高考数学专题讲座完整版.ppt
高考数学专题讲座 第11讲 直线与圆

高考数学专题讲座 第11讲 直线与圆考纲要求:(1)理解直线斜率的概念,掌握两点的直线的斜率,掌握直线方程的点斜式\两点式\一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行于垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单应用. (5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程.理解圆的参数方程. 基础达标1.若直线l 的倾斜角为π+arctan(-12),且过点(1,0),则直线l 的方程为________________.x +2y -1=02.已知定点A (0,1),点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是________________. (-12,12)3.已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数.当这两条直线的夹角在(0,π12)内变动时,a 的取值X 围是 ( C ) A .(0,1)B .(33,3)C .(33,1)∪(1,3) D .(1,3) 4.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是 ( C )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=45.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠π2+k π,k ∈Z )的位置关系是 ( C )A .相交B .相切C .相离D .不确定6.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0.当直线l 被C 截得的弦长为23时,则a = ( C ) A . 2 B .2-2C .2-1 D .2+1 例题选讲例1.(1)过点M (2,1)作直线l 与x 轴、y 轴的正半轴分别交于A 、B 两点.① 若△AOB 的面积取得最小值,求直线l 的方程,并求出面积的最小值;② 直线l 在两条坐标轴上截距之和的最小值;③若|MA |·|MB |为最小,求直线l 的方程.解:(1)①由于已知直线l 在坐标轴上的截距,故选用直线的截距方程:1=+bya x (i ) 由已知a >0,b >0.故S △AOB =21ab (ii ) 由已知,直线(i)经过点(2,1).故112=+b a ,就是a +2b =ab ,a =12-b b (∵b ≠1) (iii) ∵a >0, b >0, ∴a >1. 将(iii)代入(ii),得S =12-b b =1112-+-b b =b +1+11-b =(b -1)+11-b +2.当b >1时 S ≥211)1(-⋅-b b +2=4. 等号当且仅当 b -1=11-b 即b =2时成立.代入(iii)得a =4. ∴所求的直线方程为24yx +=1,即x②解一:a +b =2b b -1+b =2(b -1)+2b -1+b = = 2b -1+b -1+当b >1时 , a +b ≥2(2b -1)(b -1)等号当且仅当 b -1=2b -1, 即解二:a +b =(a +b )×1=(a +b )(2a +1b )=3等号当且仅当2b a =a b ,即a 2=2b 2③由于直线l 绕点M 运动,故可选∠OAB 2θsin M y =1sin θ, |MB |=θcos M x =2cos θ,|MA |·|MB |=1sin θ×2cos θ=4s in2θ,∴当sin2θ=1时,|MA |·|MB |有最小值4, 此时tan θ=1,所求直线l 的方程为x +y -3=0.(2)已知圆C :(x +2)2+y 2=1,P (x ,y )为圆上任意一点.①求y -22x -2的最大值、最小值;②求x -2y的最大值、最小值.解:(1)令k =y -2x -1,则k 表示经过P 点和A (1,2)两点的直线的斜率,故当k 取最大值或最小值时,直线P A :kx -y +2-k =0和圆相切,此时d =|-2k +2-k |1+k 2=1,解得k =3±34,所以y -22x -2的最大值为3+38,最小值为3-38;(2)方法一:令x -2y =t ,可视为一组平行线系,由题意,直线应与圆C 有公共点,且当t 取最大值或最小值时,直线x -2y -t =0和圆相切,则d =|-2-t |5=1,解得t =-2±5,所以x -2y 的最大值为-2+5,最小值为-2-5;方法二:因为P (x ,y )为圆C :(x +2)2+y 2=1上的点,令x =-2+cos θ,y =sin θ,θ∈[0,2π),所以x -2y =-2+cos θ-2 sin θ=-2+5cos(θ+φ)( φ=arctan2),当θ+φ=2π,即θ=2π-arctan2时,cos(θ+φ)=1,x -2y 取到最大值为-2+5,当θ+φ=π,即θ=π-arctan2时,cos(θ+φ)=-1,x -2y 取到最大值为-2+5;例2.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x -2y =0的距离为55.求该圆的方程. 解:设圆P 的圆心为P (a ,b ),半径为γ,则点P 到x 轴,y 轴的距离分别为|b |,|a |.由题设知圆P 截x 轴所得劣弧对的圆心角为90º,知圆P 截x 轴所得的弦长为r 2.故r 2=2b 2又圆P 被y 轴所截得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又因为P (a ,b )到直线x -2y =0的距离为55,所以5552b a d -=, 即有 a -2b =±1, 由此有⎩⎨⎧=-=-121222b a a b ⎩⎨⎧-=-=-121222b a a b 解方程组得⎩⎨⎧-=-=11b a ⎩⎨⎧==11b a 于是r 2=2b 2=2,所求圆的方程是(x +1)2+(y +1)2=2,或(x -1)2+(y -1)2=2.思考:求在满足条件①、②的所有圆中,圆心到直线l :x -2y =0的距离最小的圆的方程.解法一:设圆的圆心为P (a ,b ),半径为r ,则点P 到x 轴,y 轴的距离分别为│b │, │a │. 由题设知圆P 截x 轴所得劣弧对的圆心角为90°,知圆P 截X 轴所得的弦长为r 2,故r 2=2b 2, 又圆P 截y 轴所得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又点P (a ,b )到直线x -2y =0的距离为52b a d -=,所以5d 2=│a -2b │2 =a 2+4b 2-4ab≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1,当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值. 