ++,易得P 点坐标为21212()(,82y y y y p ++,此点显然在抛物线上;过P 的切线的斜率为121222p p y y y y =++=ABk ,结论得证.性质3如图,连接AI 、BI ,则△ABI 的面积是△QST 面积的2倍.证明:如图,这里出现了三个阿基米德三角形,即△QAB 、△TBI 、△SAI ;应用阿基米德三角形的性质:弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的23;设BI 与抛物线所围面积为1S ,AI 与抛物线所围面积为2S ,AB 与抛物线所围面积为S ,则123322ABI QAB QST S S S S S =--- =12333222QST S S S S --- =123()2QST S S S S --- =32ABI QST S S - ,∴ABI S = 2QST S .性质4:若阿基米德三角形的底边即弦AB 过抛物线内的定点C ,则另一顶点Q 的轨迹为一条直线证明:设Q (x ,y ),由性质1,x =122y y p ,y =122y y +,∴122y y px=由A 、B 、C 三点共线知10122221210222y y y y y y y x p p p--=--,即21121020y y y y x y x +--2102y py =-,将y =122y y +,122y y px =代入得00()y y p x x =+,即为Q 点的轨迹方程.性质5:抛物线以C 点为中点的弦平行于Q 点的轨迹.利用两式相减法易求得以C 点为中点的弦的斜率为0p y ,因此该弦与Q 点的轨迹即直线l 平行.性质6若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点.证明:如上图,设l 方程为0ax by c ++=,且11(,)A x y ,22(,)B x y ,弦AB 过点C 00(,)x y ,由性质2可知Q 点的轨迹方程00()y y p x x =+,该方程与0ax by c ++=表示同一条直线,对照可得00,c bp x y a a ==-,即弦AB 过定点C (c a ,bp a-).性质7(1)若阿基米德三角形的底边过焦点,则顶点Q 的轨迹为准线;反之,若阿基米德三角形的顶点Q 在准线上,则底边过焦点.(2)若阿基米德三角形的底边过焦点,则阿基米德三角形的底边所对的角为直角,且阿基米德三角形面积的最小值为2p .证明(2):若底边过焦点,则00,02p x y ==,Q 点轨迹方程为2p x =-即为准线;易验证1QA QB k k ⋅=-,即QA ⊥QB ,故阿基米德三角形为直角三角形,且Q 为直角顶点;∴|QM |=122x x ++2p =22124y y p++2p ≥122||4y y p +2p =224p p +2p =p ,而121||()2QAB S QM y y =- ≥12||||QM y y ⋅≥2p性质8底边长为a 的阿基米德三角形的面积的最大值为38a p.证明:|AB |=a ,设Q 到AB 的距离为d ,由性质1知1212||22x x y y d QM p +≤=-221212244y y y y p p +=-=212()4y y p-,设直线AB 方程为:x my n =+,则2221(1)()a m y y =+-∴221()y y -≤2a ,∴d ≤24a p ,即S =12ad ≤38a p.性质9在阿基米德三角形中,∠QFA =∠QFB .证明:如图,作AA '⊥准线,BB '⊥准线,连接QA '、QB '、QF 、AF 、BF ,则1'FA y k p=-,显然'1FA QA k k ⋅=-,∴FA '⊥QA ,又∵|AA '|=|AF |,由三角形全等可得∠QAA '=∠QAF ,∴△QAA '≅△QAF ,∴|QA '|=|QF |,∠QA 'A =∠QFA ,同理可证|QB '|=|QF |,∠QB 'B =∠QFB ,∴|QA '|=|QB '|,即∠QA 'B '=∠QB 'A '∴∠QA 'A =∠QA 'B '+900=∠QB 'A '+900=∠QB 'B ,∴∠QFA =∠QFB ,结论得证.特别地,若阿基米德三角形的底边AB 过焦点F ,则QF ⊥AB.性质10|AF |·|BF |=|QF |2.证明:|AF |·|BF |=12(()22p p x x +⋅+=21212()24p p x x x x +++=212(2y y p +22124y y ++24p ,而|QF |2=221212()()222y y y y p p +-+=212()2y y p +22124y y ++24p =|AF |性质11在抛物线上任取一点I (不与A 、B 重合),过I 作抛物线切线交QA 、QB 于S 、T ,则△QST 的垂心在准线上.证明:设211(2,2)A pt pt 、222(2,2)B pt pt 、233(2,2)I pt pt ,易求得过B 、I 的切线交点T 2323(2,())pt t p t t +,过T 向QA 引垂线,其方程为1231232()4t x y p t t pt t t +=++,它和抛物线准线的交点纵坐标123123()4y p t t t pt t t =+++,显然这个纵坐标是关于123,,t t t 对称的,因此从S 点向QB 引垂线,从Q 点向ST 引垂线,它们与准线的交点也是上述点,故结论得证.