《新课标-苏教版》2018-2019学年高中数学必修一《子集、全集、补集》课时练习及解析
苏版高中数学第一册上第一章子集、全集、补集专项练习(带解析)

苏版高中数学第一册上第一章子集、全集、补集专项练习(带解析)进入高一数学学习的新高一生,高一数学的第一章确实是集合,是高考数学中的重点,以下是第一章子集、全集、补集专项练习,请大伙儿练习。
例1 判定以下关系是否正确(2){1,2,3}={3,2,1}(4)0{0}分析空集是任何集合的子集,是任何非空集合的真子集.解依照子集、真子集以及集合相等的概念知①②③④是正确的,后两个差不多上错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3};含有3个元素的子集有{1,2,3}.共有子集8个.________.分析A中必含有元素a,b,又A是{a,b,c,d}真子集,因此满足条件的A有:{a,b},{a,b,c}{a,b,d}.答共3个.说明:必须考虑A中元素受到的所有约束.分析作出4图形.答选C.说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A={x|x=5-4a+a2,aR},B={y|y=4b2+4b+2,bR},则下列关系式中正确的是分析问题转化为求两个二次函数的值域问题,事实上x=5-4a+a2=(2-a)2+11,y=4b2+4b+2=(2b+1)2+11,因此它们的值域是相同的,因此A=B.答选A.说明:要注意集合中谁是元素.M与P的关系是A.M= UPB.M=P分析能够有多种方法来摸索,一是利用逐个验证(排除)的方法;二是利用补集的性质:M= UN= U( UP)=P;三是利用画图的方法.答选B.说明:一题多解能够锤炼发散思维.例7 下列命题中正确的是A. U( UA)={A}分析D选择项中AB看起来不合常规,而这恰恰是惟一正确的选择支.是由这所有子集组成的集合,集合A是其中的一个元素.AB.答选D.说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合A={2,4,6,8,9},B={1,2,3,5,8},又知非空集合C是如此一个集合:其各元素都加2后,就变为A的一个子集;若各元素都减2后,则变为B的一个子集,求集合C.分析逆向操作:A中元素减2得0,2,4,6,7,则C中元素必在其中;B中元素加2得3,4,5,7,10,则C中元素必在其中;因此C中元素只能是4或7.答C={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S={1,2,3,4},且M={xS|x2-5x+p=0},若SM={1,4},则p=________.分析本题渗透了方程的根与系数关系理论,由于SM={1,4},M={2,3}则由韦达定理可解.答p=23=6.说明:集合问题常常与方程问题相结合.例10 已知集合S={2,3,a2+2a-3},A={|a+1|,2},SA={a+3},求a 的值.S那个集合是集合A与集合SA的元素合在一起补成的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解由补集概念及集合中元素互异性知a应满足在(1)中,由①得a=0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a=-3,a=2,分别代入②③④检验,a=-3不合②,故舍去,a=2能满足②③④.故a=2符合题意.说明:分类要做到不重不漏.A.M=ND.M与N没有相同元素分析分别令k=,-1,0,1,2,3,得答选C.“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
江苏省高一数学苏教版必修1课后训练:1.2子集、全集、补集 Word版含解析

子集、全集、补集练习1.已知集合M={(x,y)|x+y<0且xy>0},集合P={(x,y)|x<0且y<0},则集合M与P的关系是________.2.已知集合{2x,x2-x}有且只有4个子集,则实数x的取值范围是________.3.集合{x∈N|x=5-2n,n∈N}的真子集的个数是________.4.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则M与P的关系是________.5.已知全集U=Z,A={x|x=2k,k∈Z},则U A=________.6.设A,B为两个集合,下列四种说法:①A B对任意x∈A,有x B;②A B A和B无公共元素;③A B A B;④A B存在x∈A,使得x B.其中正确的是__________.7.设集合A={x|-2<x<2},B={x|x≥a},且A B,则实数a的取值范围是________.8.设A是整数集的一个非空子集,对于k∈A,如果k-1A,且k+1A,那么称k 是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合有________个.9.