高考数学复习 专题01 集合与简易逻辑 集合及其运算考点剖析
高考数学复习考点知识专题讲解课件第1讲 集合

⊆
B∪A
A
∩
⌀
A
(∁UA)
(∁UB)
课前基础巩固
【常用结论】1.集合子集的个数:集合A中有n个元素,则集合A有2n个子集、2n-1个真子集、2n-1个非空子集、2n-2个非空真子集.2.子集的传递性:A⊆B,B⊆C,则A⊆C(真子集也满足).3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB.4.集合元素个数:card(A∪B)=card(A)+card(B)-card(A∩B)(常用在实际问题中).
记法
交集
由所有属于A 属于B的元素组成的集合
{x|x∈A, x∈B}
并集
由所有属于A 属于B的元素组成的集合
{x|x∈A, x∈B}
补集
全集U中 属于A的所有元素组成的集合
{x|x∈U,x A}
3. 集合的基本运算
课前基础巩固
且
且
A∩B
或
课堂考点探究
[思路点拨]用列举法表示集合P,Q,根据P=Q求a,b的值,进而可求得a-b的值;[解析]由题意,当a=1时,P={1};当a≠1时,P={1,a}.当b=-1时,Q={-1};当b≠-1时, Q={-1,b}.∵P=Q,∴a=-1,b=1,故a-b=-2.故选C.
C
(3)非空有限数集S满足:若a,b∈S,则必有a2,b2,ab∈S.则满足条件且含有两个元素的数集S= .(写出一个即可)
2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.
3.在具体情境中,了解全集与空集的含义.
4.理解集合之间包含与相等的含义,能识别给定集合的子集.
5.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.
(经典)高考数学一轮复习专题:集合与简易逻辑

集合与简易逻辑考点一:集合(一) 知识清单1. 集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:文字语言 符号语言属于 不属于4.常见集合的符号表示 数集 自然数集正整数集整数集 有理数集实数集复数集符号*N 或+N2: 集合间的基本关系关系文字语言符号语言相等集合A 与集合B 中的所有元素都相同B A ⊆且A ⊆B ⇔子集A 中任意一元素均为B 中的元素B A ⊆或A B ⊇真子集A 中任意一元素均为B 中的元素,且B 中至少有一元素不是A 的元素空集空集是任何集合的子集,是任何非空集合的真子集A ⊆φ,φB (φ≠B )若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n2,所有真子集的个数是n2-1, 所有非空真子集的个数是22-n3:集合的基本运算1.两个集合的交集:A B = {}x x A x B ∈∈且;2.两个集合的并集: AB ={}x x A x B ∈∈或;3.设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且4:方法指导1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.5.强化数形结合、分类讨论的数学思想.(二) 典型例题分析题型一:集合的概念 例1、已知全集UR =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( ) A. 3个 B. 2个 C. 1个 D. 无穷多个 变式:下面四个命题正确的是( )(A )10以内的质数集合是{1,3,5,7} (B )方程x 2-4x +4=0的解集是{2,2} (C )0与{0}表示同一个集合(D )由1,2,3组成的集合可表示为{1,2,3}或{3,2,1} 题型二:集合的性质 例2、集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为 ( )A.0B.1C.2D.4 例3、例3.设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为 ( )A .{2}B .{3}C .{-3,2}D .{-2,3}例4、已知全集32{1,3,2}S x x x =--,A ={1,21x -}如果}0{=A C S ,则这样的实数x 是否存在?若存在,求出x ,若不存在,说明理由 题型三:集合的运算 例5、 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N AC B = ( )A.}{1,5,7B.}{3,5,7C.}{1,3,9 D.}{1,2,3变式:1. 若集合121log 2A x x ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭≥,则R C A =( )A.(]2,0(,)2-∞⋃+∞B.2(,)2+∞C.(]2,0,2⎡⎫-∞⋃+∞⎪⎢⎪⎣⎭D.2,2⎡⎫+∞⎪⎢⎪⎣⎭ 2. 设集合P={m|-1<m ≤0},Q={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 ( )A.P QB.Q PC.P=QD.P ∩Q=Q3.若{Un n =是小于9的正整数},{A n U n =∈是奇数},{B n U n =∈是3的倍数},则()U A B =ð .4.若{}3A x Rx =∈<,{}21x B x R =∈>,则A B = .5.已知集合{1,1}M =-,11{|24,}2x N x x Z +=<<∈,则M N =( ).A. {1,1}-B. {0}C. {1}-D. {1,0}- 6.设集合2{|log 1}A x x =<,1{|0}2x B x x -=<+,则A B = 例6、 已知函数1()2x f x x +=-的定义域集合是A,函数22()lg[(21)]g x x a x a a =-+++的定义域集合是B (1)求集合A 、B(2)若A U B=B,求实数a 的取值范围. 题型四:图解法解集合问题例7、已知集合M=⎭⎬⎫⎩⎨⎧=+149|22y x x ,N=⎭⎬⎫⎩⎨⎧=+123|y x y ,则=N M ( ) A .∅B .)}0,2(),0,3{(C .]3,3[-D .{}2,3变式 1.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B 的元素个数为( ).A.4B.3C.2D.1变式2. 设集合()22{,|1}416x y A x y =+=,{(,)|3}x B x y y ==,则A B ⋂的子集的个数是( )A .4B .3C .2D .1例8、设集合A ={x ||x -a |<2},B ={x |212+-x x <1},若A ⊆B ,求实数a 的取值范围。
2025年高考数学一轮复习讲义含答案解析 第1节 集合

第一节集合课标解读考向预测1.了解集合的含义,理解元素与集合的属于关系;能用自然语言、图形语言、符号语言刻画集合.2.理解集合之间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义.3.理解集合之间的交、并、补的含义,能求两个集合的并集与交集,能求给定子集的补集.4.能使用Venn 图表达集合之间的基本关系与基本运算,体会图形对理解抽象概念的作用.集合是高考必考内容,重点考查集合的基本运算,以小题形式出现,常联系不等式的解集,试题难度较低.2025年备考仍以小题为主训练,在注重集合概念的基础上,牢固掌握集合的基本关系与运算,适当加强与函数、不等式等知识的联系,借助数轴和Venn 图等工具解决相关问题.必备知识——强基础1.元素与集合(1)集合中元素的三个特性:01确定性、02互异性、03无序性.(2)元素与集合的关系:若a 属于集合A ,记作a 04∈A ;若b 不属于集合A ,记作b 05∉A .(3)集合的三种表示方法:06列举法、07描述法、图示法.(4)常用数集及记法名称自然数集正整数集整数集有理数集实数集记法08N09N *或N+10Z11Q12R(5)集合的分类:有限集和无限集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中13任意一个元素都是集合B 中的元素,就称集合A 为集合B 的子集.记作A 14⊆B (或B 15⊇A ).(2)真子集:如果集合A ⊆B ,但16存在元素x ∈B ,且x ∉A ,就称集合A 是集合B 的真子集,记作A 17B (或B 18A ).(3)相等:若A ⊆B ,且B 19⊆A ,则A =B .3.集合的基本运算运算自然语言符号语言Venn 图并集由所有属于集合A 或属于集合B 的元素组成的集合A ∪B =20{x |x ∈A ,或x ∈B }交集由所有属于集合A 且属于集合B 的元素组成的集合A ∩B =21{x |x ∈A ,且x ∈B }补集对于一个集合A ,由全集U中不属于集合A 的所有元素组成的集合∁U A =22{x |x ∈U ,且x ∉A }4.集合的运算性质(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A .(3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A .1.空集的性质:空集是任何集合的子集,是任何非空集合的真子集.2.若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有2n -1个,非空子集有2n -1个,非空真子集有2n -2个.3.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B .4.∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).5.集合元素个数公式:若用card 表示有限集中元素的个数,则card(A ∪B )=card(A )+card(B )-card(A ∩B ).1.概念辨析(正确的打“√”,错误的打“×”)(1)1∈Q.()3(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)如果集合B⊆A,那么若元素a不属于A,则必不属于B.()答案(1)√(2)×(3)√2.小题热身(1)若集合M={x|x3=x},N={x|x2=1},则下列式子正确的是()A.M=N B.M⊆NC.N⊆M D.M∩N=∅答案C(2)已知集合A={x|x2-4x<0,x∈N*},则集合A的真子集的个数为()A.3B.4C.8D.7答案D(3)已知全集U=R,集合A={-2,-1,1,2,4,6},B={-2,1,2,3,5},则图中阴影部分表示的集合是()A.{-2,1,2}B.{-1,4,6}C.{3,5}D.{-2,-1,1,2,3,4,6}答案A解析由图可知阴影部分表示的是A∩B,又A∩B={-2,1,2},故阴影部分表示的集合是{-2,1,2}.故选A.(4)(人教A必修第一册习题1.3T4改编)设全集为R,集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________,(∁R A)∩B=________.答案{x|x≤2或x≥10}{x|2<x<3或7≤x<10}考点探究——提素养考点一集合的基本概念例1(1)(2024·河南漯河高三摸底)下列四个命题正确的是()A.10以内的素数集合是{1,3,5,7}B.0与{0}表示同一个集合C .方程x 2-4x +4=0的解集是{2,2}D .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}答案D解析10以内的素数有2,3,5,7,A 错误;0是集合{0}中的一个元素,B 错误;由集合中元素的互异性可知,C 错误;由集合中元素的无序性可知,D 正确.故选D.(2)若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________.答案0或1解析①当a -3=-3时,a =0,此时A ={-3,-1,-4};②当2a -1=-3时,a =-1,此时A ={-4,-3,-3},舍去;③当a 2-4=-3时,a =±1,由②可知a =-1舍去,则当a =1时,A ={-2,1,-3}.综上,a =0或1.【通性通法】与集合中元素有关问题的三个关键点【巩固迁移】1.已知集合A ={x ∈R |x 2+a >0},且2∉A ,则实数a 的取值范围是()A .{a |a ≤4}B .{a |a ≥4}C .{a |a ≤-4}D .{a |a ≥-4}答案C解析由题意可得22+a ≤0,解得a ≤-4.