例1:(2019年台州高三期末21)设点P 为抛物线2:y x Γ=外一点,过点P 作抛物线Γ的两条切线PA ,PB ,切点分别为A ,B .(Ⅰ)若点P 为(1,0)-,求直线AB 的方程;(Ⅱ)若点P 为圆22(2)1x y ++=上的点,记两切线PA ,PB 的斜率分别为1k ,2k ,求1211||k k -的取值范围.解:(Ⅰ)设直线PA 方程为11x m y =-,直线PB 方程为21x m y =-.由121,,x m y y x =-⎧⎨=⎩可得2110y m y -+=.因为PA 与抛物线相切,所以21=40m ∆-=,取12m =,则1A y =,1A x =.即(1,1)A .同理可得(1,1)B -.所以AB :1x =.(Ⅱ)设00(,)P x y ,则直线PA 方程为1100y k x k x y =-+,直线PB 方程为2200y k x k x y =-+.由11002,,y k x k x y y x =-+⎧⎨=⎩可得211000k y y k x y --+=.因为直线PA 与抛物线相切,所以1100=14()k k x y ∆--+20101=441=0x k y k -+.同理可得20202441=0x k y k -+,所以1k ,2k 时方程200441=0x k y k -+的两根.所以0120y k k x +=,12014k k x =.则12k k -==.又因为2200(2)1x y ++=,则031x -≤≤-,所以1211||=k k -1212=k k k k-4,⎡∈⎣.P A B Oxy例2:已知点H (0,-8),点P 在x 轴上,动点F 满足PF ⊥PH ,且PF 与y 轴交于点Q ,Q 是线段PF 的中点.(1)求动点F 的轨迹E 的方程;(2)点D 是直线l :x-y-2=0上任意一点,过点D 作E 的两条切线,切点分别为A ,B ,证明:直线AB 过定点.解:(1)设F (x ,y ),y ≠0,P (m ,0),Q (0,n ),则 =(-m ,-8), =(-m ,n ),∵PF ⊥PH ,∴m 2-8n=0,即m 2=8n ,=0, ,∴ =− , = 2,代入m 2=8n ,得x 2=4y (y ≠0).故轨迹E 的方程为x 2=4y (y ≠0).(2)证明:设D (x 0,x 0-2),A (x 1,y 1),B (x 2,y 2),∵直线DA 与抛物线相切,且y'= 2,∴k DA = 12,∴直线DA 的方程为y= 12x-y 1,∵点D 在DA 上,∴x 0-2= 12x 0-y 1,化简得x 0x 1-2y 1-2x 0+4=0.同理,可得B 点的坐标满足x 0x 2-2y 2-2x 0+4=0.故直线AB 的方程为x 0x-2y-2x 0+4=0,即x 0(x-2)-2(y-2)=0,∴直线AB 过定点(2,2).练习1.已知点A(﹣4,4)、B(4,4),直线AM 与BM 相交于点M,且直线AM 的斜率与直线BM 的斜率之差为﹣2,点M 的轨迹为曲线C.(1)求曲线C 的轨迹方程;(2)Q 为直线y=﹣1上的动点,过Q 做曲线C 的切线,切点分别为D、E,求△QDE 的面积S 的最小值.练习2.如图,点F 是抛物线τ:22x py =(0p >)的焦点,点A 是抛物线上的定点,且()2,0AF = ,点B ,C 是抛物线上的动点,直线AB ,AC 斜率分别为1k ,2k .(1)求抛物线τ的方程;(2)若212k k -=,点D 是抛物线在点B ,C 处切线的交点,记BCD ∆的面积为S ,证明S 为定值.欢迎扫码关注公众号“数学HOME”,获取本文(包括练习详解)及更多资料的WORD版。
过焦点的阿基米德三角形的性质及其在高考中的应用

2020年第4期(上)中学数学研究5过焦点的阿基米德三角形的性质及其在高考中的应用安徽省合肥市第一中学(230601)谷留明文[1]介绍了抛物线中阿基米德三角形—–圆锥曲线的弦与过弦端点的两条切线所围成的三角形的一些性质,在此基础上,本问探究圆锥曲线中过一个焦点的阿基米德三角形的统一性质及其逆定理,由此得出圆锥曲线在任意一点处或过准线上任意一点的切线的作图方法,并举例说明了这些性质在解决近几年相关高考题中的妙用.1性质定理性质已知圆锥曲线C 的焦点F 对应的准线为l ,过l 上一点P 引曲线C 的两条切线P A ,P B ,切点分别为A ,B ,则直线P F 垂直AB 于F.图1证明当圆锥曲线C 为椭圆时,如图1,不妨设C :x 2a 2+y 2b 2=1(a >b >0),F (−c,0),P (−a 2c,t ),其中c =√a 2−b 2,t ∈R .设A (x 1,y 1),B (x 2,y 2),则l P A :x 1x a 2+y 1y b 2=1,l P B :x 2x a 2+y 2yb2=1,因为P 在l P A ,l P B 上,所以−x 1c +y 1t b 2=1,−x 2c +y 2tb2=1.