由此有⎩⎨⎧=-=12,22a b b a 解此方程组得⎩⎨⎧==;1,1b a 或⎩⎨⎧-=-=.1,1b a 由于r 2=2b 2知2=r .于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2. 解法二:同解法一,得52b a d -=∴d b a 52±=-得2225544d bd b a +±= ①将a 2=2b 2-1代入①式,整理得01554222=++±d db b②把它看作b 的二次方程,由于方程有实根,故判别式非负,即△=8(5d 2-1)≥0,得 5d 2≥1.∴5d 2有最小值1,从而d 有最小值55. 将其代入②式得2b 2±4b +2=0.解得b =±1.将b =±1代入r 2=2b 2,得r 2=2.由r 2=a 2+1得a =±1. 综上a =±1,b =±1,r 2=2. 由b a 2-=1知a ,b 同号. 于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2.例3.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB |=2|OA |,且点B 的纵坐标大于零.(1)求向量AB →的坐标;(2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线y =ax 2-1上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值X 围.[解](1)设⎩⎨⎧=-=+⎪⎩⎪⎨⎧=⋅==,034100,0||||||2||},,{22v u v u OA AB OA AB v u AB 即则由得 },3,4{.86,86-+=+=⎩⎨⎧-=-=⎩⎨⎧==v u AB OA OB v u v u 因为或 所以v -3>0,得v =8,故AB ={6,8}.(2)由OB ={10,5},得B (10,5),于是直线OB 方程:.21x y =由条件可知圆的标准方程为:(x -3)2+y(y+1)2=10, 得圆心(3,-1),半径为10. 设圆心(3,-1)关于直线OB 的对称点为(x,y )则,31,231021223⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-+=-⋅-+y x x y y x 得故所求圆的方程为(x -1)2+(y -3)2=10. (3)设P (x 1,y 1), Q (x 2,y 2) 为抛物线上关于直线OB 对称两点,则.23,022544,02252,,2252,202222222212212121212121>>-⋅-=∆=-++⎪⎪⎩⎪⎪⎨⎧-=-=+⎪⎪⎩⎪⎪⎨⎧-=--=+-+a aa a a ax a x x x a a x x ax x x x yy y y x x 得于是由的两个相异实根为方程即得 故当23>a 时,抛物线y=ax 2-1上总有关于直线OB 对称的两点.4.已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,(1)如果|AB |=423,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程. 解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中,523||||||2222=-=-=MO MQ OQ ,故55-==a a 或, 所以直线AB 方程是;0525205252=+-=-+y x y x 或 (2)连接MB ,MQ ,设),0,(),,(a Q y x P 由点M ,P ,Q 在一直线上,得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a ,并注意到2<y ,可得).2(161)47(22≠=-+y y x说明:适时应用平面几何知识,这是快速解答本题的要害所在。
高三二轮复习专题讲座.ppt

仍然是直线与平面的位置关系判定、证明及角度与距 离的计算。直线平面的平行、垂直作为知识体系的轴 心,在考查中地位突出,贯穿整个大题。角度的计算 线线角、线面角、二面角是必考内容,线面角、二面 角的出现频率更高些。距离以点面距、异面直线的距 离为主,前者的出现频率更高。
3.考查方式
(1)大题以考查直线与平面的位置关系的证明,角度 与距离计算为主。大题通常以多面体为载体,如正方 体、长方体、三棱柱、四棱柱、三棱锥、四棱锥, 04年全国大部分试卷中立几以四棱锥为载体;有时 出现不规则几何体(如99年全国10题,04年浙江省 19题),或改变常用几何体的放置方式(如94年的 立几考题),这些变化提高了空间想象的要求,值得 注意。
三、高考热点分析
1.能力题型
(1)空间想象能力 既是解决立几问题的前提,又是 考查的重 点。
例1 02年春上海,10题
如图表示一个正方体表面 的一种展开图,
C G
A DB
图中四条线段AB、CD、 H E
EF 和 GH 在 原 正 方 体 中 相
F
互异面的有
对。
例2(00年全国,16题) 如图,E,F分别为正方体的面
A.1条 B.2条 C.3条 D.4条
α A
CP
D
β
B
2.空间向量
空间向量作为新增内容,高考对它的考查有一个逐步变 化过程,主要体现在:
(1)考查方式上,由9(A)9(B)两题选做一题, 变为一题两法,任选一法。
(2)考查立意上,由知识立意转向能力立意,突出空 间向量的方法性、工具性。
(3)考查要求上,应用的灵活性提高,与一般的立 几方法有融合的趋势。
(2)求点A1到平面AED的距离。
高中数学复习专题讲座(第7讲)奇偶性与单调性(1)