设全集U={2,4,-(a-3)2},A={2,a2-a+2},若U A={-1},试求实数a的值.10.已知非空集合P满足:①P{1,2,3,4,5},②若a∈P,则(6-a)∈P,符合上述条件的非空集合P有多少个?写出这些集合来.11.集合P={x|x2-3x+b=0,x∈R},Q={x|(x+1)(x2+3x-4)=0,x∈R}.(1)若b=4,存在集合M使得P M Q,求出这样的集合M.(2)P能否成为Q的一个子集?若能,求b的值或取值范围;若不能,请说明理由.参考答案1.答案:M =P2.答案:{x |x ≠0,且x ≠3,x ∈R }3.答案:74.答案:M P5.答案:{x |x =2k +1,k ∈Z }6.答案:④7.答案:{a |a ≤-2}8.答案:69.解:由条件得-(a -3)2=-1,解之,得a =2或4.当a =2时,a 2-a +2=4∈U ,成立;当a =4时,a 2-a +2=14U ,不合题意.综上所述,a =2.10.分析:若1∈P ,则6-1=5∈P ,故1,5这两个元素必须同时属于P 或同时不属于P ;若2∈P ,则6-2=4∈P ,故2,4这两个元素必须同时属于P 或同时不属于P ;若3∈P ,则6-3=3∈P ,故3这个元素属于P 或不属于P .解:符合条件的非空集合P 有:{1,5},{2,4},{3},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.11.解:(1)当b =4时,方程x 2-3x +b =0的判别式Δ=(-3)2-4×1×4<0,故P =,且Q ={-4,-1,1},由已知M 应是一个非空集合,且是Q 的一个真子集,用列举法可得这样的集合M 共有6个,分别为{-4},{-1},{1},{-4,-1},{-4,1},{-1,1}.(2)①当P =时,P 显然是Q 的一个子集,此时Δ=9-4b <0,∴b >.94②当P ≠时,Q ={-4,-1,1},可以通过假设存在性成立,逐一验证来判断b 的取值.即,若当-1∈P 时,(-1)2-3×(-1)+b =0,b =-4,此时x 2-3x -4=0,得x 1=-1,x 2=4.∵4Q ,∴P 不是Q 的一个子集.若-4∈P 时,(-4)2-3×(-4)+b =0,得b =-28,此时由x 2-3x -28=0,得x 1=-4,x 2=7,∵7Q ,∴P 不是Q 的一个子集.若1∈P 时,12-3×1+b =0,b =2,此时由x 2-3x +2=0得x 1=1,x 2=2.∵2Q ,∴P 不是Q 的一个子集.综上,满足题意的b 的取值范围是.94b b ⎧⎫>⎨⎬⎭⎩。
高中数学(苏教版必修一)教师用书第1章 1.2 第2课时 全集、补集 Word版含解析

第课时全集、补集
.了解全集与空集的意义,理解补集的含义.(重点)
.能在给定全集的基础上求已知集合的补集.(难点)
[基础·初探]
教材整理补集、全集的概念
阅读教材思考至例,完成下列问题.
.补集
()定义:设,由
⊆
的所有元素组成的集合称为的子集的补集,记为
中不属于
∁
(读作“在中的补集”).
()符号表示
=
∁
{
∈
}∉
,且
.
()图形表示:
图--
.全集我们所要研究的各个集合
如果集合包含
,那么这时可以看做一个全集,全
集通常记作.
.判断(正确的打“√”,错误的打“×”)
()一个集合的补集中一定含有元素.( )
()研究在中的补集时,必须是的子集.( )
()一个集合的补集的补集是其自身.( )
【答案】()×()√()√
.={-<<},集合={<<},则∁=.【解析】根据补集的定义,所求为在中但不在中的元素组成的集合,所以
∁={-<≤}.【答案】{-<≤}
[小组合作型]
()已知集合={-≤≤},集合={-<<或<≤},则∁等于;
()已知集合={∈≤},={小于的正奇数},={小于的素数},则∁=,∁=.
【精彩点拨】()利用数轴将集合表示出来再求补集;
()利用列举法表示出全集,集合,,再求,的补集.
【自主解答】()在数轴上表示出全集,集合,如图所示,根据补集的概念可知∁={-≤≤-或≤≤}.
()={},
因为={小于的正奇数}={},所以∁={}.
因为={小于的素数}={},所以∁={}.
【答案】(){-≤≤-或≤≤}
(){} {}。
苏教版高中同步学案数学必修第一册精品课件 第1章 集合 子集、全集、补集-第2课时 全集、补集

题后反思求给定子集的补集的方法1.列举法:从全集中去掉属于集合的所有元素后,由所有余下的元素组成的集合.2.由不等式构成的无限集表示:借助数轴,取全集中集合以外的所有元素组成的集合.
跟踪训练1(1)已知全集,0,1,2,3,,集合,则()
D
A.B.,3,C.D.,
[解析]因为全集,0,1,2,3,,集合,所以,.故选D.
跟踪训练2已知全集,,集合,,则___.