由此得l AB :−x c +tyb2=1.令y =0,得x =−c .所以l AB 过点F (−c,0).易知k P F =t −0c −a 2c=−ctb 2.由l AB 方程得,t =0时,k AB =b 2ct,k P F ·k AB =−1;t =0时,k P F =0,k AB 不存在.所以恒有P F ⊥AB 于F .当圆锥曲线C 为双曲线时,如图2,证明类似,略.需注意的是,如图3,对于l 上的点P ,当且仅当P 在渐近线上时,过P 只能引双曲线C 的一条切线.设切点为A ,此时易证P F ⊥AF 于F.图2图3图4当圆锥曲线C 为抛物线时,如图4,不妨设C :y 2=2px (p >0),则F (p2,0),P (−p 2,t ),t ∈R .设A (x 1,y 1),B (x 2,y 2),则l P A :y 1y =p (x 1+x ),l P B :y 2y =p (x 2+x ).因为P 在l P A ,l P B 上,所以y 1t =p (x 1−p2),y 2t =p (x 2−p 2).由此得l AB :ty =p (x −p 2),令y =0,得x =p2,所以l AB过点F (p 2,0).易知k P F =t −0−p 2−p 2=−tp .由l AB 方程得,t =0时,k AB =pt,k P F ·k AB =−1;t =0时,k AF =0,k AB不存在.所以恒有P F ⊥AB 于F .若此性质的条件和结论适当逆过来,命题也成立.逆定理1已知过圆锥曲线C 的一个焦点F 的直线交曲线C 于点A 和B ,过F 作直线AB 的垂线,若垂线与F 对应的准线相交于点P ,则直线P A ,P B 均为曲线C 的切线.证明当圆锥曲线C 为椭圆时,不妨设C :x 2a 2+y 2b 2=1(a >b >0),F (−c,0),A (x 0,y 0),P (−a 2c,t ),其中c =√a 2−b 2,t ∈R .由−→F A ·−→F P =0得t =b 2(x 0+c )cy 0.所以k P A =y 0−tx 0+a 2c=cy 20−b 2(x 0+c )y 0(a 2+cx 0),因为曲线C 在A 处的切线为l A :x 0x a 2+y 0yb2=1,其斜率为−b 2x 0a 2y 0.而k P A −(−b 2x 0a 2y 0)=c (a 2y 20+b 2x 20−a 2b2)a 2y 0(a 2+cx 0),又x 20a 2+y 20b 2=1,所以a 2y 20+b 2x 20−a 2b 2=0,k P A =−b 2x 0a 2y 0.所以点P 在l A 上,即直线P A 为曲线C 的切线.同理可证直线P B 也为曲线C 的切线.当圆锥曲线C 为双曲线或抛物线时,证明类似,略.逆定理2已知线段AB 为圆锥曲线C 的过焦点F 的弦,若曲线C 在A ,B 处的切线相交于点P ,则点P 必在焦点F 所对应的准线上,且P F ⊥AB .证明当圆锥曲线C 为抛物线时,不妨设C :y 2=2px (p >0),则F (p2,0).设l AB :x =my +p 2,A (x 1,y 1),B (x 2,y 2),则曲线C 在A,B 处的切线分别为l A :y 1y =p (x 1+x ),l B :y 2y =p (x 2+x )联立这两个切线方程,解得交点P 的横坐标为x P =x 1y 2−x 2y 1y 1−y 2=(my 1+p 2)y 2−(my 2+p 2)y 1y 1−y 2=−p 2,y P =p (x 1−x 2)y 1−y 2=pm .所以P 在F 所对应的准线l :x =−p 2上.6中学数学研究2020年第4期(上)当m =0时,l AB ⊥x 轴,k P F =0,P F ⊥AB ;当m =0时,k P F ·k AB =pm −0−p 2−p 2·1m =−1,P F ⊥AB .当圆锥曲线C 为椭圆或双曲线时,证明类似,略.进一步研究发现,还有以下结论成立.结论1已知抛物线C 的弦AB 过焦点F ,抛物线C 在A,B 处的切线相交于点P ,则∠AP B =90◦.证明不妨设C :y 2=2px (p >0),则F (p2,0).设l AB :x =my +p 2,A (x 1,y 1),B (x 2,y 2),P (−p 2,t ),则l P A :y 1y =p (x 1+x ),l P B :y 2y =p (x 2+x ),所以k P A ·k P B =p y 1·p y 2=p 2y 1y 2.联立抛物线C 与l AB 的方程,得y 2−2pmy −p 2=0,y 1y 2=−p 2.所以k P A ·k P B =−1,∠AP B =90◦.结论2已知抛物线C 的弦AB 过焦点F ,点P 在抛物线C 的准线上,且∠AP B =90◦,则P F ⊥AB ,且直线P A,P B 均为抛物线C 的切线.证明不妨设C :y 2=2px (p >0),则F (p2,0).设P (−p 2,t ),l AB :x =my +p2,A (x 1,y 1),B (x 2,y 2).