高中数学《单调性、奇偶性函数问题》专题复习高分冲刺技巧例解及考点能力强化训练(A)篇高考要求函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样特别是两性质的应用更加突出本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识重难点归纳(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一复合函数的奇偶性、单调性问题的解决关键在于既把握复合过程,又掌握基本函数(2)加强逆向思维、数形统一正反结合解决基本应用题目(3)运用奇偶性和单调性去解决有关函数的综合性题目此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力(4)应用问题在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决特别是往往利用函数的单调性求实际应用题中的最值问题典型题例示范讲解例1已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤5},求函数g(x)=-3x2+3x-4(x∈B)的最大值命题意图本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力知识依托 主要依据函数的性质去解决问题错解分析 题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域技巧与方法 借助奇偶性脱去“f ”号,转化为x 的不等式,利用数形结合进行集合运算和求最值 解 由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6},∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知g (x )在B 上为减函数, ∴g (x )max =g (1)=-4例2已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由命题意图 本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力知识依托 主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题错解分析 考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法 技巧与方法 主要运用等价转化的思想和分类讨论的思想来解决问题 解 ∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数 于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正 ∴当2m <0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0 ⇒4-22<m <4+22, ∴4-22<m ≤2 当2m >1,即m >2时,g (1)=m -1>0⇒m >1 ∴m >2综上,符合题目要求的m 的值存在,其取值范围是m >4-另法(仅限当m 能够解出的情况) cos 2θ-m cos θ+2m -2>0对于θ∈[0,2π]恒成立,等价于m >(2-cos 2θ)/(2-cos θ) 对于θ∈[0,2π]恒成立∵当θ∈[0,2π]时,(2-cos 2θ)/(2-cos θ) ≤4-22,∴m >4-例3 已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0 解 ∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2)又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数,∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0∴不等式可化为 log 2(x 2+5x +4)≥2 ①或 log 2(x 2+5x +4)≤-2 ②由①得x 2+5x +4≥4,∴x ≤-5或x ≥0 ③由②得0<x 2+5x +4≤41得 2105--≤x <-4或-1<x ≤2105+- ④ 由③④得原不等式的解集为{x |x ≤-5或2105--≤x ≤-4或-1<x ≤2105+-或x ≥0} 考点能力强化巩固训练 1 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7 5)等于( ) A 0 5 B -0 5 C 1 5 D -1 52 已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0, 则a 的取值范围是( ) A (22,3) B (3,10) C (22,4) D (-2,3)3 若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________4 如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________ 5 已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明6 已知f (x )=x x a 2112+-⋅ (a ∈R )是R 上的奇函数, (1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lg kx +1 7 定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围8 已知函数y =f (x )=cbx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小5值2,其中b∈N且f2(1)试求函数f(x)的解析式;(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由参考答案: 1 解析 f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)=f (-0.5)=-f (0.5)=-0.5 答案 B2 解析 ∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0∴f (a -3)<f (a 2-9)∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3) 答案 A3 解析 由题意可知 xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3) 答案(-3,0)∪(0,3)4 解析 ∵f (x )为R 上的奇函数∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1), 又f (x )在(-1,0)上是增函数且-31>-32>-1 ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1) 答案f (31)<f (32)<f (1) 5 解 函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x ) 在(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数6 