故选C.2.已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为()A .9B .8C .5D .4答案A解析集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z }={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)},共9个元素.故选A.3.设a ,b ∈R ,集合{1,a +b ,a },b a,a 2024+b 2024=________.答案2解析由题意知a ≠0,因为{1,a +b ,a },b a,所以a +b =0,则ba=-1,所以a =-1,b =1.故a 2024+b 2024=1+1=2.考点二集合间的基本关系例2(1)(2023·新课标Ⅱ卷)设集合A ={0,-a },B ={1,a -2,2a -2},若A ⊆B ,则a =()A .2B .1C.23D .-1答案B解析因为A ⊆B ,所以a -2=0或2a -2=0,解得a =2或a =1.若a =2,此时A ={0,-2},B ={1,0,2},不符合题意;若a =1,此时A ={0,-1},B ={1,-1,0},符合题意.综上所述,a =1.故选B.(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.答案(-∞,3]解析∵B ⊆A ,∴若B =∅,则2m -1<m +1,解得m <2;若B ≠∅,m -1≥m +1,+1≥-2,m -1≤5,解得2≤m ≤3.综上,实数m 的取值范围为(-∞,3].【通性通法】1.判断集合间关系的三种方法列举法根据题中限定条件把集合元素列举出来,然后比较集合元素的异同,从而找出集合之间的关系结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系2.已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.求得参数后,可以把端点值代入进行验证,以免增解或漏解.注意:空集是任何集合的子集,在涉及集合关系问题时,必须考虑是否存在空集的情况,否则易造成漏解.【巩固迁移】4.设集合P={y|y=x2+1},M={x|y=x2+1},则集合M与集合P的关系是()A.M=P B.P∈MC.M P D.P M答案D解析因为P={y|y=x2+1}={y|y≥1},M={x|y=x2+1}=R,所以P M. 5.(2024·湖南湘潭模拟)若集合A={1,2},B={x|x2+mx+1=0,x∈R},且B⊆A,则实数m的取值范围为________.答案[-2,2)解析若B=∅,则Δ=m2-4<0,解得-2<m<2,符合题意;若1∈B,则12+m+1=0,解得m=-2,此时B={1},符合题意;若2∈B,则22+2m+1=0,解得m=-52,此时B不符合题意.综上所述,实数m的取值范围为[-2,2).考点三集合的基本运算(多考向探究)考向1集合间的交、并、补运算例3(1)(2023·新课标Ⅰ卷)已知集合M={-2,-1,0,1,2},N={x|x2-x-6≥0},则M∩N =()A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.2答案C解析因为N={x|x2-x-6≥0}=(-∞,-2]∪[3,+∞),而M={-2,-1,0,1,2},所以M∩N={-2}.故选C.(2)(2024·山东潍坊高三上学期月考)已知集合A={x|x2-x-2<0},B={x|e x<1},则A∪B=()A.(-∞,1)B.(-∞,2)C.(-2,0)D.(-1,2)答案B解析由题意,A={x|x2-x-2<0}={x|-1<x<2},B={x|e x<1}={x|x<0},所以A∪B=(-∞,2).故选B.(3)(2023·全国乙卷)设集合U=R,集合M={x|x<1},N={x|-1<x<2},则{x|x≥2}=() A.∁U(M∪N)B.N∪∁U MC.∁U(M∩N)D.M∪∁U N答案A解析由题意可得M∪N={x|x<2},则∁U(M∪N)={x|x≥2},A正确;∁U M={x|x≥1},则N ∪∁U M ={x |x >-1},B 错误;M ∩N ={x |-1<x <1},则∁U (M ∩N )={x |x ≤-1或x ≥1},C 错误;∁U N ={x |x ≤-1或x ≥2},则M ∪∁U N ={x |x <1或x ≥2},D 错误.故选A.【通性通法】解决集合运算问题的三个技巧看元素构成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键对集合化简有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决应用数形离散型数集或抽象集合间的运算,常借助Venn 图求解;连续型数集的运算,常借助数轴求解【巩固迁移】6.(2022·全国甲卷)设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则∁U (A ∪B )=()A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}答案D解析由题意,B ={x |x 2-4x +3=0}={1,3},所以A ∪B ={-1,1,2,3},所以∁U (A ∪B )={-2,0}.故选D.7.(2022·新高考Ⅰ卷)若集合M ={x |x <4},N ={x |3x ≥1},则M ∩N =()A .{x |0≤x <2}|13≤xC .{x |3≤x <16}|13≤x 答案D解析因为M ={x |x <4}={x |0≤x <16},N ={x |3x ≥1}=|x ,所以M ∩N =|13≤x <故选D.8.用图形直观表示集合的运算关系,最早是由瑞士数学家欧拉所创,故将表示集合运算关系的图形称为“欧拉图”.后来,英国逻辑学家约翰·韦恩在欧拉图的基础上创建了世人所熟知的“Venn 图”.则图中的阴影部分表示的集合为()A .A ∩B ∩C B .(∁U A )∩B ∩C C .A ∩(∁U B )∩CD .A ∩B ∩(∁U C )答案D解析由图可知,阴影部分在集合A ,B 的公共部分,且不在集合C 中,故图中的阴影部分表示的集合为A ∩B ∩(∁U C ).故选D.考向2利用集合的运算求参数例4(2024·江苏无锡天一中学高三模拟)已知集合A ={x ∈Z |-1<x <3},B ={x |3x -a <0},且A ∩(∁R B )={1,2},则实数a 的取值范围是()A .(0,4)B .(0,4]C .(0,3]D .(0,3)答案C解析由集合A ={x ∈Z |-1<x <3}={0,1,2},B ={x |3x -a <0}x |x <a 3可得∁R B =x x ≥a3因为A ∩(∁R B )={1,2},所以0<a 3≤1,解得0<a ≤3,即实数a 的取值范围是(0,3].故选C.【通性通法】利用集合的运算求参数的方法注意:确定不等式解集的端点之间的大小关系时,需检验能否取“=”,另外千万不要忘记考虑空集.【巩固迁移】9.(2023·河北衡水中学高三一模)已知集合M ={x |x ≤m },N x|y =1x 2-3x -4若M ∪N=R,则实数m的取值范围是()A.[-1,+∞)B.[4,+∞)C.(-∞,-1]D.(-∞,4]答案B解析由x2-3x-4>0,得x<-1或x>4,即N=(-∞,-1)∪(4,+∞),因为M∪N=R,M=(-∞,m],所以m≥4,即实数m的取值范围为[4,+∞).故选B.10.已知集合A={x|x2+x-6>0},B={x|2a-1<x<a+2},若A∩B≠∅,则实数a的取值范围为________.答案(-∞,-1)∪(0,3)解析由题意可得集合A=(-∞,-3)∪(2,+∞),因为A∩B≠∅,a-1<-3,a-1<a+2或+2>2,a-1<a+2,解得a<-1或0<a<3,所以实数a的取值范围是(-∞,-1)∪(0,3).考向3集合语言与思想的运用例5某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.答案8解析设参加数学、物理、化学小组的人构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图,由全班共36名同学可得(26-6-x)+6+(15-4-6)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.【通性通法】(1)运用集合语言及思想解决实际问题时,注意Venn图的应用,它是解决集合交、并、补运算的有力工具,先利用Venn图表示交、并、补的区域,如果在集合外,那么与集合的补集运算有关,如果在公共部分,那么与集合的交集运算有关.(2)注意公式card(A∪B)=card(A)+card(B)-card(A∩B)的合理运用.【巩固迁移】11.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该中学学生总数的比例是()A.62%B.56%C.46%D.42%答案C解析用Venn图表示该中学喜欢足球和游泳的学生所占比例之间的关系如图,设既喜欢足球又喜欢游泳的学生数占该中学学生总数的比例为x,则(60%-x)+(82%-x)+x=96%,解得x=46%.故选C.课时作业一、单项选择题1.(2023·全国甲卷)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,∁U(A∪B)=()A.{x|x=3k,k∈Z}B.{x|x=3k-1,k∈Z}C.{x|x=3k-2,k∈Z}D.∅答案A解析因为整数集Z={x|x=3k,k∈Z}∪{x|x=3k+1,k∈Z}∪{x|x=3k+2,k∈Z},U=Z,所以∁U(A∪B)={x|x=3k,k∈Z}.故选A.2.(2022·新高考Ⅱ卷)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=() A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案B解析B={x|0≤x≤2},故A∩B={1,2}.故选B.3.设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案A解析∵M={0,1},N={x|0<x≤1},∴M∪N={x|0≤x≤1}.4.已知集合A={(x,y)|y=x2},B={(x,y)|y=x},则A∩B的真子集个数为() A.1B.2C.3D.4答案C解析=x2,=x,=0,=0=1,=1.∴A∩B={(0,0),(1,1)},即A∩B有2个元素,∴A∩B的真子集个数为22-1=3.故选C.5.已知集合A={x|x2-2x>0},B={x|x>a},若A∪B=R,则实数a的取值范围是() A.(-∞,0)B.(-∞,0]C.(2,+∞)D.[2,+∞)答案A解析因为A={x|x2-2x>0}=(-∞,0)∪(2,+∞),A∪B=R,所以a<0.故选A. 6.(2024·湖南益阳高三上学期月考)已知A={(x,y)|x+y=0},B={(x,y)|x2+2y2=1},M=A∩B.则M中元素的个数是()A.0B.1C.2D.4答案C解析因为A={(x,y)|x+y=0},B={(x,y)|x2+2y2=1},所以集合A是直线x+y=0上的点的集合,集合B是椭圆x2+2y2=1上的点的集合.因为M=A∩B,所以若要求M中元素的个数,+y=0,2+2y2=1,=33,=-33或=-33,=33,即椭圆和直线有两个交点-33,所以M中元素的个数是2.故选C.7.某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”“合格”2个等级,结果如下表:等级项目优秀合格合计除草301545植树202545若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为() A.5B.10C.15D.20答案C解析用集合A表示除草“优秀”的学生,B表示植树“优秀”的学生,全班学生用全集U表示,则∁U A表示除草“合格”的学生,∁U B表示植树“合格”的学生,作出Venn图,如图.设两个项目都“优秀”的人数为x,两个项目都“合格”的人数为y,由图可得20-x+x+30-x+y=45,x=y+5,因为y max=10,所以x max=10+5=15.故选C.8.已知集合P∪(∁R Q)=(-2,+∞),P∩Q=(-2,1),则Q=()A.(-2,+∞)B.(-∞,1)C.(-∞,-2]D.