8
[解析]因为全集,,集合,,所以,,,即,,所以.故答案为8.
(2)已知全集,,则()
B
A.B.,或C.D.,或
[解析]因为,,所以,或.故选B.
【题型二】由全集与补集的关系求参数
例2(2023苏州月考)已知全集,3,,集合,,则实数的值为_______.
1或
[解析]因为全集,3,,集合,,所以,解得或,所以实数的值为1或.故答案为1或.
题后反思集合与中没有公共元素.若集合中元素个数有限时,可利用补集定义并结合图求解;若集合中元素有无限个时,可利用数轴分析求参数.
第1章 集合
1.2 子集、全集、补集
第2课时 全集、补集
1
要点深化·核心知识提炼
2
题型分析·能力素养提升
【课标要求】1.理解全集、补集的概念.2.会求给定子集的补集.
01
要点深化·核心知识提炼
知识点1. 全集
如果一个集合包含我们所研究问题中涉及的所有元素,那么就称这个集合为全集,全集通常记作.在实数范围内讨论集合时,便可看作一个全集.
知识点2. 补集
定义
文字பைடு நூலகம்言
设,由中不属于的所有元素组成的集合称为的子集的补集
符号语言
2018版高中数学苏教版必修一学案1.2 子集、全集、补集

学习目标.理解子集、真子集、全集、补集的概念.能用符号和图,数轴表达集合间的关系.掌握列举有限集的所有子集的方法,给定全集,会求补集.
知识点一子集
思考如果把“马”和“白马”视为两个集合,则这两个集合中的元素有什么关系?
梳理
定义如果集合的任意一个元素都是集合的元素(若∈,则∈),那么集合称为集合的子集
记法⊆或⊇
读法集合包含于集合或集合包含集合
图示
性质()任何一个集合是它本身的子集,即⊆;
()对于集合,,,若⊆且⊆,则⊆;
()若⊆且⊆,则=;
()规定∅⊆
知识点二真子集
思考在知识点一中,我们知道集合是它本身的子集,那么如何刻画至少比少一个元素的的子集?
梳理
定义如果⊆,并且≠,那么集合称为集合的真子集
记法或
读法集合真包含于集合或集合真包含集合
图示
性质()对于集合,,,若且,则;()对于集合,,若⊆且≠,则;()若≠∅,则∅。
2018年高中数学苏教版必修一1.2《子集、全集、补集》学案课件 最新

子集、全集、补集
题型一
判断集合之间的关系
例 1 指出下列各对集合之间的关系: (1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)}; (2)A={x|x 是等边三角形},B={x|x 是等腰三角形}; (3)A={x|-1<x<4},B={x|x-5<0}; (4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.
栏 目 链 接
解析:(1)集合 A 的代表元素是数,集合 B 的代表元素是有序实数对,故 A 与 B 之间无 包含关系. (2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故 A (3)集合 B={x|x<5},用数轴表示集合 A,B 如图所示,由图可知 A B. B.
栏 目 链 接
(2)当 a=0 时,显然 B⊆A; 2 1 ≤- , a 2 1 当 a<0 时,若 B⊆A,则 ⇒- <a<0; 2 1 - >2 a
当 a>0 时,若 B⊆A,则 2 a≥2
1 1 - ≤- , a 2
⇒0<a≤1.
栏 目 链 接
1 - <a≤ 综上可知:当 B⊆A 时,实数 a 的取值范围是a 1. 2
4 1 ,若 A⊆B,则必 ≤ x < - 解析:当 a=0 时,A=R,不满足 A⊆B.当 a<0 时,A=x a a
4 1 >- , a 2 须 ⇒a<-8. 1 - ≤2 aBiblioteka 栏 目 链 接
1 1 - ≥- , a 2 4 1 - < x ≤ 当 a>0 时,A= x a ⇒a≥2. a,若 A⊆B,则必须 4 ≤2 a
(苏教版)高一数学必修一配套练习:1.2子集、全集、补集(1)
§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a∈R},B ={y|y=4b 2+4b+3,b∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y∈R,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a . 10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B,B A ,求x a ,的值;(3)使B= C 的x a ,的值.【拓展提高】 12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.。
苏教版高中数学必修一课件1-2子集、全集、补集
2 x 1 1 例3.不等式组的解集为 A,S=R, 3x 6 0
试求A及 CS A ,并把它们表示在数轴上. 拓展1:若非空集合 B x 2 x a ,且B A , 求实数a的取值范围. 拓展2:设全集U={2,3,a2+2a-3},A={|2a-1|,2}, CuA={5},求实数a的值.