解 (1)a =1(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1) (3)由log 2xx -+11>log 2k x +1⇒log 2(1-x )<log 2k , ∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1} 7解222sin 44sin 7cos 474sin sin 147sin cos 4m x m x x m x x m x x ⎧⎪-≤-≤⎧⎪+≤⎨≥-++⎪⎩⎪-≥+⎪⎩即, 对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或 ∴m ∈[23,3]∪{21} 8 解 (1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx cbx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a , 当且仅当x =a 1时等号成立,于是22ba =2,∴a =b 2, 由f (1)<25得ba 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x x1 (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y x x y x x 消去y 0得x 02-2x 0-1=0,x 0=1∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称(B )篇高考要求函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样 特别是两性质的应用更加突出 本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象 帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识重难点归纳(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性 同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一 复合函数的奇偶性、单调性 问题的解决关键在于 既把握复合过程,又掌握基本函数 (2)加强逆向思维、数形统一 正反结合解决基本应用题目 (3)运用奇偶性和单调性去解决有关函数的综合性题目 此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力 (4)应用问题 在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决 特别是 往往利用函数的单调性求实际应用题中的最值问题 典型题例示范讲解 例1已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyy x ++1),试证明 (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减命题意图 本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力知识依托 奇偶性及单调性定义及判定、赋值法及转化思想错解分析 本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得技巧与方法 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点 证明(1)由f (x )+f (y )=f (xyy x ++1), 令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x x x --)=f (0)=0 ∴f (x )=-f (-x ) ∴f (x )为奇函数(2)先证f (x )在(0,1)上单调递减 令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --) ∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0, 又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0, 即f (x 2)<f (x 1)∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0∴f (x )在(-1,1)上为减函数例2设函数f (x )是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f (2a 2+a +1)<f (3a 2-2a +1) 求a 的取值范围,并在该范围内求函数y =(21)132+-a a 的单调递减区间命题意图 本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法知识依托 逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题 错解分析 逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱技巧与方法 本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法 解 设0<x 1<x 2,则-x 2<-x 1<0,∵f (x )在区间(-∞,0)内单调递增,∴f (-x 2)<f (-x 1),∵f (x )为偶函数,∴f (-x 2)=f (x 2),f (-x 1)=f (x 1),∴f (x 2)<f (x 1) ∴f (x )在(0,+∞)内单调递减.032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又 由f (2a 2+a +1)<f (3a 2-2a +1)得 2a 2+a +1>3a 2-2a +1 解之,得0<a <3又a 2-3a +1=(a -23)245 ∴函数y =(21)132+-a a 的单调减区间是[23,+∞] 结合0<a <3,得函数y =(12)132+-a a 的单调递减区间为[23,3) 例3设a >0,f (x )=xx e a a e +是R 上的偶函数,(1)求a 的值;(2)证明 f (x )在(0,+∞)上是增函数 (1)解 依题意,对一切x ∈R ,有f (x )=f (-x ),即x x x ae e a a e 1=++ae x 整理,得(a -a 1)(e x -x e 1)=0 因此,有a -a1=0,即a 