[1,+∞)答案B解析根据右面的Venn图,Ⅰ区表示P∩(∁R Q),Ⅱ区表示P∩Q,Ⅲ区表示Q∩(∁R P),Ⅳ区表示∁R(P∪Q),则集合P∪(∁R Q)对应于Ⅰ区、Ⅱ区、Ⅳ区的并集,所以Ⅲ区对应(-∞,-2],从而Q对应Ⅱ区、Ⅲ区的并集,故Q=(-∞,1).故选B.二、多项选择题9.已知集合A,B均为R的子集,若A∩B=∅,则()A.A⊆∁R B B.∁R A⊆BC.A∪B=R D.(∁R A)∪(∁R B)=R答案AD解析如图,根据Venn图可得A⊆∁R B,故A正确;由于B⊆∁R A,故B错误;A∪B⊆R,故C错误;(∁R A)∪(∁R B)=∁R(A∩B)=R,故D正确.故选AD.10.(2024·河北保定部分高中高三上学期月考)已知Z(A)表示集合A的整数元素的个数,若集合M={x|x2-9x<10},N={x|lg(x-1)<1},则()A.Z(M)=9B .M ∪N ={x |-1<x <11}C .Z (N )=9D .(∁R M )∩N ={x |10<x <11}答案BC解析因为M ={x |-1<x <10},N ={x |1<x <11},所以Z (M )=10,Z (N )=9,M ∪N ={x |-1<x <11},(∁R M )∩N ={x |10≤x <11}.故选BC.11.若集合A ={x |sin2x =1},B |y =π4+k π2,k ∈()A .A ∪B =B B .∁R B ⊆∁R AC .A ∩B =∅D .∁R A ⊆∁R B答案AB解析因为A ={x |sin2x =1}=|x =k π+π4,k ∈=|x =4k π+π4,k ∈,B =|y =π4+k π2,k ∈=|y =2k π+π4,k ∈,显然集合|x =4k π+π4,k ∈|x =2k π+π4,k ∈所以A ⊆B ,则A ∪B =B ,所以A 正确;∁R B ⊆∁R A ,所以B 正确,D 错误;A ∩B =A ,所以C 错误.故选AB.三、填空题12.(2024·江苏连云港海滨中学高三学情检测)已知集合A ={1,2,3,4,5,6},B =|6x -1∈N ,x ∈B 的子集的个数是__________.答案8解析由6x -1∈N ,得x -1=6,x -1=3,x -1=2,x -1=1,且x ∈A ,故B ={2,3,4},则集合B 的子集的个数为23=8.13.已知集合A ={m 2,-2},B ={m ,m -3},若A ∩B ={-2},则A ∪B =________.答案{-5,-2,4}解析∵A ∩B ={-2},∴-2∈B ,若m =-2,则A ={4,-2},B ={-2,-5},∴A ∩B={-2},A ∪B ={-5,-2,4};若m -3=-2,则m =1,∴A ={1,-2},B ={1,-2},∴A ∩B ={1,-2}(舍去).综上,A ∪B ={-5,-2,4}.14.(2024·九省联考)已知集合A ={-2,0,2,4},B ={x ||x -3|≤m },若A ∩B =A ,则m 的最小值为________.答案5解析由A ∩B =A ,得A ⊆B ,由|x -3|≤m ,得-m +3≤x ≤m +3,≤m +3,2≥-m +3,即≥1,≥5,即m ≥5,故m 的最小值为5.15.(2024·河南郑州四中第二次调研考试)某年级先后举办了数学、历史、音乐讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,记A ={x |x 是听了数学讲座的学生},B ={x |x 是听了历史讲座的学生},C ={x |x 是听了音乐讲座的学生}.用card(M )来表示有限集合M 中元素的个数,若card(A ∩B )=17,card(A ∩C )=12,card(B ∩C )=9,A ∩B ∩C =∅,则()A .card(A ∪B )=143B .card(A ∪B ∪C )=166C .card(B ∪C )=129D .card(A ∩B ∩C )=38答案B解析将已知条件用Venn 图表示出来如图,对于A ,card(A ∪B )=46+42+17+12+9=126,故A 错误;对于B ,card(A ∪B ∪C )=46+42+40+17+12+9=166,故B 正确;对于C ,card(B ∪C )=42+40+17+12+9=120,故C 错误;对于D ,card(A ∩B ∩C )=0,故D 错误.故选B.16.已知集合A ={(x ,y )|x 2+y 2≤1},B ={(x ,y )||x |+|y |≤a },A ⊆B ,则实数a 的取值范围是()A.12,+∞B .[1,+∞)C .[2,+∞)D .[2,+∞)答案C解析集合A 为圆x 2+y 2=1内部和圆周上的点集,集合B 为直线x +y =a ,x -y =a ,-x+y =a ,x +y =-a 围成的正方形内部和边上的点集,画出图象,如图所示.当直线EF 与圆O 相切时,设切点为C ,连接OC .∵△EOF 为等腰直角三角形,OE =OF ,∠EOF =90°,OC ⊥EF ,∴OC 为Rt △EOF 斜边上的中线,∴OC =12EF ,即EF =2OC =2,∴OE =OF =22EF=2,此时a= 2.∵A⊆B,即圆O在正方形内,∴a≥ 2.17.(多选)(2024·华南师范大学附属中学高三月考)已知M是同时满足下列条件的集合:①0∈M,1∈M;②若x,y∈M,则x-y∈M;③若x∈M且x≠0,则1x∈M.下列结论中正确的是()A.13∈MB.-1∉MC.若x,y∈M,则x+y∈MD.若x,y∈M,则xy∈M答案ACD解析对于A,B,由①②,得0-1=-1∈M,1-(-1)=2∈M,2-(-1)=3∈M,由③,得13∈M,故A正确,B错误;对于C,由①,知0∈M,∵y∈M,∴0-y=-y∈M,∵x∈M,∴x-(-y)∈M,即x+y∈M,故C正确;对于D,∵x,1∈M,则x-1∈M,由③,得1 x ∈M,1x-1∈M,∴1x-1x-1∈M,即1x(1-x)∈M,∴x(1-x)∈M,即x-x2∈M,∴x2∈M,同理y2∈M.由选项C可知,当x,y∈M时,x+y∈M,∴1x+1x=2x∈M,∴x2∈M,∴x22∈M,同理y22∈M,∴当x,y∈M时,(x+y)22,x2+y22M,∴(x+y)22-x2+y22=xy∈M,故D正确.故选ACD.18.(多选)(2024·浙江杭州第二中学高三月考)已知集合{x|x2+ax+b=0,a>0}有且仅有两个子集,则下列四个结论中正确的是()A.a2-b2≤4B.a2+1b≥4C.若不等式x2+ax-b<0的解集为(x1,x2),则x1x2>0D.若不等式x2+ax+b<c的解集为(x1,x2),且|x1-x2|=4,则c=4答案ABD解析因为集合{x|x2+ax+b=0,a>0}有且仅有两个子集,所以Δ=a2-4b=0,a2=4b,又a>0,所以b>0.对于A,因为a2-b2=4b-b2=-(b-2)2+4≤4,当b=2,a=22时等号成立,故A 正确;对于B ,a 2+1b =4b +1b ≥24b ·1b =4,当且仅当4b =1b ,b =12,a =2时等号成立,故B 正确;对于C ,不等式x 2+ax -b <0的解集为(x 1,x 2),则x 1x 2=-b <0,故C 错误;对于D ,不等式x 2+ax +b <c 的解集为(x 1,x 2),即不等式x 2+ax +b -c <0的解集为(x 1,x 2),且|x 1-x 2|=4,则x 1+x 2=-a ,x 1x 2=b -c ,则|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=a 2-4(b -c )=4c =16,则c =4,故D 正确.故选ABD.19.(2024·湖北高中名校联合体高三诊断性考试)已知集合U ={1,2,…,n }(n ∈N *,n ≥2),对于集合U 的两个非空子集A ,B ,若A ∩B =∅,则称(A ,B )为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为f (n )(视(A ,B )与(B ,A )为同一组“互斥子集”),那么f (n )=________.答案12(3n-2n +1+1)解析根据题意,任意一个元素只能在集合A ,B ,C =∁U (A ∪B )之一中,则这n 个元素在集合A ,B ,C 中,共有3n 种.其中A 为空集的种数为2n ,B 为空集的种数为2n ,故可得A ,B 均为非空子集的种数为3n -2n +1+1,又因为(A ,B )与(B ,A )为同一组“互斥子集”,故f (n )=12(3n-2n +1+1).。
高考数学 考前知识要点复习一 集合与简易逻辑

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾:(一) 集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时 ,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,. [注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.AB ⊆④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n个. ②n 个元素的真子集有2n-1个. ③n 个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②1≠x 3.1或y = 2. 1≠∴y x 且3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件. . 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间) 则不等式)0)(0(0022110><>++++--a a x a xa x a n n n n的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互 R2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
二轮复习:专题01 集合与简易逻辑(解析版)

专题01 集合与简易逻辑(讲)1.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =I U ( ) A .{}2 B .{}2,3 C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C =I ,所以(){1,2,3,4}A C B =I U .故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( ) A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{|560}{|2A x x x x x =-+>=<或3}x >,{|10}{|1}B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞I .故选A .【名师点睛】本题考点为集合的运算,为基础题目.3.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =I ( ) A .{}1,0,1- B .{}0,1 C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-I .故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B I . 【名师点睛】本题主要考查交集的运算,属于基础题.一、考向分析:二、考向讲解考查内容解 题 技 巧 元素的特征1、利用元素的性质求参数的方法已知一个元素属于集合,求集合中所含的参数值.具体解法: (1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值. (2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性。
【数学】高考数学复习课件:集合与简易逻辑

求b的取值范围。
变式训练7
❖ (1).已知:A {( x, y) x y 1}, B {( x, y) ( y x)( y x) 0},
M A B,求M所表区域的面积
(2).已知:A {( x, y) y 1 x 2}
2
B {(x, y) y x b} A B
1.求b的取值范围 ; 2.设点P(x, y) A B,
且x 2y的最大值为9,求b的值。
2.集合的运算
(1)交集:由既__属__于__集__合___A_又__属__于__集__合__B_的元素 组成的集合,叫做集合A与B的交集,记作A∩B, 即A∩B={_x_|x_∈__A__,__且__x_∈__B_}.