4.关于空集的规定:
数学建构
例2.下列各组的三个集合中,哪两个集合之间具有包含关系? (1)S={2,1,1,2},A={1,1},B={2,2}; (2)S=R,A={x︱x≤0,x∈R},B={x︱x>0,x∈R}; (3)S={x︱x为地球人},A={x︱x为中国人}, B={x︱x为外国人}.
数学建构
数学建构
, B x m 1 x m 1 , 例4:已知集合 A x 2 x 5
且B是A的真子集,求实数
m 的取值集合。
数学应用
1 A 1,2,3,4 ,则 A 有个? 1.已知
1
2.填空:
A 1, 2,3, 4 ,则 A 有个?
数学建构
1.子集的含义: 集合A中的任一个元素,都是集合B的元素,我们称集合A是集合B的子集.
记作AB,或BA,亦记作AB,或BA.
读作A包含于B,或B包含A. 图示法表示: 思考:AB与BA能否同时成立? 若AB且BA,则A=B. AB若aA,则aB. 注意:与的区别. B A
数学建构
2.真子集的定义: AB,且至少存在一个x,满足xB但xA.如
{1,2,3},{3}{1,2,3} {1,3}
A=B 即AB且BA. AB
B A
即AB,且A≠B.即AB,且B中至少存在一个xA.
苏教版 高中数学必修第一册 子集、全集、补集 课件1
2.已知集合的包含关系求参数的值(或范围) 例 4 已知集合A={x|-2≤x≤5},B={ (2)若A B,求实数m的取值范围.
(2)要使A⊆C,只需a<3即可.所以a的取值范围为{a|a<3}.
(4)对于集合A,B,C,如果A⫋B,B⫋C,那么___A_⫋_C___.
用韦恩图表示非空集合的基本关系
(1)A⊆B表示为: 或 (2)A⫋B表示为:
(3)A=B表示为:
3.补集 (1)定义:设 A⊆ S,由 S中不属于A 的所有元素组成的集合称为 S 的子集 A 的补集,记为∁ SA(读作“A 在 S 中的补集”). (2)符号表示 ∁ SA={x|x∈S,且 x A} .
(2)把集合 A 在数轴上表示出来(如图), ∵U=R,∴∁UA={x|x<-1,或 x≥2}.
已知全集 U=R,集合 M={x|x<-2 或 x≥2},则∁UM =________. 解析:把集合 M 在数轴上画出来(如图),
由数轴知∁UM={x|-2≤x<2}. 答案:{x|-2≤x<2}
1.由集合相等求参数 例 3 已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
(2)如果A⊆B,并且__A_≠_B____.那么集合A称为集合B的真子集,记为__A_⫋_B____或B
⊋A.读作“A真包含于B”或“B真包含A”.
2.子集、真子集的性质 (1)任意集合A都是它自身的_子__集___,即A⊆A. (2)空集是任意一个集合A的子集,即__∅_⊆_A____. (3)对于集合A,B,C,如果A⊆B,B⊆C,那么__A_⊆__C___.
子集、全集、补集 课时练习-02-2022学年高一上学期苏版(2019)必修第一册:第1章
1.2子集、全集、补集中等生刷基础题组一子集的概念1.(2020江苏扬州大学附属中学高一期中)已知集合A={x|x≥-1},则下列正确的是()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A2.(2019陕西汉中勉县高一期中)若集合A={x|x为正方形},B={x|x为矩形},C= {x|x为平行四边形},D={x|x为梯形},则下列关系中不正确的是()A.A⊆BB.B⊆CC.C⊆DD.A⊆C3.(2020江苏泰兴中学高一月考)已知集合A={0,2,3},B={x|x=ab,a,b∈A},则B 的子集的个数是()A.10B.12C.14D.164.(2020江苏南京六合高一期中)已知集合A={x|x2-4x+3=0,x∈R},B={x|-1<x<5,x ∈N},则满足A⊆C⊆B的集合C的个数是.题组二真子集的概念5.(2020江苏泰兴黄桥中学高一月考)已知集合C={(x,y)|y=x},集合},则下列正确的是()D={(x,x)|{2x-x=1x+4x=5A.C=DB.C⊆DC.C⫋DD.D⫋C6.(2020江苏常熟中学高一月考)若集合M={x∈N|x≤2},则M的真子集有()A.3个B.4个C.7个D.8个7.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()题组三 全集与补集的概念8.