2=1,又a >0,∴a =1 (2)证法一(定义法) 设0<x 1<x 2,则f (x 1)-f (x 2)=)11)((1121122121--=-+-+x x x x x x x x ee e e e e e 21211211)1(x x x x x x x e e ee ++---=由x 1>0,x 2>0,x 2>x 1,∴112--x x e >0,1-e 21x x +<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2) ∴f (x )在(0,+∞)上是增函数证法二(导数法) 由f (x )=e x +e -x ,得f ′(x )=e x -e -x =e -x ·(e 2x -1) 当x ∈(0,+∞)时,e -x >0,e 2x -1>0此时f ′(x )>0,所以f (x )在[0,+∞)上是增函数考点能力强化巩固训练1 下列函数中的奇函数是( )A f (x )=(x -1)xx -+11B f (x )=2|2|)1lg(22---x xC f (x )=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x xD f (x )=xx xx sin cos 1cos sin 1++-+2 函数f (x )=111122+++-++x x x x 的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x =1对称3 函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是____4 若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2), 且在[x 2,+∞)上单调递增,则b 的取值范围是_________5 已知函数f (x )=a x +12+-x x (a >1) (1)证明 函数f (x )在(-1,+∞)上为增函数 (2)用反证法证明方程f (x )=0没有负数根6 求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数7 设函数f (x )的定义域关于原点对称且满足(i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1 求证 (1)f (x )是奇函数(2)f (x )是周期函数,且有一个周期是4a8 已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-21时,f (x )>0 (1)求证 f (x )是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证参考答案:1 解析 f (-x )=2222(0)() (0)(0)() (0)x x x x x x x x x x x x ⎧⎧->-+<⎪⎪=⎨⎨--<--+>⎪⎪⎩⎩ =-f (x ), 故f (x )为奇函数 答案 C2 解析 f (-x )=-f (x ),f (x )是奇函数,图象关于原点对称 答案 C3 解析 令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减答案(-∞,-1]4 解析 ∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0 f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0 答案(-∞,0)5 证明 (1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0,∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数(2)证法一 设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1, 即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根 证法二 设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾, 若x 0<-1,则1200+-x x >0, 0x a >0, ∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根6 证明 ∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2), 故函数f (x )在(1,+∞)上是减函数(本题也可用求导方法解决)7 证明 (1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x )∴f (x )是奇函数(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a )∵f (x +a )=f [x -(-a )]=)1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a x f a x f a a x f a x f -=++--+-=++-+=++=+∴ ∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ),故f (x )是以4a 为周期的周期函数8 (1)证明 设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0,∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0,∴f (x )是单调递增函数(2)解 f (x )=2x +1 验证过程略。
高考数学一轮专项复习ppt课件-利用导数研究恒成立或存在性问题(通用版)

高考一轮总复习•数学
第15页
②当 a<1 时,由 h′(x)=0,x≥0, 解得 x= 1-a, 当 x∈(0, 1-a)时,h′(x)<0;当 x∈( 1-a,+∞)时,h′(x)>0,h(x)min=h( 1-a) <h(0)=0,这与 h(x)≥0 矛盾,应舍去. 本例中的函数 h(x),隐藏有一个信息 h(0)=0,欲使 h(x)≥0 恒成立,在 x=0 的右侧区 间不可能单调递减. 综上可知,实数 a 的取值范围为[1,+∞).
高考一轮总复习•数学
第9页
对点练 1 已知函数 f(x)=12x2-(a+2)x+2aln x(a∈R). (1)若 a>2,讨论函数 f(x)的单调性; (2)设函数 g(x)=-(a+2)x,若至少存在一个 x0∈[e,4],使得 f(x0)>g(x0)成立,求实数 a 的取值范围.