(2)并集:由_所__有__属__于__集__合__A_或__集__合__B_的元素组 成的集合,叫做集合A与B的并集,记作A∪B,即 A∪B={_x_|x__∈__A_,__或__x_∈__B_}.
1.列举法和描述法各适合表示怎样的集合. 【提示】注意集合表示的列举法与描述法在形式 上的区别,列举法一般适合于有限集,而描述法 一般适合于无限集.
2.{∅}和∅是否相同?二者有何区别与联系? 【提示】{∅}表示以空与空集∅的区别与联系;∅⊆{∅},∅∈{∅}.
(3)补集:A是集合S的一个子集,由S中所__有__不__ _属__于__A_的元素组成的集合叫做A的补集(或余集), 记作∁SA,即∁SA={_x_|_x_∈__S_,__且__x_∉_A_}.
题型七:集合运算与解析几何
例7:已知 :M {(x, y) y 16 x2 , y 0}
高中数学高考总复习——第一章-集合与简易逻辑
2. (教材改编题 )已知集合 A= { x|2x- 3<3x} , B= { x|x≥2} , 则 ( )
A . A? B
B.B? A
C.A?? RB
D. B?? R A
解析: 选 B ∵ A= { x|2x- 3<3 x} = { x|x>- 3} ,
B= { x|x≥ 2} , ∴ B? A. 3.已知集合 M = {1 , m+ 2, m2+ 4} , 且 5∈ M , 则 m 的值为 ( )
2. 集合间的基本关系 表示
关系
文字语言
符号语言
相等 子集
集合 A 与集合 B 中的所有元素都相同 A 中任意一个元素均为 B 中的元素
A? B 且 B? A? A= B
A? B 或 B? A
真子集
A 中任意一个元素均为 B 中的元素, 且 B 中至少有一 个元素不是 A 中的元素
A B或B A
空集
A . 1 或- 1
B.1 或 3
C.- 1 或 3
D.1, -1 或 3
解析: 选 B ∵ 5∈ {1 , m+ 2, m2+ 4} ,
∴ m+ 2= 5 或 m2+ 4= 5,
即 m= 3 或 m= ±1. 当 m= 3 时, M = {1,5,13} ;当 m= 1 时, M = {1,3,5} ;
————— ———
解决集合问题的一般思路
———————————
(1)研究一个集合, 首先要看集合中的代表元素, 用描述法表示时, 注意弄清其元素表示的意义是什么.
然后再看元素的限制条件,
当集合
(2)对于含有字母的集合, 在求出字母的值后, 要注意检验集合是否满足互异性.
2024年高考数学 高三大一轮复习专题01 集合
专题01 集合【知识精讲】一、集合的基本概念 1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:即一个集合一旦3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅.4.常用数集及其记法:注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义.5.集合的表示方法:自然语言、列举法、描述法、图示法. 二、集合间的基本关系或集合A ∅⊆,必记结论:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n −个非空子集,有21n −个真子集,有22n −个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆. 注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 三、集合的基本运算 1.集合的基本运算{|B x x =|{B x x ={|UA x =2.集合运算的相关结论B A ⊆ B B ⊆ A A A = ∅=∅B A ⊇B B ⊇A A =A ∅=()UU A A =UU =∅ UU ∅=()U A A =∅()U A A U =3.必记结论(.)UUU A B A B A A B B A B A B ⊆⇔=⇔=⇔⊇=⇔∅【题型精讲】题型一 集合的基本概念【例1-1】设集合{}22,2,1A a a a =−+−,若4A ∈,则a 的值为( ).A .1−,2B .3−C .1−,3−,2D .3−,2【答案】D 【解析】 【分析】由集合中元素确定性得到:1a =−,2a =或3a =−,通过检验,排除掉1a =−. 【详解】由集合中元素的确定性知224a a −+=或14a −=.当224a a −+=时,1a =−或2a =;当14a −=时,3a =−.当1a =−时,{}2,4,2A =不满足集合中元素的互异性,故1a =−舍去; 当2a =时,{}2,4,1A =−满足集合中元素的互异性,故2a =满足要求; 当3a =−时,{}2,14,4A =满足集合中元素的互异性,故3a =−满足要求. 综上,2a =或3a =−. 故选:D .【例1-2】(多选题)设集合{}22,,Z M a a x y x y ==−∈,则下列是集合M 中的元素的有( ) A .4n ,Z n ∈ B .41n +,Z n ∈ C .42n +,Z n ∈ D .43n +,Z n ∈【答案】ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =−可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+−,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+−−,Z n ∈,1Z n +∈,1Z n −∈,所以4n M ,故选项A正确;对于B :因为()()2241212n n n +=+−,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n ,则()()42n x y x y +=+−,易知x y +和x y −同奇或同偶,若x y +和x y −都是奇数,则()()x y x y +−为奇数,而42n +是偶数,矛盾;若x y +和x y −都是偶数,则()()x y x y +−能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+−+,22Z n +∈,21Z n +∈,所以43n M ,故选项D正确; 故选:ABD.【例1-3】集合*83A x NN x ⎧⎫=∈∈⎨⎬−⎩⎭,用列举法可以表示为A =_________. 【答案】{1,2}、{2,1} 【解析】【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈−,所以31,2,4,8−=x ,可得2,1,1,5=−−x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}【练习1-1】已知集合 {}20,,32A m m m =−+,且 2A ∈,则实数m 的值为( )A .3B .2C .0或3D .0或2或3【答案】A 【解析】 【分析】依题意可得2m =或2322m m −+=,求出方程的根,再代入集合中检验即可; 【详解】解:因为{}20,,32A m m m =−+,且2A ∈,所以2m =或2322m m −+=,解得2m =或0m =或3m =,当2m =时2320m m −+=,即集合A 不满足集合元素的互异性,故2m ≠,当0m =时集合A 不满足集合元素的互异性,故0m ≠,当3m =时{}0,3,2A =满足条件; 故选:A【练习1-2】已知集合{}220A x x x a =−+>,且1A ∉,则实数a 的所有取值构成的集合是________. 【答案】(],1−∞ 【解析】 【分析】根据集合与元素见的关系直接列不等式,进而得解. 【详解】由1A ∉,得21210a −⨯+≤, 解得1a ≤,故答案为:(],1−∞.【练习1-3】已知,x y 均为非零实数,则代数式xy x yx y xy++的值所组成的集合的元素个数是______. 【答案】2 【解析】 【分析】 分析题意知代数式xy x yx y xy++的值与,x y 的符号有关,按其符号的不同分3种情况讨论,分别求出代数式的值,即可得解. 【详解】根据题意分2种情况讨论: 当,x y 全部为负数时,xy 为正数,则1111xyx y x y xy++=−−+=−; 当,x y 全部为正数时,xy 为正数,则1113xy x y x y xy++=++=; 当,x y 一正一负时,xy 为负数,则1111xy x y x y xy++=−−=−; 综上可知,xy x yx y xy++的值为1−或3,即代数式的值所组成的集合的元素个数是2 故答案为:2题型二 集合的基本关系【例2-1】若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .A B B .B A C .A B = D .A B ≠【答案】C 【解析】【分析】根据子集的定义证得A B ⊆和B A ⊆,即可得出结论. 【详解】设任意1x A ∈,则1111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+, 所以1x B ∈;当121,k n n Z =−∈时,1141(41)999x n n =−=−,所以1x B ∈.所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈ 因为22412(2)1k k +=+,22412(21)1k k −=−+, 且22k 表示所有的偶数,221k −表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数.所以2x A ∈. 所以B A ⊆故A B =. 故选:C.【例2-2】已知集合{}2230A x x x =−−=,{}20B x ax =−=,且B A ⊆,则实数a 的值为___________. 【答案】2a =−或23a =或0 【解析】 【分析】先求得集合A ,分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a =,解出即可.【详解】解:已知集合{}{}22301,3A x x x =−−==−,{}20B x ax =−=,当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a=,解得2a =−或23a =;故答案为:2a =−或23a =或0.【例2-3】已知{}(){}22240,2110A xx x B x x a x a =+==+++−=∣∣. (1)若A 是B 的子集,求实数a 的值; (2)若B 是A 的子集,求实数a 的取值范围. 【答案】(1)1a =; (2)1a −或1a =. 【解析】 【分析】(1)由题得{}4,0B A ==−,解2Δ0402(1)401a a >⎧⎪−+=−+⎨⎪−⨯=−⎩即得解;(2)由题得B A ⊆,再对集合B 分三种情况讨论得解. (1)解:由题得{}4,0A =−.若A 是B 的子集,则{}4,0B A ==−,所以2Δ0402(1),1401a a a >⎧⎪−+=−+∴=⎨⎪−⨯=−⎩.(2)解:若B 是A 的子集,则B A ⊆.①若B 为空集,则()22Δ4(1)41880a a a =+−−=+<,解得1a <−; ②若B 为单元素集合,则()22Δ4(1)41880a a a =+−−=+=,解得1a =−. 将1a =−代入方程()222110x a x a +++−=,得20x =,即{}0,0x B ==,符合要求; ③若B 为双元素集合,{}4,0B A ==−,则1a =. 综上所述,1a −或1a =.【练习2-1】设集合18045,Z 2k M x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,18045,Z 4kN x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,则两集合间的关系是( ) A .MNB .M NC .N MD .M N ⋂=∅【答案】B 【解析】 【分析】变形(){}2145,Z M x x k k ==+⨯︒∈,(){}145,Z N x x k k =+⨯︒∈,分析比较即可得解. 