(2020江苏常州前黄高级中学高一月考)已知全集U ={1,2,3,4,5,6},集合A ={2,3,4,5,6},则∁U A = ( )A.⌀B.{1,3}C.{4,5,6}D.{1}9.(2020江苏南京江宁高级中学高一月考)已知全集U =R,集合A ={x |x <-2或x >2},则∁U A =( )A.{x |-2<x <2}B.{x |x <-2或x >2}C.{x |-2≤x ≤2}D.{x |x <-2或x ≥2}10.(2020江苏南京江浦高级中学高一月考)设全集A ={1,2,4},B ={x |x 2-4x +m =0},若1∉∁A B ,则B 等于( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}11.不等式组{3x -1≥0,4x -8<0的解集为A ,U =R,试求A 及∁U A ,并把它们分别表示在数轴上.题组四 集合关系中的参数问题12.(2020江苏南京师范大学附属中学高一月考)已知集合A ={x |x =x 2},B ={1,m ,2},若A ⊆B ,则实数m 的值为( )A.2B.0C.0或2D.113.(2020江苏南京田家炳高级中学高一月考)设集合A={3,m,m-1},集合B={3,4},若∁A B={5},则实数m的值为()A.4B.5C.6D.5或614.(2020江苏无锡锡山高级中学高一月考)已知集合A={x|-1≤x≤3},B={y|y=x2,x∈A},C={y|y=2x+a,x∈A},若C⊆B,则实数a的取值范围为.15.已知集合A={x|x2-4=0},集合B={x|ax-2=0},若B⊆A,求实数a的取值集合.尖子生练素养题组一子集、全集、补集1.(多选)(2020江苏无锡怀仁中学高一月考,)已知A⊆B,A⊆C,B={2,0,1,8},C={1,9,3,8},则A可以是()A.{1,8}B.{2,3}C.{1}D.{2}2.(2020江苏南京外国语学校高一月考,)集合A={x|4-|2x-1|∈N*},则A的非空真子集的个数是()A.62B.126C.254D.5103.()集合M={x|x=5k-2,k∈Z},P={x|x=5n+3,n∈Z},S={x|x=10m+3,m∈Z}之间的关系是 ()A.S⫋P⫋MB.S=P⫋MC.S⫋P=MD.P=M⫋S4.(多选)(2020江苏南京师范大学苏州实验学校高一开学考试,)下列说法中不正确的是()A.集合{x|x<1,x∈N}为无限集B.方程(x-1)2(x-2)=0的解构成的集合的所有子集共四个C.{(x,y)|x+y=1}={y|x-y=-1}D.{y|y=2n,n∈Z}⊆{x|x=4k,k∈Z}5.(2020湖南长沙长郡中学高一上期中,)若规定集合M={a1,a2,…,a n}(n∈N*)的子集N={x x1,x x2,…,x xx}(m∈N*)为M的第k个子集,其中k=2x1-1+2x2-1+⋯+2x x-1,例如P={a1,a3}是M的第5个子集,则M的第25个子集是.题组二集合关系中的参数问题6.(2019江苏扬州宝应中学高一期中,)设集合A={-1,1},集合B={x|x2-2ax+1=0},若B≠⌀,B⊆A,则a= ()A.-1B.0C.1D.±17.(多选)(2020江苏宜兴中学高一月考,)已知集合A={-5,2},B={x|mx=1},若B⊆A,则实数m的值可以为()A.-15B.12C.−12D.08.(多选)(2020福建龙岩武平第一中学高一月考,)已知集合A={x|1<x<2},B={x|2a-3<x<a-2},下列说法正确的是()A.不存在实数a使得A=BB.当a=4时,A⊆BC.当0≤a≤4时,B⊆AD.存在实数a使得B⊆A9.(2020江苏扬州江都大桥高级中学高一月考,)已知全集U=R,集合A={x|x>2或x<1},B={x|x-a≤0},若∁U B⊆A,则实数a的取值范围是.10.(2020江苏徐州第三中学高一月考,)设集合U={-2,1,2,3},A={x|2x2-2},若∁U A=B,则b=.5x+2=0},B={3x,xx11.(2019江苏常州高一月考,)设集合A={x|x2-x-2=0},B={x|ax2+x+2=0},若B⊆A,求实数a的取值范围.12.(2020广西玉林高级中学高一期中,)设集合A={x|x2-1=0},集合B={x|x2-ax+b=0,x∈R},且B≠⌀.(1)若B⊆A,求实数a,b的值;(2)若A⊆C,且集合C={-1,2m+1,m2},求实数m的值.