高考一轮总复习•数学
高考一轮总复习•数学
第21页
这个转化很对,发散思维,∀s∈D1,∃t∈D2,满足 f(s)≥g(t)⇔f(s)min≥g(t)min. 由(1)可知在区间12,2上,g(x)的最大值为 g(2)=1. 在区间12,2上,f(x)=ax+xln x≥1 恒成立等价于 a≥x-x2ln x 恒成立. 使问题转化为恒成立求参问题,再使用参变分离法求 a. 设 h(x)=x-x2ln x,x∈12,2,h′(x)=1-2xln x-x, 令 m(x)=xln x,由 m′(x)=ln x+1>0 得 x>1e. 从而知函数的单调递增区间12,2⊆1e,+∞,所以 m(x)在12,2上单调递增.
第23页
高考一轮总复习•数学
第24页
对点练 3 已知函数 f(x)=42x-2-x7,x∈[0,1]. (1)求 f(x)的单调区间和值域; (2)设 a≥1,函数 g(x)=x3-3a2x-2a,x∈[0,1].若对于任意 x1∈[0,1],总存在 x0∈[0,1], 使得 g(x0)=f(x1)成立,求实数 a 的取值范围. 解:(1)f′(x)=-4x22+-1x62x-7 =-2x-21-2xx2-7,x∈[0,1]. 令 f′(x)=0,解得 x=12或 x=72. 当 x 变化时,f′(x),f(x)的变化情况如下表,
高考数学一轮专项复习ppt课件-函数的单调性和最值(通用版)

典例 3(2024·辽宁朝阳开学考试)已知函数 f(x)是定义在 R 上的偶函数,对任意两个不相
等的正数 x1,x2,都有x2fxx11--xx12fx2>0,记 a=f(1),b=f-2 2,c=f33,则(
)
A.c<a<b
B.a<b<c
C.c<b<a
D.b<c<a
高考一轮总复习•数学
第31页
解析:因为x2fxx11--xx12fx2>0 等价于fxx1x11--fx2xx22>0,所以函数fxx在(0,+∞)上单调递增, 两边同时除以 x1x2,构造出函数fxx的单调性,注意代数式的结构特点. 而函数 f(x)是 R 上的偶函数,即 b=f-2 2=f22,显然有f11<f22<f33,即 a<b<c.故选 B.
高考一轮总复习•数学
第25页
解:函数 f(x)在(-1,1)上是增函数,证明如下: 任取 x1,x2∈(-1,1)且 x1<x2,则 f(x1)-f(x2)=x21x+1 1-x22x+2 1 =x1xx22+12+x11-xx2221+x2-1 x2 =x1x2xx122+-1x1+x22+x11- x2 =x1x-21+x211x-22+x11x2, 变形后因式分解,得到关键因子即为 1-x1x2. 它影响代数式的符号,讨论 1-x1x2 的 符号变化,才能得到函数的单调性.
高考一轮总复习•数学
第8页
二 函数的最值 前提
条件
结论
设函数 f(x)的定义域为 D,如果存在实数 M 满足
①对于任意的 x∈D,都 ①对于任意的 x∈D,都
有 f(x)≤M ;
有 f(x)≥M ;
高考数学一轮专项复习ppt课件-导数与函数的极值与最值(通用版)

高考一轮总复习•数学
第12页
解析:根据导函数图象可知当 x∈(-∞,-3)时,f′(x)<0,当 x∈(-3,1)时,f′(x)≥0, 所以函数 y=f(x)在(-∞,-3)上单调递减,在(-3,1)上单调递增,故 C 正确;易知-3 是函 数 y=f(x)的极小值点,故 A 正确;因为 y=f(x)在(-3,1)上单调递增,所以-1 不是函数 y =f(x)的最小值点,故 B 错误;因为函数 y=f(x)在 x=0 处的导数大于 0,所以切线的斜率大 于零,故 D 正确.故选 B.
高考一轮总复习•数学
第16页
解析:由 y=f′(x)的图象可知,当 x∈(-∞,-3)时,f′(x)>0,所以函数 f(x)单调递 增;当 x∈(-3,-1)时,f′(x)<0,所以函数 f(x)单调递减,因此有 f(-2)>f(-1),x=- 3 是 f(x)的极大值点,所以 A,D 正确;当 x∈(-1,1)或 x∈(1,+∞)时,f′(x)>0,所以 函数 f(x)单调递增,因此函数 f(x)在(-1,1)上没有极大值,且 x=1 不是 f(x)的极小值点,所 以 B,C 不正确.故选 AD.