联立抛物线C 与l AB 的方程,得y 2−2pmy −p 2=0,y 1+y 2=2pm,y 1y 2=−p 2,x 1+x 2=m (y 1+y 2)+p =2pm 2+p ,x 1x 2=y 212p ·y 222p =(y 1y 2)24p 2=p 24.−→P A ·−−→P B =(x 1+p 2)(x 2+p 2)+(y 1−t )(y 2−t )=x 1x 2+p2(x 1+x 2)+y 1y 2−t (y 1+y 2)+t 2=(pm −t )2.又∠AP B =90◦,所以−→P A ·−−→P B =(pm −t )2=0,t =pm ,从而k P F =t −0−p 2−p 2=−m .当m =0时,l AB不存在斜率,k P F =0,故P F ⊥AB ;当m =0时,k P F ·k AB =−m ·1m=−1,故P F ⊥AB .再根据逆定理1,可得直线P A,P B 均为抛物线C 的切线.2切线作图由性质2,可以得到圆锥曲线在任意一点A 处,或者过准线l 上任意一点P 的切线的作图方法.2.1作圆锥曲线C 在任意一点A 处的切线(设C 的一个焦点为F ,其对应的准线为l ):(1)连接AF ;(2)过F 作AF 的垂线,交l 于点P ;(3)连接P 和A ,直线P A 即为圆锥曲线C 在点A 处的切线.2.2作圆锥曲线C 的过准线l 上任意一点P 的切线(设准线l 对应的焦点为F ):(1)连接P F ;(2)过F 作P F 的垂线,作出垂线与曲线C 的交点(一个或者两个);(3)连接P 和交点,所得直线(一条或者两条)即为圆锥曲线C 过点P 的切线.3考题妙解例1(2018年高考全国卷Ⅲ理科第16题)已知点M (−1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A,B 两点.若∠AMB =90◦,则k =.分析本题主要考查直线与圆锥曲线的相交关系,考查数学结合和转化化归思想,考查直观想象和数学运算等核心素养.其基本思路是:设过A (x 1,y 1),B (x 2,y 2)两点的直线方程为y =k (x −1),将它与抛物线方程联立、消y ,可得k 2x 2−2(k 2+2)x +k 2=0,由此表示出x 1+x 2,x 1x 2,再结合直线方程表示出y 1+y 2,y 1y 2,代入−−→MA ·−−→MB =(x 1+1)(x 2+1)+(y 1−1)(y 2−1)=0,整理可求出k .此法的计算量大而易出错.而根据结论2,设C 的焦点为F ,则MF ⊥AB .所以k ·k MF =k ·1−0−1−1=−1,轻松得解k =2.例2(2019年高考全国卷Ⅲ理科第21题第(1)问)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A,B .(1)证明:直线AB 过定点.分析由性质定理直接可知,定点为C 的焦点.证明方法既可以用上文中性质定理的证明方法,也可以直接验证C 的焦点坐标恒符合直线AB 的方程.若对性质定理中的条件进行推广,比如过与圆锥曲线C 相离的直线l 上任一点,甚至过圆锥曲线C 外任一点,引曲线C 的两条切线,又会有何规律与结论呢?可进行更深的研究.参考文献[1]王宁岚.“形”“性”而解—–浅议阿基米德三角形的应用[J].中学数学(高中版),2013(02):31-33.[2]杨艳萍.多角度认识圆锥曲线的切线[J].中学数学研究,2018(03):28-31.。
高考中的三角函数与解三角形问题 课件(19张)

文科数学 微专题2 高考中的三角函数与解三角形问题
文科数学 微专题2 高考中的三角函数与解三角形问题
文科数学 微专题2 高考中的三角函数与解三角形问题
文科数学 微专题2 高考中的三角函数与解三角形问题
文科数学 微专题2 高考中的三角函数与解三角形问题
2019版《高考帮》配套PPT课件
【高考帮·文科数学】微专题2:高考中的三角函数与解三角形问题
微专题2 高考中的三角函数与解三角形问题
目录
CONTENTS
考向1 三角函数的图象与性质 考向2 三角函数的求值 考向3 利用正、余弦定理解三角形
文科数学 微专题2 高考中的三角函数与解三角形问题
考向1 三角函数的图象与性质 考向2 三角函数的求值 考向3 利用正、余弦定理解三角形
考情揭秘
三角函数与解三角形是历年高考必考的重点,由于其涉及的概念多、公 式多,应用较为灵活,考题看似简单,但不易得分.高考命题点主要有:三角函数 的化简或求值、三角函数的图象与性质、三角函数图象的平移或伸缩变换、 利用正、余弦定理解三角形以及解三角形的实际应用等.涉及的数学思想主 要有:函数与方程思想、分类讨论思想、数形结合思想以及转化与化归思想 等.常出现在选择题与填空题中比较靠前的位置,在解答题中一般出现在第 17题,属于中低档题.
文科数学 微专题2 高考中的三角函数与解三角形问题
文科数学 微专题2 高考中的三角函数与解三角形问题
考向2 三角函数的求值
三角函数的求值是三角函数的基本题型,也是高考命题的重点,主要有以 下命题角度: (1)求值,即利用诱导公式与同角三角函数关系,以及两角和与差的三角函数 公式、倍角公式等求值; (2)求角,即根据已知先求角的三角函数值,然后求角.