答案全解全析1.2子集、全集、补集中等生刷基础1.D对于选项A,0∈A,故A错误;对于选项B、D,{0}⊆A,故B错误,D正确;对于选项C,空集是任何集合的子集,即⌀⊆A,故C错误.故选D.警示元素与集合之间是“属于”或“不属于”的关系,用符号“∈”或“∉”来表示;集合与集合之间是“包含”或“不包含”的关系,用符号“⊆”或“⊈”来表示.2.C正方形一定是矩形,所以选项A中关系正确;矩形一定是平行四边形,所以选项B中关系正确;梯形不是平行四边形,平行四边形也不是梯形,所以选项C中关系不正确;正方形一定是平行四边形,所以选项D中关系正确.故选C.3.D易知B={x|x=ab,a,b∈A}={0,4,6,9}.因此B的子集的个数是24=16.故选D.4.答案8解析 由x 2-4x +3=(x -3)(x -1)=0,解得x =1或x =3,所以A ={1,3}.易得B ={0,1,2,3,4}.由于A ⊆C ⊆B ,所以C 中元素必有1,3,还可有0,2,4,所以满足条件的集合C 的个数是8.5.D 因为D ={(x ,x )|{2x -x =1x +4x =5}={(1,1)},C ={(x ,y )|y =x },所以D ⫋C.故选D.6.C 根据题意,集合M ={x ∈N|x ≤2}={0,1,2},则其真子集的个数为23-1=7.故选C.规律总结 含有n 个元素的集合有2n 个子集,(2n -1)个真子集,(2n -1)个非空子集,(2n -2)个非空真子集.7.B 由x 2-x =0得x =1或x =0,故N ={0,1},易得N ⫋M ,其对应的Venn 图如选项B 所示.8.D 因为全集U ={1,2,3,4,5,6},集合A ={2,3,4,5,6},所以∁U A ={1}.故选D. 9.C 已知全集U =R,集合A ={x |x <-2或x >2},所以∁U A ={x |-2≤x ≤2}.故选C. 10.C 因为1∉∁A B ,所以1∈B ,所以1-4+m =0,即m =3,所以B ={x |x 2-4x +3=0}={1,3}. 故选C.11.解析 由{3x -1≥0,4x -8<0,得{x ≥13,x <2,故A ={x |13≤x <2},所以∁U A ={x |x <13或x ≥2}.集合A 及∁U A 在数轴上表示如下:12.B 集合A ={x |x =x 2}={0,1}.因为A ⊆B ,所以m =0.故选B. 13.B 由∁A B ={5},B ={3,4},得4,5∈A , 又A ={3,m ,m -1},m -1<m ,所以m =5.故选B.14.答案 {a |2≤a ≤3}解析 因为A ={x |-1≤x ≤3},所以B ={y |y =x 2,x ∈A }={y |0≤y ≤9},C ={y |y =2x +a ,x ∈A }={y |-2+a ≤y ≤6+a }.又C ⊆B ,C ≠⌀,所以{-2+x ≥0,6+x ≤9,解得2≤a ≤3.所以实数a 的取值范围为{a |2≤a ≤3}.15.解析 解方程x 2-4=0,得x =±2,则集合A ={-2,2}. ①当a =0时,B =⌀⊆A ,符合题意;②当a ≠0时,B ={x |ax -2=0}={2x },∵B ⊆A ,∴2x =−2或2x =2,解得a =-1或a =1.综上,实数a 的取值集合为{0,-1,1}.警示 由于空集是任何集合的子集,是任何非空集合的真子集,所以在遇到“A ⊆B ”或“A ⫋B ”时,一定要注意分A =⌀和A ≠⌀两种情况讨论,不能忽略A =⌀的情形.尖子生练素养1.AC ∵A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8},∴A ⊆{1,8}. 结合选项可知A,C 均满足题意.2.B ∵A ={x |4-|2x -1|∈N *},∴x =2或x =32或x =1或x =12或x =0或x =−12或x =-1,∴A ={2,32,1,12,0,-12,-1},∴A 的非空真子集的个数是27-2=126.故选B.3.C ∵M ={x |x =5k -2,k ∈Z},P ={x |x =5n +3,n ∈Z},S ={x |x =10m +3,m ∈Z},∴M ={…,-7,-2,3,8,13,18,…},P ={…,-7,-2,3,8,13,18,…},S ={…,-7,3,13,23,…},∴S ⫋P =M.