【详解】由题意可(){}18045,Z 2145,Z 2kM x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭即M 为45︒的奇数倍构成的集合,又(){}18045,Z 145,Z 4kN x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭,即N 为45︒的整数倍构成的集合,M N ∴⊆,即M N 故选:B【练习2-2】已知集合{|4A x x =≥或}5x <−,{}|13B x a x a =+≤≤+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <−或}3a ≥ 【解析】 【分析】根据B A ⊆,利用数轴,列出不等式组,即可求出实数a 的取值范围. 【详解】用数轴表示两集合的位置关系,如上图所示,或要使B A ⊆,只需35a +<−或14a +≥,解得8a <−或3a ≥. 所以实数a 的取值范围{|8a a <−或}3a ≥. 故答案为:{|8a a <−或}3a ≥【练习2-3】满足{}1A ⊆ {1,2,3}的所有集合A 是___________. 【答案】{1}或{1,2}或{1,3} 【解析】 【分析】由题意可得集合A 中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 【详解】因为{}1A ⊆ {1,2,3},所以集合A 中至少有一个元素1,且为集合{1,2,3}的真子集, 所以集合A 是{1}或{1,2}或{1,3}, 故答案为:{1}或{1,2}或{1,3}题型三 集合的基本运算【例3-1】已知集合{}21A x x =−≤≤,集合{}2log 1B x x =<,则A B =( ) A .∅ B .(0,1] C .[2,1]− D .(0,2)【答案】B 【解析】 【分析】先求解集合B ,再利用交集运算即可. 【详解】解:由题得集合{|02}B x x =<<,所以{|01}A B x x =<≤. 故选:B .【例3-2】已知U=R 是实数集,21M x x ⎧⎫=>⎨⎬⎩⎭,{N x y ==,则()N M =R ( )A .(),0∞−B .(),1−∞C .(]0,1D .()0,1【答案】D【解析】【分析】 先求得集合M 、N ,再运用集合的交集、补集运算求得答案.【详解】解:∵{}221002x M x x x x x x ⎧⎫⎧⎫−=>=<=<<⎨⎬⎨⎬⎩⎭⎩⎭,{{}1N x y x x ===≥, ∴(){}{}{}10201R N M x x x x x x ⋂=<⋂<<=<<,故选:D.【例3-3】已知集合{2}A xa x a =<<∣,{4B x x =≤−或}3x ≥. (1)当2a =时,求()R A B ⋃;(2)若R A B ⊆,求a 的取值范围.【答案】(1){44}xx −<<∣ (2)3,2⎛⎤−∞ ⎥⎝⎦ 【解析】【分析】(1)由补集和并集的定义可运算求得结果;(2)分别在A =∅和A ≠∅两种情况下,根据交集为空集可构造不等式求得结果.(1) 由题意得{}24A x x =<<,{4B x x =≤−或}3x ≥, {}R 43B x x ∴=−<<,故(){}R 44A B x x ⋃=−<<.(2)当0a ≤时,A =∅,符合题意,当0a >时,由23a ≤,得302<≤a , 故a 的取值范围为3,2⎛⎤−∞ ⎥⎝⎦.【练习3-1】已知集合{}1,0,1,2A =−,集合{}lg 0B x x =>,则() AB =R ( ) A .{}1,0,1−B .{}1,0−C .{}0,1D .(],1−∞ 【答案】A【解析】【分析】解不等式后由补集与交集的概念运算【详解】 因为集合{}{}lg 01B x x x x =>=>,所以{}1R B x x =≤,又集合{}1,0,1,2A =−,所以(){} 1,0,1A B =−R ,故选:A 【练习3-2】设全集为R ,{|1A x x =<−或}4x >,{}123B x a x a =−≤≤+.(1)若1a =,求A B ,()R A B .(2)已知A B =∅,求实数a 的取值范围.【答案】(1){}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣; (2)12a ≤. 【解析】【分析】(1)当1a =时求出集合B ,再进行交集,补集,并集运算即可求解;(2)讨论B =∅和B ≠∅两种情况,列不等式解不等式即可求解.(1)因为1a =,所以{}05B x x =≤≤∣,{}R |14A x x =−≤≤,所以{}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣. (2)因为A B =∅,当B =∅时,满足A B =∅,所以123a a −>+,得23a <−;当B ≠∅时,因为A B =∅,所以23111234a a a a +≥−⎧⎪−≥−⎨⎪+≤⎩,解得2132a −≤≤, 综上实数a 的取值范围为:12a ≤. 题型四 Venn 图及其应用【例4-1】如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂B .()I AC B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B【解析】【分析】找到每一个选项对应的区域即得解.【详解】解:如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4.故选:B【例4-2】已知全集R U =,集合{}|2,1x A y y x ==>,{}|24B x x =−<<,则图中阴影部分表示的集合为( )A .[2,2]−B .(2,2)−C .(2,2]−D .[2,2)−【答案】C【解析】【分析】求出集合A ,阴影部分表示为:()U B A ⋂,再分析求解即可.【详解】因为{}|2,1x A y y x ==>,所以()2,A =+∞,又{}|24B x x =−<<,全集R U =, 所以图中阴影部分表示的集合为()(2,2]U B A =−.故选:C.【练习4-1】已知M ,N 为R 的两个不相等的非空子集,若M N M ⋂=,则( )A .M N =RB .M N ⋃=R RC .N M ⋃=R RD .M N ⋃=R R R【答案】C【解析】【分析】依题意可得M N ,结合韦恩图即可判断;【详解】解:依题意M N M ⋂=,所以M N ,则集合M ,N 与R 的关系如下图所示:所以N M ⋃=R R ;故选:C【练习4-2】已知全集U =R ,集合{}290A x x =−>,122x B x ⎧⎫⎪⎪⎛⎫=≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则图中阴影部分所表示的集合为( )A .{}3x x <B .{}13x x −<<C .{}1x x >−D .{}11x x −<≤【答案】B【解析】【分析】根据不等式的解法和指数函数的性质,分别求得集合,A B ,结合题意和集合的运算法则,即可求解.【详解】由不等式290−>x ,解得33x −<<,即集合{}33A x x =−<<, 又由122x ⎛⎫≥ ⎪⎝⎭,解得1x ≤−,即集合{}1B x x =≤−,则{}|1U B x x =>−, 又因为图中阴影部分表示的集合为()U A B ∩,所以(){}|13U AB x x =−<<.故选:B.题型五 集合中的创新型问题【例5-1】定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==−∈∈,若{}1,0A =−,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==−∈∈,{}1,0A =−,{}1,2B =,所以{0,1,2}A B ⊗=−−,故集合A B ⊗中的元素个数为3,故选:C.【例5-2】(多选题)设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有a ab a b ab P b+−∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( )A .有理数集Q 是一个数域B .整数集是数域C .若有理数集Q M ⊆,则数集M 必为数域D .数域必为无限集【答案】AD【解析】【分析】根据数域的定义逐项进行分析即可求解.【详解】对于A ,若Q a b ∈,,则()Q Q Q Q 0aa b a b ab b b+∈−∈∈∈≠,,,,所以有理数集Q 是一个数域,故A 正确;对于B ,因为1Z Z,∈∈,2所以1Z 2∉,所以整数集不是数域,故B 不正确;对于C,令数集}{Q 2M =,则1,M M ∈但1M ,故C 不正确;对于D ,根据定义,如果()0a b b ≠,在数域中,那么,2,,a b a b a kb +++(k 为整数),都在数域中,故数域必为无限集,故D 正确.故选:AD.【例5-3】已知有限集合{}123,,,,n A a a a a =⋅⋅⋅,定义集合{}1,,i j B a a i j n i j *=+≤<≤∈N 中的元素的个数为集合A 的“容量”,记为()L A .若集合{}13A x x *=∈≤≤N ,则()L A =______;若集合{}1A x x n *=∈≤≤N ,且()4041L A =,则正整数n 的值是______. 【答案】 3 2022【解析】【分析】化简A ,可得()L A ;根据“容量”定义可得{}1A x x n *=∈≤≤N 的()4041L A =,解方程即可.【详解】{}{}131,2,3A x x *=∈≤≤=N ,则集合{}3,4,5B =,所以()3L A =.若集合{}1A x x n *=∈≤≤N , 则集合(){}{}3,4,,13,4,,21B n n n =⋅⋅⋅−+=⋅⋅⋅−,故()212234041L A n n =−−=−=,解得2022n =.故答案为:3;2022【练习5-1】设集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,则P Q ⊗中元素的个数为( )A .3B .4C .5D .6【答案】D【解析】【分析】用列举法表示出集合,即可得到结论.【详解】因为集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,所以(){}()()()()()(){},|,3,6,3,7,4,6,4,7,5,6,5,7P Q a b a P b Q ⊗=∈∈=.一共6个元素.故选:D【练习5-2】若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合1,2A ,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____. 【答案】10,,22⎧⎫⎨⎬⎩⎭ 【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=−时,解得2a =,当,A B 2=时,解得12a =, 故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭. 故答案为:10,,22⎧⎫⎨⎬⎩⎭。
高考专题复习—集合与常用逻辑用语 第一讲+第二讲(解析版)