微专题 阿基米德三角形
微专题 阿基米德三角形基础回顾:圆锥曲线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形。
特殊地,过抛物线22=y px 的焦点F 任作一条弦AB ,抛物线在点,A B 处的两条切线相交于点M ,∆MAB 为阿基米德三角形.B A ,在其准线L 的上投影分别为B A '',,则有如下结论:1. 交点M 在22=y px 准线上2. 切线交点与弦中点连线平行于对称轴3. 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点4. ⊥MA MB ,⊥MF AB5. MN 与抛物线的交点平分线段MN6. MB 平分BA B '∠, 7.MA 平分角AB A '∠8. 2MF FB FA =⋅ 9. MAB S ∆2min p = 二、典例解析题型一 两切线交点的轨迹1. 过抛物线22=y px 的焦点F 任作一条弦AB ,抛物线在点,A B 处的两条切线相交于点M ,则M 在22=y px 的准线上 ,且⊥MA MB ,⊥MF AB ,证明:设直线AB 的方程为2=+px my .由22,,2⎧=⎪⎨=+⎪⎩y px p x my 可得2220y pmy p --=.显然0∆> 设1122(,),(,)A x y B x y ,则122y y pm +=,212y y p =-.抛物线在,A B 两点的切线方程分别为()11y y p x x =+,()22y y p x x =+.解之得1212,2,2⎧=⎪⎪⎨+⎪=⎪⎩y y x p y y y 由此求得两切线的交点坐标12(,)22+-y y P M所以M 在22=y px 的准线上.22212121⋅=⋅==--AM BMp p p p k k y y y y p,∴⊥MA MB(,)=-MF p pm ,2121(,)=--AB x x y y()()()21212121022p p MF AB p x x pm y y p my my pm y y ⎛⎫⋅=---=+----= ⎪⎝⎭∴⊥MF AB .题型二 阿基米德三角形面积的最小值2.抛物线的弦与过弦的端点的两条切线所围成的三角形称为阿基米德三角形.阿基米德三角形有一些有趣的性质,如若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y 2=4px (p >0),弦AB 过焦点,△ABQ 为其阿基米德三角形,则△ABQ 的面积的最小值为_______.解:由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△P AB 为直角三角型,且角P 为直角,S =P A •PB ≤,由于AB 是通径时,即AB =2p 最小,故S ≤p 2,故答案为:p 2.题型三 阿基米德三角形的形状的判断2. 抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上. 设抛物线y 2=2px (p >0),弦AB 过焦点,△ABQ 为阿基米德三角形,则△ABQ 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .随Q 位置变化前三种情况都有可能 解:如图所示.设Q,A (x 1,y 1),B (x 2,y 2).则,.设直线AB :my =x ﹣,联立,化为y 2﹣2pmy ﹣p 2=0,得到y 1+y 2=2pm ,.设过点A 的切线为,联立,化为,∵直线是抛物线的切线,∴=0,化为pk 1=y 1.设过点B 的切线为,同理可得pk 2=y 2. ∴p 2k 1k 2=y 1y 2.∴,解得k 1k 2=﹣1.∴.即△ABQ 是直角三角形.故选:B .题型四 阿基米德三角形的判断.4若M 在22=y px 的准线上,且⊥MA MB ,则,MA MB 是抛物线的两条切线,∆MAB 为阿基米德三角形.证明:过22=y px 的焦点F 任作一条弦AB ,过B A ,分别作抛物线的两条切线,设它们交于点M ',则M '在22=y px 的准线上,且B M A M '⊥',由抛物线的焦点弦的性质知,2=-px 是以AB 为直径的圆的切线,又M 在2=-px 上,且⊥MA MB ,则可得'M 与M 重合.所以,MA MB 是抛物线的两条切线.∆MAB 为阿基米德三角形.方法总结:1.圆锥曲线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形。
专题:阿基米德三角形与高考
专题7.30:圆锥曲线阿基米德三角性质的研究与拓展【问题提出】圆锥曲线弦的两个端点和在这两端点处的切线的交点所构成的三角形叫做阿基米德三角形, 这条弦叫做阿基米德三角形的底, 两切线的交点叫做阿基米德三角形的顶点. 特别地, 我们把底边过焦点的阿基米德三角形称之为阿基米德焦点三角形. 【探究拓展】探究1 已知抛物线C :22y px =的焦点为F ,过弦AB 的两端点作抛物线的切线PA 、PB ,两切线交于点P ,则PFA PFB ∠=∠.变式1.1 (2005江西卷理22)如图,设抛物线C :2y x =的焦点为F ,动点P 在直线l :20x y --=上运动,过P 作抛物线C 的两条切线PA 、PB , 且与抛物线C 分别相切于A 、B 两点. (1)求△APB 的重心G 的轨迹方程. (2)证明PFA PFB ∠=∠.探究2 已知抛物线C :22y px =中弦AB 过焦点F ,过弦AB 的两端点作抛物线的切线QA 、QB ,两切线交于点Q ,则点Q 的轨迹为准线,且△AQB 面积的最小值为2p .变式2.1 (2006全国卷二理21)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两 动点,且()0AF FB λλ=>.过A 、B 两点分别作抛物线的切线,设其交点为M .