故选C .4.ACD 集合{x |x <1,x ∈N}={0},不是无限集,故A 中说法不正确;方程(x -1)2(x -2)=0的解构成的集合为{1,2},所有子集为⌀,{1},{2},{1,2},共四个,故B 中说法正确;因为{(x ,y )|x +y =1}是点集,{y |x -y =-1}是数集,所以它们不相等,故C 中说法不正确;因为{y |y =2n ,n ∈Z}={…,-8,-6,-4,-2,0,2,4,6,8,…},{x |x =4k ,k ∈Z}={…,-8,-4,0,4,8,…},所以{y |y =2n ,n ∈Z}⊇{x |x =4k ,k ∈Z},故D 中说法不正确. 故选ACD. 5.答案 {a 1,a 4,a 5}解析 因为N ={x x 1,x x 2,…,x x x }(m ∈N *)为M 的第k 个子集,且k =2x 1-1+2x 2-1+⋯+2x x -1,25=20+23+24=21-1+24-1+25-1, 所以M 的第25个子集是{a 1,a 4,a 5}.6.D 当B ={-1}时,方程x 2-2ax +1=0有两个相等的实数根-1,得a =-1; 当B ={1}时,方程x 2-2ax +1=0有两个相等的实数根1,得a =1; 当B ={-1,1}时,{2+2x =0,2-2x =0,无解.综上,a =±1.7.ABD 当m =0时,B =⌀,满足题意;当m ≠0时,由B ⊆A ,得2∈B 或-5∈B ,则2m =1或-5m =1,解得m =12或x =−15.综上,m 的值为0或12或−15.故选ABD.8.AD 选项A 中,由集合相等的概念可得{2x -3=1,x -2=2,此方程组无解,故不存在实数a 使得集合A =B ,故A 正确.选项B 中,当a =4时,B =⌀,不满足A ⊆B ,故B 错误.选项C 、D 中,当2a -3≥a -2,即a ≥1时,B =⌀,满足B ⊆A ;当a <1时,要使B ⊆A ,需满足{2x -3≥1,x -2≤2,解得2≤a ≤4,不满足a <1,故实数a 不存在.故当a ≥1时,B ⊆A ,故C 错误,D 正确. 故选AD .9.答案 {a |a ≥2}解析 ∵B ={x |x -a ≤0}={x |x ≤a }, ∴∁U B ={x |x >a }.∵集合A ={x |x >2或x <1},∁U B ⊆A , ∴a ≥2.∴实数a 的取值范围是{a |a ≥2}. 10.答案 -2解析 因为U ={-2,12,2,3},A ={x |2x 2-5x +2=0}={12,2},∁U A =B ,所以B ={-2,3},所以3a =3,xx=-2,所以a =1,b =-2.11.解析 由x 2-x -2=0得(x +1)(x -2)=0,解得x =-1或x =2,故A ={-1,2}. ∵B ⊆A ,∴B =⌀或{-1}或{2}或{-1,2}. ①当B =⌀时,a ≠0且Δ=1-8a <0,解得a >18;②当B ={-1}时,a ≠0,且{x =1-8x =0,x -1+2=0,即{x =18,x =-1,无解; ③当B ={2}时,a ≠0,且{x =1-8x =0,x ×22+2+2=0,即{x =18,x =-1,无解; ④当B ={-1,2}时,a ≠0, 且{ x =1-8x >0,-1+2=-1x ,-1×2=2x,解得a =-1.综上,实数a 的取值范围是a =-1或a >18.12.解析 (1)A ={x |x 2-1=0}={-1,1}. 分以下三种情况讨论:①当B ={-1}时,由根与系数的关系得{x =-1+(-1)=-2,x =(-1)2=1;②当B ={1}时,由根与系数的关系得{x =1+1=2,x =12=1;11 ③当B ={-1,1}时,由根与系数的关系得{x =1+(-1)=0,x =1×(-1)=-1.综上,a =-2,b =1或a =2,b =1或a =0,b =-1.(2)∵A ⊆C ,且A ={-1,1},C ={-1,2m +1,m 2},∴2m +1=1或m 2=1,解得m =0或m =±1. 当m =0时,C ={-1,1,0},满足集合中元素的互异性,符合题意;当m =-1时,2m +1=-1,不满足集合中元素的互异性,舍去;当m =1时,C ={-1,3,1},满足集合中元素的互异性,符合题意.综上所述,m =0或m =1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(新课标)2018-2019学年度苏教版高中数学必修一
§1.2 子集、全集、补集
课时目标 1.理解子集、真子集的意义,会判断两集合的关系.2.理解全集与补集的意
义,能正确运用补集的符号.3.会求集合的补集,并能运用Venn图及补集知识解决有关
问题.