高考专题复习—集合与常用逻辑用语(解析版)➱第一讲集合◎基础巩固1.集合的基本概念(1)集合元素的性质:确定性、无序性、互异性.(2)元素与集合的关系①属于,记为∈;②不属于,记为∉.(3)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N +Z Q R(4)集合的表示方法:①列举法;②描述法;③韦恩图.2.集合间的基本关系关系自然语言符号语言Venn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B(或B⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A B 或B A集合相等集合A ,B 中的元素相同或集合A ,B 互为子集A =B3.集合的基本运算基本运算并集交集补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示数学语言{x |x ∈A ,或x ∈B }{x |x ∈A,且x ∈B }{x |x ∈U ,且x ∉A }运算性质A ∪∅=A ;A ∪A =A;A ∪B =B ∪A .A ∩∅=∅;A ∩A =A;A ∩B =B ∩A .A ∪(∁U A )=U ;A ∩(∁U A )=∅;∁U (∁U A )=A.1.A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.2.若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)∅={0}.()(2)空集是任何集合的子集,两元素集合是三元素集合的子集.()(3)a在集合A中,可用符号表示为a⊆A.()(4)N⊆N+⊆Z.()(5)若A={x|y=x2},B={(x,y)|y=x2},则A∩B={x|x∈R}.()答案:(1)×(2)×(3)×(4)×(5)×[小题查验]1.若集合A={x∈N|x≤10},a=22,则下列结论正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A解析:D[由题意知A={0,1,2,3},由a=22,知a∉A.]2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4解析:B[由题意可得:A∩B={2,4},故选B.]3.已知全集U={1,2,3,4,5},A={1,2,4},B={2,5},则(∁U A)∪B=()A.{3,4,5}B.{2,3,5}C.{5}D.{3}解析:B[因为U={1,2,3,4,5},A={1,2,4},所以∁U A={3,5},又B={2,5},所以(∁U A)∪B={2,3,5}.] 4.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.解析:∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案:(-∞,1]5.(教材改编)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=___________________.答案:{2,4}◎考点探究考点一集合的基本概念(自主练透)[题组集训]1.已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为()A .9B .8C .5D .4解析:A[∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =-1,0,1,当x =-1时,y =-1,0,1;当x =0时,y =-1,0,1;当x =1时,y =-1,0,1;所以共有9个,选A.]2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =()A.92B.98C .0D .0或98解析:D[若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98.]3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去.当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-324.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2019=________.解析:由M =N =1,2n =m =m ,2n =1,=0,=12,=2.∴(m -n )2019=-1或0.答案:-1或01.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二集合间的基本关系(师生共研)[典例](1)已知集合A ={x |ax =1},B ={x |x 2-1=0},若A ⊆B ,则a 的取值构成的集合是()A .{-1}B .{1}C .{-1,1}D .{-1,0,1}(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.[解析](1)由题意,得B ={-1,1},因为A ⊆B ,所以当A =∅时,a =0;当A ={-1}时,a =-1;当A ={1}时,a =1.又A 中至多有一个元素,所以a 的取值构成的集合是{-1,0,1}.故选D.(2)当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.+1≥-2m -1≤7+1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.[答案](1)D (2){m |m ≤4}[互动探究]本例(1)中若A ={x |ax >1(a ≠0)},B ={x |x 2-1>0},其它条件不变,则a 的取值范围是________.解析:由题意,得B ={x |x >1,或x <-1},对于集合A ,①当a >0时,A |x >1a因为A ⊆B ,所以1a ≥1.又a >0,所以0<a ≤1.②当a <0时,A |x <1a因为A ⊆B ,所以1a ≤-1,又a <0,所以-1≤a <0,综上所述,0<a ≤1,或-1≤a <0.答案:[-1,0)∪(0,1]由集合的关系求参数的关键点由两集合的关系求参数,其关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且常要对参数进行讨论,注意区间端点的取舍.提醒:解决两个集合的包含关系时,要注意空集的情况.[跟踪训练](1)若集合A ={x |ax 2+ax +1=0}的子集只有两个,则实数a =________.解析:∵集合A 的子集只有两个,∴A 中只有一个元素,即方程ax 2+ax +1=0只有一个根.当a =0时方程无解.当a ≠0时,Δ=a 2-4a =0,∴a =4.故a =4.答案:4(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ).由于A ⊆B ,如图所示,则a >4,即c =4.答案:4考点三集合的基本运算(多维探究)[命题角度1]求交集、并集1.(文科)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =()A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A[根据集合交集中元素的特征,可以求得A ∩B ={0,2},故选A.]2.(文科)已知集合A ={x |x <2},B ={x |3-2x >0},则()A .A ∩B |x B .A ∩B =∅C .A ∪B |xD .A ∪B =R解析:A[由3-2x >0得x <32,所以A ∩B ={x |x <2}|x |x ,故选A.][命题角度2]集合的交、并、补的综合运算3.(文科)设集合A ={1,2,3,4,5,6},B ={x |2<x <5},则A ∩(∁R B )等于()A .{2,3,4,5}B .{1,2,5,6}C .{3,4}D .{1,6}解析:B[因为∁R B ={x |x ≤2,或x ≥5},A ={1,2,3,4,5,6};所以A ∩(∁R B )={1,2,5,6}.][命题角度3]利用集合的基本运算求参数的取值(范围)4.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =()A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:C[由题意知x =1是方程x 2-4x +m =0的解,代入解得m =3,所以x 2-4x +3=0,解得x =1或x =3,从而B ={1,3}.]5.已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪∁R B =R ,则实数a 的取值范围是________.解析:∁R B ={x |x <1,或x >2},要使A ∪(∁R B )=R ,则a ≥2.答案:[2,+∞)解集合运算问题应注意以下三点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.提醒:Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.考点四集合的新定义问题(师生共研)数学抽象——集合新定义中的核心素养以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.[典例]设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,集合M中有两个元素,且这两个元素都是M的“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个[解析]C[由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5,故S={0,1,2,3,4,5}.由题意可知:集合M不能含有0,1,且不能同时含有2,4.故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5}.]解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.[跟踪训练]定义一种新的集合运算△:A△B={x|x∈A,且x∉B}.若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A等于()A.{x|3<x≤4}B.{x|3≤x≤4}C.{x|3<x<4}D.{x|2≤x≤4}解析:B[A={x|1<x<3},B={x|2≤x≤4},由题意知,B△A={x|x∈B,且x∉A}={x|3≤x≤4}.]◎课时作业[基础训练组]1.已知集合A ={1,3,5,7},B ={2,3,4,5},则A ∩B =()A .{3}B .{5}C .{3,5}D .{1,2,3,4,5,7}解析:C[A ={1,3,5,7},B ={2,3,4,5},∴A ∩B ={3,5},故选C.]2.集合P ={x |0≤x <3},M ={x ||x |≤3},则P ∩M =()A .{1,2}B .{0,1,2}C .{x |0≤x <3}D .{x |0≤x ≤3}解析:C[集合P ={x |0≤x <3},M ={x ||x |≤3}={x |-3≤x ≤3},则P ∩M ={x |0≤x <3}.]3.如图,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是()A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩∁I SD .(M ∩P )∪∁I S解析:C [图中的阴影部分是M ∩P 的子集,不属于集合S ,属于集合S 的补集的子集,即是∁I S 的子集,则阴影部分所表示的集合是(M ∩P )∩∁I S .故选C.]4.满足{2018}⊆A {2018,2019,2020}的集合A 的个数为()A .1B .2C .3D .4解析:C[满足{2018}⊆A{2018,2019,2020}的集合A 可得:A ={2018},{2018,2019},{2018,2020}.因此满足的集合A 的个数为3.]5.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是()A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)解析:C[因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].]6.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=()A.0B .