(1)证明FM AB ⋅为定值;(2)设△ABM 的面积为S ,写出()S f λ=的表达式,并求S 的最小值.探究3 已知抛物线C :22y px =的焦点为F ,过弦AB 的两端点作抛物线的切线PA 、PB ,两切线交于点P ,点M 为AB 的中点,则PM 平行于x 轴.变式3.1(2007江苏卷理19) 如图,在平面直角坐标系xOy 中,过y 轴正方向上一点()0C ,c 任作一直线,与抛物线2y x =相交于A ,B 两点.一条垂直于x 轴的直线,分别与线段AB 和直线l :y c =-交于点P ,Q .(1)若2OA OB ⋅=,求c 的值;(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线; (3)试问(2)的逆命题是否成立?说明理由.变式3.2 (2008山东卷理22)如图,设抛物线方程()220x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A ,B . (1)求证:A ,B ,M 三点的横坐标成等差数列;(2)已知当M 点的坐标为()22,p -时,AB =,求此时抛物线的方程;(3)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线()220x py p =>上,其中,点C 满足OC OA OB =+ (O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.探究4 已知直线l 与抛物线C :22y px =没有公共点,过直线l 上一点P 引抛物线的切线PA 、PB ,切点为A 、B ,则弦AB 过一定点.变式 4.1(2008江西卷理21)设点()00P x ,y 在直线()01x m y m,m =≠±<<上,过点P 作双曲线221x y -=的两条切线PA 、PB ,切点为A 、B ,定点10M ,m ⎛⎫⎪⎝⎭.(1)过点A 作直线0x y -=的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程; (2)求证:A ,M ,B 三点共线.【专题反思】你学到了什么?还想继续研究什么?(2005江西卷,理22题)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB.22.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;0220=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为PPG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243GG p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d1=d2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即直线BF 的方程:,041)41(),0(041411121121=+-----=-x y x x x x x x y 即所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d1=d2,可得到∠AFP=∠PFB(2006全国卷Ⅱ,理21题)已知抛物线x2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M. (Ⅰ)证明FM →·AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f(λ)的表达式,并求S 的最小值. 21.解:(Ⅰ)由已知条件,得F(0,1),λ>0. 设A(x1,y1),B(x2,y2).由AF →=λFB →, 即得 (-x1,1-y)=λ(x2,y2-1), ⎩⎪⎨⎪⎧-x 1=λx 2 ①1-y 1=λ(y 2-1) ② 将①式两边平方并把y1=14x12,y2=14x22代入得 y1=λ2y2 ③ 解②、③式得y1=λ,y2=1λ,且有x1x2=-λx22=-4λy2=-4, 抛物线方程为y =14x2,求导得y ′=12x . 所以过抛物线上A 、B 两点的切线方程分别是 y =12x1(x -x1)+y1,y =12x2(x -x2)+y2, 即y =12x1x -14x12,y =12x2x -14x22.解出两条切线的交点M 的坐标为(x 1+x 22,x 1x 24)=(x 1+x 22,-1). ……4分 所以FM →·AB →=(x 1+x 22,-2)·(x2-x1,y2-y1)=12(x22-x12)-2(14x22-14x12)=0 所以FM →·AB →为定值,其值为0. ……7分(Ⅱ)由(Ⅰ)知在△ABM 中,FM ⊥AB ,因而S =12|AB||FM|. |FM|=(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)+4=λ+1λ+2=λ+1λ.因为|AF|、|BF|分别等于A 、B 到抛物线准线y =-1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是 S =12|AB||FM|=(λ+1λ)3,由λ+1λ≥2知S ≥4,且当λ=1时,S 取得最小值4.(2007江苏卷,理19题)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0,)C c 任作一直线,与抛物线2y x =相交于AB 两点,一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于,P Q ,(1)若2OA OB ⋅=,求c 的值;(5分)(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由。