1.子集
如果集合A的__________元素都是集合B的元素(若a∈A则a∈B),那么集合A称为集
合B的________,记作______或______.任何一个集合是它本身的______,即A⊆A.
2.如果A⊆B,并且A≠B,那么集合A称为集合B的________,记为______或(______).
3.______是任何集合的子集,______是任何非空集合的真子集.
4.补集
设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的______,记为
______(读作“A在S中的补集”),即∁SA={x|x∈S,且x∉A}.
5.全集
如果集合S包含我们所要研究的各个集合,这时S可以看做一个______,全集通常记作
U.
集合A相对于全集U的补集用Venn图可表示为
一、填空题
1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是________.
2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是________.
3.已知集合U={1,3,5,7,9},A={1,5,7},则∁UA=________.
4.已知全集U=R,集合M={x|x2-4≤0},则∁UM=________.
5.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是
_____________________________.
6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}
之间的关系是________.
7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁UA={1,2},则实数m=________.
8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁UA=________,
∁UB=______,∁BA=________.
9.已知全集U,AB,则∁UA与∁UB的关系是____________________.
二、解答题
10.设全集U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}.
(1)求∁U(A∪B),∁U(A∩B);
(2)求(∁UA)∪(∁UB),(∁UA)∩(∁UB);
(3)由上面的练习,你能得出什么结论?请结事Venn图进行分析.
11.已知集合A={1,3,x},B={1,x2},设集合U=A,求∁UB.
能力提升
12.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁UA={5},求实数a,b的
值.
13.已知集合A={x|1
(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任
意x∈A能推出x∈B.
(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,
但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种
情况都有A⊆B.
2.∁UA的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁UA={x|x∈U,且
x∉A},补集是集合间的运算关系.
3.补集思想
做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困
难,可先求∁UA,再由∁U(∁UA)=A求A.
§1.2 子集、全集、补集
知识梳理
1.任意一个 子集 A⊆B B⊇A 子集 2.真子集 AB BA
3.空集 空集 4.补集 ∁SA 5.全集
作业设计
1.PQ
解析 ∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0},
∴PQ.
2.7
解析 M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个
数只有1个,因此符合题意的共7个.
3.{3,9}
解析 在集合U中,去掉1,5,7,剩下的元素构成∁UA.
4.{x|x<-2或x>2}
解析 ∵M={x|-2≤x≤2},∴∁UM={x|x<-2或x>2}.
5.②
解析 由N={-1,0},知NM.
6.SP=M
解析 运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表
示成被6整除余1的整数集.
7.-3
解析 ∵∁UA={1,2},∴A={0,3},故m=-3.
8.{0,1,3,5,7,8} {7,8} {0,1,3,5}
解析 由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁UA=
{0,1,3,5,7,8},∁UB={7,8},∁BA={0,1,3,5}.
9.∁UB∁UA
解析 画Venn图,观察可知∁UB∁UA.
10.解 (1)∵U={x∈N*|x<8}={1,2,3,4,5,6,7},A∪B={1,2,3,4,5,7},A∩B={5},
∴∁U(A∪B)={6},∁U(A∩B)={1,2,3,4,67}.
(2)∵∁UA={2,4,6},∁UB={1,3,6,7},∴(∁UA)∪(∁UB)={1,2,3,4,6,7},(∁UA)
∩(∁UB)={6}.
(3)∁U(A∪B)=(∁UA)∩(∁UB)(如左下图);∁U(A∩B)=(∁UA)∪(∁UB)(如右下图).
11.解 因为B⊆A,因而x2=3或x2=x.
①若x2=3,则x=±3.
当x=3时,A={1,3,3},B={1,3},此时∁UB={3};
当x=-3时,A={1,3,-3},B={1,3},U=A={1,3,-3},此时∁UB={-3}.
②若x2=x,则x=0或x=1.
当x=1时,A中元素x与1相同,B中元素x2与1也相同,不符合元素的互异性,故x
≠1;
当x=0时,A={1,3,0},B={1,0},U=A={1,3,0},从而∁UB={3}.
综上所述,∁UB={3}或{-3}或{3}.
12.解 ∵∁UA={5},∴5∈U且5∉A.
又b∈A,∴b∈U,由此得 a2+2a-3=5,b=3.
解得 a=2,b=3或 a=-4,b=3经检验都符合题意. 又∵B={x|-1
13.解 (1)当a=0时,A=∅,满足A⊆B.
(2)当a>0时,A={x|1a
综上所述,a=0或a≥2或a≤-2.