(-∞,0)∪12,+∞D .(-∞,0]∪12,+∞解析:D[A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg(x -2x 2)}A ∩B所以∁R (A ∩B )=(-∞,0]∪12,+7.已知A =[1,+∞),B ∈R |12a ≤x ≤2a -A ∩B ≠∅,则实数a 的取值范围是()A .[1,+∞) B.12,1 C.23,+∞D .(1,+∞)解析:A[因为A ∩B ≠∅a -1≥1,a -1≥12a ,解得a ≥1,故选A.]8.函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =()A .(1,2]B .[1,2]C .(-∞,1]∪[2,+∞)D .(-∞,1)∪[2,+∞)解析:D[使x -2有意义的实数x 应满足x -2≥0,∴x ≥2,∴M =[2,+∞),y =ln(1-x )中x 应满足1-x>0,∴x <1,∴N =(-∞,1),所以M ∪N =(-∞,1)∪[2,+∞),故选D.]9.已知集合A ={(x ,y )|x ,y ∈R ,x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,y =4x 2-1},则A ∩B 的元素个数是________.解析:集合A 是以原点为圆心,半径等于1的圆周上的点的集合,集合B 是抛物线y =4x 2-1上的点的集合,观察图像可知,抛物线与圆有3个交点,因此A ∩B 中含有3个元素.答案:310.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]11.对于集合M 、N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =3x ,x ∈R },B ={y |y =-(x -1)2+2,x ∈R },则A ⊕B =________.解析:由题意得A ={y |y =3x ,x ∈R }={y |y >0},B ={y |y =-(x -1)2+2,x ∈R }={y |y ≤2},故A -B ={y |y >2},B -A ={y |y ≤0},所以A ⊕B ={y |y ≤0,或y >2}.答案:(-∞,0]∪(2,+∞)12.若A ={x |ax 2-ax +1≤0,x ∈R }=∅,则a 的取值范围是________.解析:∵A ={x |ax 2-ax +1≤0,x ∈R }=∅,∴a =0>0=(-a )2-4a <0,解得0≤a <4.∴a 的取值范围是[0,4).[能力提升组]13.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是()A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}解析:B [易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.]14.设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是()A .2B .3C .4D .5解析:B[当a =0时,无论b 取何值,z =a ÷b =0;当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q ,12,-3个元素.]15.若集合A={x|(a-1)x2+3x-2=0,x∈R}有且仅有两个子集,则实数a的值为________.解析:由题意知,方程(a-1)x2+3x-2=0,x∈R,有一个根,∴当a=1时满足题意,当a≠1时,Δ=0,即9+8(a-1)=0,解得a=-18.答案:1或-1816.某班共有学生40名,在乒乓球、篮球、排球三项运动中每人至少会其中的一项,有些人会其中的两项,没有人三项均会.若该班18人不会打乒乓球,24人不会打篮球,16人不会打排球,则该班会其中两项运动的学生人数是________.解析:设同时会打乒乓球和篮球的学生有x人,同时会打乒乓球和排球的学生有y人,同时会打排球和篮球的学生有z人,∵该班18人不会打乒乓球,24人不会打篮球,16人不会打排球,∴该班会打乒乓球或篮球的学生有24人,会打乒乓球或排球的学生有16人,会打篮球或打排球有22人,∴x+y+z=24+16+22-40=22.∴该班会其中两项运动的学生人数是22.答案:22➱第二讲命题、充分条件与必要条件◎基础巩固1.命题的概念可以判断真假、用文字或符号表述的语句叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.1.互为逆否的两个命题具有相同的真假性,互逆的或互否的两个命题真假性没有关系.2.若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”).[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()(2)若p是q成立的充分条件,则q是p成立的必要条件.()(3)若p是q成立的充要条件,则可记为p⇔q.()(4)命题“若p,则q”的否命题是“若p,则q”.()答案:(1)√(2)√(3)√(4)×[小题查验]1.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:A[因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.] 2.给出命题:“若实数x,y满足x2+y2=0,则x=y=0”,在它的逆命题、否命题、逆否命题中,真命题的个数是()A.0个B.1个C.2个D.3个解析:D[原命题显然正确,其逆命题为:若x=y=0,则x2+y2=0,显然也是真命题,由四种命题之间的关系知,其否命题、逆否命题也都是真命题.故选D.]3.“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:B[直线ax+y+1=0与直线(a+2)x-3y-2=0垂直的充要条件为a(a+2)+1×(-3)=0,解得a=14.(教材改编)已知命题:若m>0,则方程x2+x-m=0有实数根.则其逆否命题为_________.答案:若方程x2+x-m=0无实根,则m≤05.下列命题:①若ac2>bc2,则a>b;②若sinα=sinβ,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是________.解析:对于①,∵ac2>bc2,∴c2>0,∴a>b正确;对于②,sin30°=sin150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④显然正确.答案:①③④◎考点探究考点一命题的四种形式及其关系(自主练透)[题组集训]1.命题p:若a>b,则a-1>b-1,则命题p的否命题为()A.若a>b,则a-1≤b-1B.若a≥b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1解析:C[根据否命题的定义:若原命题为:若p,则q,否命题为:若非p,则非q.∵原命题为:若a>b,则a-1>b-1,∴否命题为:若a≤b,则a-1≤b-1,故选C.]2.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:C[根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故选C.]3.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.1.由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.提醒:当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提不动.2.命题真假的判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题和其逆否命题的等价关系进行判断.考点二充分、必要条件的判断与应用(多维探究)[命题角度1]充分、必要条件的判定1.设p∶0<x<1,q∶2x≥1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:A[q∶2x≥1,解得x≥0.又p∶0<x<1,则p是q的充分不必要条件.]2.函数f(x)在x=x0处导数存在,若p∶f′(x0)=0,q∶x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:C[函数在x=x0处有导数且导数为0,x=x0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x=x0为函数的极值点,则函数在x=x0处的导数一定为0,所以p是q的必要不充分条件.]3.已知向量a=(-2,m),b m∈R,则“a⊥(a+2b)”是“m=2”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件解析:B[∵a=(-2,m),b m∈R,∴a+2b=(4,2m)若a⊥(2a+2b),则-8+2m2=0,解得m=±2,故“a⊥(a+2b)”是“m=2”的必要不充分条件.]命题的充分、必要条件的判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:利用A⇒B与非B⇒非A,B⇒A与非A⇒非B,A⇔B与非B⇔非A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[命题角度2]利用充要条件求参数的取值(范围)逻辑推理——充分、必要条件关系中的核心素养充分、必要条件问题中常涉及参数取值(范围)问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,充分体现“逻辑推理”的核心素养.4.已知p:-2≤x≤10,q:(x-a)(x-a-1)>0,若p是q成立的充分不必要条件,则实数a的取值范围是______.[破题关键点]若p是q成立的充分不必要条件,则{x|-2≤x≤10} {x|x>a+1,或x<a},即转化为相对应的集合间的基本关系来求实数a的取值范围.解析:由(x-a)(x-a-1)>0,得x>a+1或x<a,由题意,得{x|-2≤x≤10} {x|x>a+1,或x<a},所以a+1<-2或a>10,即a<-3或a>10.答案:(-∞,-3)∪(10,+∞)[互动探究]本例中,若p:-2<x<10,q:(x-a)(x-a-1)≥0,其他条件不变,则a的取值范围是______.解析:由(x-a)(x-a-1)≥0,得x≥a+1或x≤a,由题意得{x|-2<x<10} {x|x≥a+1,或x≤a}.所以a+1≤-2,或a≥10,即a≤-3,或a≥10.答案:(-∞,-3]∪[10,+∞)(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.(2)注意利用转化的方法理解充分必要条件:若非p是非q的充分不必要(必要不充分、充要)条件,则p是q的必要不充分(充分不必要、充要)条件.◎课时作业[基础训练组]1.命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是()A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0解析:D[写逆否命题只要交换命题的条件与结论,并分别否定条件与结论即可.]2.设a ∈R ,则“a >3”是“函数y =log a (x -1)在定义域上为增函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为函数y =log a (x -1)在定义域(1,+∞)上为增函数,所以a >1,因此“a >3”是“函数y =log a (x -1)在定义域上为增函数”的充分不必要条件.]3.