专题3阿基米德三角形微点1阿基米德三角形
专题3 阿基米德三角形微点1 阿基米德三角形2,p ∴【性质7】在阿基米德三角形中,证明:作AA '⊥准线,BB 1FA QA K k '⋅=-,【性质10】QM 的中点P 在抛物线上,且证明:由性质1知121,y y y y Q ⎛+四、特殊的阿基米德三角形:过抛物线焦点F 作抛物线的弦,与抛物线交于,A B 两点做抛物线的切线12,l l 相交于线的垂线,分别交准线于11,A B 点,该图形满足以下特性:结论1.1D 点必在抛物线的准线上(性质证明:过点()11,A x y 的切线方程为()22y y p x x =+,设()100,D x y ,1D 既在直线1D A 上,也在直线()(10012002,y y p x x y y p x x ∴=+=+为这两条直线公共点,则,2是抛物线上的两动点,且=λ()证明·为定值;△ABM的面积为.由=λ,即得将①式两边平方并把=x12=x22=,且有x1x2==x过抛物线上=x=x,即=x-x=x-x解出两条切线的交点M的坐标为(,)(,-∴·=(,-,y2-y1=(x22-x12)-2(x22-x12)∴·为定值,其值为=|AB||FM|=====+.|AF|、|BF|分别等于A、++(+)2=|AB||FM|(+)3由+≥时,S取得最小值4.如图,在平面直角坐标系【解析】(1)设过C 点的直线为()()1122,,,x y B x y ,OA=()11,x y 12122x x y y +=,即()(121x x kx c ++∴222c k c kc k c --++= ,即2c (2)设过Q 的切线为1y y k -=22222y x x x y x x x =-+=-,它与【解析】(Ⅰ)证明:由题意设由22x py =得22x y p=,得y '因此直线MA 的方程为2y p +(1)求证:三点A M B 、、共线;(2)过点A 作直线 0x y -=的垂线,垂足为程.参考答案:x x +,同理有,的距离,因此由-直接依据题设条件将点的坐标设出来然后运用点与抛物线将问题转化为证明的问题先将向量与的数量积算出来再用的坐标表示算得,最后求得,从而推得进而推证得.从而使得问题获解。
第3章 第7讲解三角形的综合应用-2021版高三数学(新高考)一轮复习课件%28共50张PPT%29
高考一轮总复习 • 数学 • 新高考
返回导航
题组二 走进教材
2.(必修 5P14 例 5 改编)(2020·宁夏银川一中月考)如图,设 A,B 两点在河的两岸, 要测量两点之间的距离,测量者在 A 的同侧,在所在的河岸边选定一点 C,测出 AC
的距离是 m 米,∠BAC=α,∠ACB=β,则 A,B 两点间的距离为( C )
第三章 三角函数、解三角形
高考一轮总复习 • 数学 • 新高考
返回导航
在△BCD
中,由正弦定理,得 sin
B∠DBCD=sin
C∠DCBD,
∴sin ∠BCD=BD·sinCD∠CBD=10t1·s0in 31t20°=12. ∴∠BCD=30°,∴缉私船沿北偏东 60°的方向行驶.
又在△BCD 中,∠CBD=120°,∠BCD=30°,
图形表示
第三章 三角函数、解三角形
高考一轮总复习 • 数学 • 新高考
返回导航
术语名称
术语意义
方位角
从某点的指北方向线起按顺时针方向 到目标方向线之间的水平夹角叫做方 位角.方位角 α 的范围是 0°≤α<360°
图形表示
第三章 三角函数、解三角形
高考一轮总复习 • 数学 • 新高考
术语名称
术语意义
∴∠D=30°,∴BD=BC,即 10t= 6,解得 t=106小时≈15 分钟.
∴缉私船应沿北偏东 60°的方向行驶,才能最快截获走私船,大约需要 15 分钟.
第三章 三角函数、解三角形
高考一轮总复习 • 数学 • 新高考
返回导航
角度问题的解题方法 首先应明确方向角的含义,在解应用题时,分析题意,分清已知与所求,再根 据题意正确画出示意图,这是最关键、最重要的一步,通过这一步可将实际问题转 化成可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的 优点. 提醒:方向角是相对于某点而言的,因此确定方向角时,首先要弄清是哪一点 的方向角.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B.平行 D.无 法 判断
O
x
P
M
B
练 习 2: ( 07.江 苏) 如 图 , 在 平 面 直 角 坐标
系xoy中,过y轴正方向上一点C(,0 c)
任作一直线,与抛物线y x2相交于A,B
两 点 , 一 条 垂 直 于 x 轴的 直 线 , 分 别 与 线
段AB和直线l: y -c交于点P,Q .
(优选)阿基米德三角形在高 考中的应用ppt讲解
回顾:过抛物线x2=2py(p>0)上的点
P(x0,y0)处的切线方程?x0x p( y0 y)
y
思考:
F
方 程x0 x
p( y0
y)还 O x 0x =p(y0+y)
可以表示什么直线?
图1
P(x 0,y0) x
结论:过抛物线x2=2py(p>0)外一点P(x0,
y
B F
O
x
P
结论:直线AB的方程为 x0x p(y0 y) . 探究1:若弦AB过抛物线x2 2 y内一定点
(1,3),则阿基米德三角形的顶点P(x0, y0 ) 的轨 迹是 否为 一条 定直线?y
探究2:若 弦 A B 过 抛
物 线 x2 2py内 一 定
(1,3) B x0x=p(y0+y)
(1)若P为线段AB 的 中 点 , 求 证 :Q A
A
y
CP
B
为此抛物线的切线;
O
x
(2)试问(1)的逆命题
是否成立?说明理由。
M Q(M)
探性究质44::在阿基米德三角形
|AFBAP,|则|F| BPF||与2 ||FPAF| ||F2B的| 关系?