第7页
2.求函数 y=f(x)在区间[a,b]上的最大(小)值的步骤
(1)求函数 y=f(x)在区间(a,b)内的___极__值_____. (2)将函数 y=f(x)的各极值与__端__点__处__的__函__数__值__f(_a_)_,__f(_b_)___比较,其中___最__大_____的一 个是最大值,___最__小_____的一个是最小值.
高考一轮总复习•数学
第14页
重难题型 全线突破
高考一轮总复习•数学
第15页
题型 函数极值问题的多维研讨
高考数学知识点全解析PPT

06. 高考数学备考策略
制定复习计划:根据自身的学习情况,制定合理的复习计划
制定合理的复习计划
个人学习情况 合理规划时间 提高复习效率
关键词 输出
掌握高考数学知识点
系统学习 高考数学 核心知识点 解题技巧 练习掌握
提高应试能力
模拟考试 错题分析 提高应试能力 应对压力 能力提升
做模拟试题:通过做模拟试题,了解自身的学习情况和弱点
几何运算:图形的面积和体积 计算
三角形面积公式的运用 在高考数学试题中,三角形面积的计算是常见的题型,其公式为底乘 以高再除以2,例如:一个直角三角形的底边长为3,高为4,那么其面 积为6。 矩形体积的计算方法 矩形的体积计算公式为长乘以宽再乘以高,如:一个长方体的长为5, 宽为4,高为3,那么它的体积为60。 圆面积和体积公式的理解 圆的面积计算公式为π乘以半径的平方,而其体积计算公式为π乘以半 径的立方乘以高度的一半。这两个公式在高考中的应用广泛。
利用已知条件求解未知量:通 过已知条件推导出未知量
数学公式 数学公式是高考数学知识点的核心,通过已知条件推导出未知量的过 程就是运用数学公式解决问题的过程。例如,求解二次方程的根,可 以通过求导数和代入法来得到解。 逻辑思维 逻辑思维是解题的关键,通过已知条件推导出未知量的过程需要运用 逻辑思维进行推理和判断。例如,求解三角形的面积,可以通过海伦 公式和勾股定理来进行计算。
04
高考数学应用题解答策略
06
高考数学备考策略
01. 高考数学基础知识点
数与式子:实数,复数,代数式
实数的广泛应用 实数在工程、科学计算中占据主导地位,如π的精确计算需要用到实数。 复数的数学价值 复数是解决一些实际问题的重要工具,如电子工程中的交流电路分析。 代数式的运算法则 掌握代数式的运算法则对于解决复杂的数学问题至关重要。
高考数学一轮专项复习ppt课件-幂函数与指、对数式的运算(通用版)

f(x)=x
1 3
,则
f(x)在
R
上单调递增,且
为奇函数,所以 f(a+1)≤-f(a-3)等价于 f(a+1)≤f(3-a),则 a+1≤3-a,解得 a≤1.
高考一轮总复习•数学
第22页
题型
有关指数幂的基本运算
典例 2(1)计算:(3 2× 3)6-4×1469-12 -2ln e+21+log23=________. (2)计算:2 3×3 1.5×6 12=________.
解析 答案
高考一轮总复习•数学
4.(1)370-(1-0.5-2)÷338
1 3
=____3____.
(2)1.10+eln 2-0.5-2+lg 25+2lg 2=____1____.
(3)若
x+x-1=3,则
x
1 2
+x-12
=_____5___;x2+x-2=____7____.
第15页
解析:(1)原式=1-1-0.152÷32=1-(-3)÷32=3. (2)1.10+eln 2-0.5-2+lg 25+2lg 2=1+2-4+2(lg 5+lg 2)=-1+2=1.
高考一轮总复习•数学
第25页
指数幂运算的一般原则 (1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数,先化成假分 数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来 解答. (5)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数,形式力求 统一.
高考一轮总复习•数学
第8页
2.分数指数幂