“m =1”是“圆C 1:x 2+y 2+3x +4y +m =0与圆C 2“x 2+y 2=4的相交弦长为23”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[由题意知圆C 1与圆C 2的公共弦所在的直线是3x +4y +m +4=0,故(0,0)到3x +4y +m +4=0的距离d=|m +4|5=4-3=1,即|m +4|=5,解得m =1或m =-9.故m =1是m =1或m =-9的充分不必要条件,故选A.4.已知条件p :|x -4|≤6,条件q :x ≤1+m ,若p 是q 的充分不必要条件,则m 的取值范围是()A .(-∞,-1]B .(-∞,9]C .[1,9]D .[9,+∞)解析:D[由|x -4|≤6,解得-2≤x ≤10,即p :-2≤x ≤10;又q :x ≤1+m ,若p 是q 的充分不必要条件,则1+m ≥10,解得m ≥9.故选D.]5.若x >m 是x 2-3x +2<0的必要不充分条件,则实数m 的取值范围是()A .[1,+∞)B .(-∞,2]C .(-∞,1]D .[2,+∞)解析:C[由x 2-3x +2<0得1<x <2,若x >m 是x 2-3x +2<0的必要不充分条件,则m ≤1,即实数m 的取值范围是(-∞,1].]6.a 2+b 2=1是a sin θ+b cos θ≤1恒成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为a sin θ+b cos θ=a 2+b 2sin (θ+φ)≤a 2+b 2,所以由a 2+b 2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a =2,b =0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a 2+b 2=1,即由a sin θ+b cos θ≤1推不出a 2+b 2=1,故a 2+b 2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.]7.“m >1”是“函数f (x )=3x +m -33在区间[1,+∞)无零点”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为函数f (x )=3x +m -33在区间[1,+∞)上单调递增且无零点,所以f (1)=31+m -33>0,即m +1>32,解得m >12,故“m >1”是“函数f (x )=3x +m -33在区间[1,+∞)无零点的充分不必要条件,故选A.]8.设等比数列{a n }的公比为q ,前n 项和为S n .给出命题s :若|q |=2,则S 6=7S 2,则在命题s 的逆命题、否命题、逆否命题中,错误命题的个数是()A .3B .2C .1D .0解析:B[若|q |=2,则q 2=2,S 6=a 1(1-q 6)1-q =a 1(1-q 2)(1+q 2+q 4)1-q =7·a 1(1-q 2)1-q=7S 2,所以原命题为真,从而逆否命题为真;而当S 6=7S 2时,显然q ≠1,这时a 1(1-q 6)1-q =7·a 1(1-q 2)1-q ,解得q =-1或|q |=2,因此,逆命题为假,否命题为假,故错误命题的个数为2.]9.《左传·僖公十四年》有记载:“皮之不存,毛将焉附?”这句话的意思是说皮都没有了,毛往哪里依附呢?比喻事物失去了借以生存的基础,就不能存在.皮之不存,毛将焉附?则“有毛”是“有皮”的_______条件(将正确的序号填入空格处).①充分条件②必要条件③充要条件④既不充分也不必要条件解析:由题意知“无皮”⇒“无毛”,所以“有毛”⇒“有皮”即“有毛”是“有皮”的充分条件.答案:①10.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.解析:由正弦定理,得a sin A =bsin B,故a ≤b ⇔sin A ≤sin B.答案:充要11.若“x >a ”是“x 2-5x +6≥0”成立的充分不必要条件,则实数a 的取值范围是_________.解析:由x 2-5x +6≥0得x ≥3或x ≤2,若“x >a ”是“x 2-5x +6≥0”成立的充分不必要条件,则a ≥3,即实数a 的取值范围是[3,+∞).答案:[3,+∞)12.已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若非p 是非q 的必要不充分条件,则实数a 的取值范围是________.解析:由2x 2-3x +1≤0,得12≤x ≤1,∴命题p |12≤x ≤由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴命题q 为{x |a ≤x ≤a +1}.非p 对应的集合A |x >1或x q 对应的集合B ={x |x >a +1或x <a }.∵非p 是非q 的必要不充分条件,∴a +1≥1且a ≤12,∴0≤a ≤12,即实数a 的取值范围是0,12.答案:0,12[能力提升组]13祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题,即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.]14.已知条件p :4x -1≤-1,条件q :x 2+x <a 2-a ,且非q 的一个充分不必要条件是非p ,则a 的取值范围是()A.-2,-12B.12,2C .[-1,2],12∪[2,+∞)解析:C [由4x -1≤-1,移项得4x -1+1≤0,通分得x +3x -1≤0,解得-3≤x <1;由x 2+x <a 2-a ,得x 2+x -a 2+a <0.由非q 的一个充分不必要条件是非p ,可知非p 是非q 的充分不必要条件,即p 是q 的必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.设f (x )=x 2+x -a 2+a -3)=-a 2+a +6≥0,1)=-a 2+a +2≥0,2<a <31≤a ≤2∴-1≤a ≤2,故选C.]15.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.解析:对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =32,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.答案:①④16.设命题p :2x -1x -1<0,命题q ∶x 2-(2a +1)x +a (a +1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.解析:2x -1x -1<0⇒(2x -1)(x -1)<0⇒12<x <1,x 2-(2a +1)x +a (a +1)≤0⇒a ≤x ≤a +1.[a ,a +1].≤12,+1≥1,解得0≤a ≤12.答案:0,12。
高考数学学业水平测试复习专题一第1讲集合及其运算pptx课件
故选D.
(2)依题意,a-2=0或2a-2=0,
当a-2=0时,解得a=2,
此时A={0,-2},B={1,0,2},不符合题意;
当2a-2=0时,解得a=1, 此时A={0,-1},B={1,-1,0},符合题意. 故选B. (3)由A={x|x2-4≤0}得A={x|-2≤x≤2},所以A∩B={-1, 2}. 故选C. 答案:(1)D (2)B (3)C
(1)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则
a=( )
A.4
B.2
C.0
D.0或4
(2)设{2,1-a,a2-a+2},若4∈A,则a=( )
A.-3或-1或2 B.-3或-1
C.-3或2
D.-1或2
(3)定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,
2},B={0,2},则集合A*B中所有元素之和为( )
3.集合的基本运算
运算
并集
符号 表示
A∪B
图形 表示
交集 A∩B
补集 若全集为U,则集合A 的补集为∁UA
意义 {x|x∈A,或x∈B} {x|x∈A,且x∈B} {x|x∈U,且x∉A}
A∪∅=A; A∪A=A; 性质 A∪B=B∪A; A∪B= A⇔B⊆A
A∩∅=∅; A∩A=A; A∩B=B∩A; A∩B=A⇔A⊆B
M可能为{1,2,3},{1,4,3},{1,5,3},{1,2,4,3}, {1,2,5,3},{1,4,5,3},{1,2,3,4,5}共7个,故选A. (3)因为A={x|1<x<6},B={x|x<a},且A⊆B, 所以a≥6. 故答案为[6,+∞). 答案:(1)A (2)A (3)[6,+∞) 剖析:判断集合间关系的三种方法 (1)列举法:一一列举观察. (2)集合元素特征法:首先确定集合中的元素是什么,弄清集合 中元素的特征,再利用集合中元素的特征判断关系. (3)数形结合法:利用数轴或Venn图.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合及其运算
主标题:集合及其运算
副标题:为学生详细的分析集合及其运算的高考考点、命题方向以及规律总结。
关键词:集合,交集,并集,补集
难度:2
重要程度:4
考点剖析:
1.了解集合的含义、元素与集合的属于关系.
2.理解集合之间包含与相等的含义,能识别给定集合的子集.
3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
5.能使用韦恩(Venn)图表达集合的关系及运算.
命题方向:本部分在高考中常以选择题和填空题的形式出现,考查主要有:集合中元素的性
质(确定性、互异性、无序性);元素与集合、集合与集合的关系.
规律总结:
1.一点提醒 求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和
化简集合,这是正确求解集合运算的两个先决条件.如第(3)题就是混淆了数集与点集.
2.两个防范 一是忽视元素的互异性,如(1);
二是运算不准确,尤其是运用数轴图示法时要特别注意端点是实心还是空心,如(6).
3.集合的运算性质:①A∪B=B⇔A⊆B;②A∩B=A⇔A⊆B;③A∪(∁UA)=U;④A∩(∁UA)=
∅.
1.判断集合关系的方法有三种
(1)一一列举观察;
(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合
元素的特征判断集合关系;
(3)数形结合法:利用数轴或Venn图.
2.解决集合的综合运算的方法
解决集合的综合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,
可以通过列举集合的元素进行运算;当集合是用不等式形式表示时,可运用数轴求解.
3.数形结合思想
数轴和Venn图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方
法,解题时要先把集合中各种形
式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn图等工具,将抽
象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题.
【知识梳理】
1.元素与集合
(1)集合中元素的三个特性:确定性、互异性、无序性.
(2)集合中元素与集合的关系:
元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉.
(3)集合的表示法:列举法、描述法、Venn图.
2.集合间的基本关系
描述
关系
文字语言 符号语言
集合
间的基本关系 子集 A中任意一元素均为B中的元素 A⊆B或B⊇A 真子集 A中任意一元素均为B中的元素,且B中至少有
一个元素A中没有
AB或BA
相等 集合A与集合B中的所有元素都相同 A=B
3.集合的基本运算
集合的并集 集合的交集 集合的补集
符号表示 A∪B A∩
B
若全集为U,则集合A的
补集为∁UA
图形
表示
意义 {x|x∈A, 或x∈B} {x|x∈A, 且x∈B} {x|x∈U,且x∉A}