A(
x1
,
x12 2p
)
(0, p ) y 2F
轴.
y N
F
x2 2 py
B
A
O
x
P
练 习 1.动 点 P是 圆x( 4)2 y2 9上 任 意 一 点 , 过 点 P作 抛物 线 y2 4x的 两 条 切 线 , 切 点 为 AB,,弦 AB的 中 点 为
M。 则 直 线 PM与 x轴的 位 置 关 系 ( B )
A.相交 y
C.垂直
2 x0
x1 , x0 2 1),
4
x1). FP
(
∴
x0 x1 2
,
x0
x1
1),FB 4
( x1 ,
x12
1). 4
∴c osAFP
FP FA
x0
2
x1
x0
(x0 x1
1 4
)(x0
2
1) 4
x0 x1
1 4
| FP|| FA|
同理可得:
cosBFP FP FB
x0
2
| FP|
基米德三角形的顶点P在定直线
y x 1(与x2 2py无公共点),
则弦AB是否过定点?
y
AF
B x 0x =p(y0+y)
O
x
P (x 0,y0)
性质2:若直线l与抛物线没有
公共点,以l上的点为顶点的
阿基米德三角形ABP的底边AB
过定点。
y
C
B
A
F
x
O
P
例 1: (08.山 东如) 图 , 抛 物 线 x2 2py
xnsn 4(n 1);
An(xn, yn )
Bn(sn,tn ).
证明:(Ⅰ)对任意固定的 n 1,
因为焦点F(0,1),所以可设直线 AnBn
的方程为 y 1 knx,
由
y knx x2 4y
1 ,
得 x2 4knx 4 0
由一元二次方程根与系数的关系得
xnsn 4(n 1)
(p 0),M为直 线l: y 2p上任 意一点 ,
过M引抛 物线的 两条切线,切点 分别为
A、B两点 .求 证:A,M,B三点 的横坐 标
成等差数列.
思考:把M改 A 成抛物线外任 意一点,结论 仍然成立吗?
yN
O
-2p
M
B
x
性质3:如图, ABP是阿基米德
三角形,N为抛物线弦AB中点,
则直线PN平行于抛物线的对称
x02
(x02
1)2 4
x1
x1
(x0
x1
1 )( 4
x12
1 4
)
| FP|
x0
x1
1 4
,
| FP || FB |
| FP |
x12
( x1 2
1)2 4
| FP |
∴∠AFP=∠PFB.
推论:在阿基米德三角形ABP, 若弦AB过抛物线焦点F,则
PF AB
y
F
B
A
O
x
P
练习 3:(06.全国)已知抛物线 x2=4y 的焦点为 F,A、B 是抛物线上的两动点,
A
x2 2 py
B
B(x2 ,
x22 2p
)(
x1
x2 )
B
O
x
P ( x1 x2 , x1x2 ) 2 2p
例 2: ( 06.重 庆 .22)
如图.对每个正整数,nAn(xn, yn )是抛物
线x2 4y上的点,过焦点的F 直线FAn
交抛物线与另一点Bn(sn, tn ).
x2 4y上
(1)试证:
(1)试证:xnsn 4(n 1);
(2)取xn 2n,并记Cn为抛物线上分别 以A n B n为切点的两条切线的交点。试证: |F C1||F C2| |F Cn | 2n 2n1 1
x2 4y上
性质4:在阿基米
德三角形ABP,
F(0,1)
则| FCn |2 | FAn | | FBn |
y0),分别作抛物线的切线PA、PB,A、B 分别是切点,则直线AB的方程
为 x0x p( y0 y).
y
AF
B x 0x =p(y0+y)
O
x
P (x 0,y0)
由的两抛条物切线线的所弦围与阿三成过基角的弦米形三的德角端形点.
阿基米德是 A 伟大数学家与力 学家,并享有“数 学之神”的称号。
AF
点(a0,b,c)),则 阿 基 米 德 三 角 形 的 顶 点 P(x0, y0 )
O
x
P (x 0,y0)
的 轨 迹 是 否 为 一 条 定 直线 ?图2
性质1:若阿基米德三角形ABP 的边AB即弦AB过抛物线内定点C, 则另一顶点P的轨迹为一条直线。
y C B
A
F
x
O
P
探究3:若抛物线x2 2 py上的阿
Bn(sn,tn ).
An(xn, yn )
性质5:如图:在阿基米德三
角形ABP,若F为抛物线焦点,
则 PFA PFB12 2p
)
A
y
p F (0, 2 )
B O
B
B(x2 ,
x22 2p
)(
x1
x2 )
x
P ( x1 x2 , x1x2 ) 2 2p
高考链接:( 0 5 . 江 西 ) 如 图 ,抛 物 线 C :
y x2 的焦点为F,动点P在直线l:
x - y - 2 0上运动,过P作抛物线C
的两条切线PA、PB,且与抛物线C
分别相切于A、B两点.
y
证明:∠PFA = ∠PFBA.
F
B
O
x
P
分析: 设切点 A(x, x02 ), B(x1, x12 )(( x1 x0 )
则P( FA (
x0 x0 ,