精选-七年级(上册)第一章有理数《数轴》-word文档

合集下载

人教版七年级数学上册第一章有理数1.2.2数轴同步练习题含答案

人教版七年级数学上册第一章有理数1.2.2数轴同步练习题含答案

人教版七年级数学上册1.2.2数轴同步练习题1.下列关于数轴的说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的直线B .数轴的正方向一定向右C .数轴上的点只能表示整数D .数轴上的原点表示有理数的起点 2.下列数轴的画法中,正确的是( )3.(1)将有理数-2,1,0,-212,314在数轴上表示出来;(2)写出数轴上点A ,B ,C 表示的数.4.如图所示,数轴上四点M ,N ,P ,Q 中,表示负整数的点是( ) A .点M B .点N C .点P D .点Q5.有下列一组数:1,4,0,-12,-3,这些数在数轴上对应的点中,不在原点右边的点有( )A .2个B .3个C .4个D .5个6.点A 是数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 表示的有理数是( ) A .-4 B .-6 C .2或-4 D .2或-67.有理数a ,b ,c 在数轴上的位置如图所示,则下列说法正确的是( )A .a ,b ,c 都为正数B .b ,c 为正数,a 为负数C .a ,b ,c 都为负数D .b ,c 为负数,a 为正数 8.如图,点A 表示的数是________.9.如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.10.点A ,B ,C ,D 分别表示-3,-112,0,4.请解答下列问题:(1)在数轴上描出A ,B ,C ,D 四个点;(2)现在把数轴的原点取在点B 处,其余均不变,那么点A ,B ,C ,D 分别表示什么数?11.如图12,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A,B之间)的整数有几个?图1212.某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3 km,2 km,1.5 km.如果以学校为原点,向东为正方向,以图上1 cm长为单位长度表示实际距离1 km,请画出数轴,并将四个站点在数轴上表示出来.13.育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.14.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“全”所对应的数为0,则连续翻滚后与数轴上数2018重合的字是( )A.合 B.格 C.优 D.秀15.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2018将与圆周上的数字________重合.16.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x ,那么x 的值为( )A .8B .7C .6D .517.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm ,木棒的左端点与数轴上的点A 重合,右端点与点B 重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B 处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A 处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A 表示的数是________,点B 表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题: 一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.1.A 2.D3.解:(1)如图所示.(2)点A 表示-3,点B 表示-1,点C 表示4. 4.A 5.B . 6.D 7.D 8.-2 9.710.解:(1)如图所示:(2)点A 表示-112,点B 表示0,点C 表示112,点D 表示512.11.解:(1)被小猫遮住的是负数.(2)被小狗遮住的整数有12,13,14,15,16,17,18,共7个.(3)小猫和小狗之间的整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个. 12.解:如图所示:13.解:数轴画法不唯一,示例如下:由题意得三所中学在数轴上的位置如图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.14.C .15.3 .16.D17.解:(1)由数轴观察知三根木棒的长是20-5=15(cm),则此木棒的长为15÷3=5(cm).故答案为5.(2)10 15(3)借助数轴,B表示爷爷的年龄,A表示小红的年龄,把小红与爷爷的年龄差看作木棒AB.当爷爷的年龄是小红现在的年龄时,即将B向左移与A重合,此时小红的年龄是-40岁;当小红的年龄是爷爷现在的年龄时,即将A向右移与B重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).。

新人教版七年级上册 第一章 《有理数》 数轴中的运动类问题同步培优练习(四)

新人教版七年级上册 第一章 《有理数》 数轴中的运动类问题同步培优练习(四)

《有理数》数轴中的运动类问题同步培优练习(四)1.在单位长度为1的数轴上,点A表示的数为﹣2.5,点B表示的数为4.(1)求AB的长度;(2)若把数轴的单位长度扩大30倍,点A、点B所表示的数也相应的发生变化,已知点M是线段AB的三等分点,求点M所表示的数.2.如图,在数轴上有三个点A,B,C,完成下列问题:(1)将点B向右移动6个单位长度到点D,在数轴上表示出点D;(2)在数轴上找到点E,使点E到B,C两点的距离相等,并在数轴上标出点E表示的数;(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,那么点F表示的数是.3.如图,数轴上一动点A从原点出发,在数轴上进行往返运动,运动情况如下表.运动次数运动路程(记向右为正)第1次x第2次3﹣2x2第3次2(x2+1)第4次﹣(9﹣x)当2<x<4,回答下列问题:(1)第2次运动的方向是向运动(填“左”或“右”);(2)通过计算,在数轴上确定点A第3次运动后的大概位置;(3)经历4次运动后,若点A想回到原点,则需要再向(填“左”或“右”)运动,运动的距离是;(4)求点A在这4次运动过程中运动距离的总和.4.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是;(2)如果点A表示数3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离是;(3)如果点A表示数﹣4,将点A向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A,B两点间的距离是.5.如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.6.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,满足AB=2BC,此时点B是点A,C的“倍联点”.若数轴上点M 表示﹣3,点N表示6,回答下列问题:(1)数轴上点D1,D2,D3分別对应0,3.5和11,则点是点M,N的“倍联点”,点N是这两点的“倍联点”;(2)已知动点P在点N的右侧,若点N是点P,M的倍联点,求此时点P表示的数.7.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑到学校.如果小明跑步的速度均匀的,到达小彬家用了8分钟,整个跑步过程用时共32分钟.(1)以小明家为原点、向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家;(2)用点C表示出学校的位置;(3)求小彬家与学校之间的距离.8.如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a 与数轴上的数5对应,则a = ;(2)数轴上的一个整数点刚刚绕过圆周n 圈(n 为正整数)后,并落在圆周上数字1所对应的位置,这个整数是 (用含n 的代数式表示).9.对于数轴上的A 、B 、C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A 、B 、C 所表示的数分别为1、3、4,则点B 是点A 、C 的“至善点”. (1)若点A 表示数﹣2,点B 表示数2,下列各数、0、1、6所对应的点分别C 1、C 2、C 3、C 4,其中是点A 、B 的“至善点”的有 (填代号);(2)已知点A 表示数﹣1,点B 表示数3,点M 为数轴上一个动点:①若点M在点A的左侧,且点M是点A、B的“至善点”,求此时点M表示的数m;②若点M在点B的右侧,点M、A、B中,有一个点恰好是其它两个点的“至善点”,求出此时点M表示的数m.10.已知数轴上有ABC三点,分别表示有理数﹣12,﹣5,5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,其中PA表示点P到A的距离,PB表示点P与点B的距离,PC表示P到点C的距离.(1)当t<7时,用含t的代数式分别表示PA,PB,PC;(2)当P运动到点B与点C之间时,①PA+PB是定值,②PC+PB是定值这两个说法中有一个说法是正确的,请指出哪个说法是正确的,并说明理由.参考答案1.解:(1)AB=4﹣(﹣2.5)=6.5(2)若把数轴的单位长度扩大30倍⇒点A所表示的数为30×(﹣2.5)=﹣75,点B所表示的数为30×4=120⇒线段AB上靠近A的三等分点所表示的数为+(﹣75)=﹣10,线段AB上靠近B的三等分点所表示的数为120﹣=55∴点M所表示的数为﹣10或55答:(1)AB的长度为6.5(2)点M所表示的数为﹣10或552.解:(1)∵﹣5+6=1∴点D位于数轴上表示数1的位置,如图所示:(2)点E表示的数为:(﹣5+3)÷2=﹣2÷2=﹣1,如图所示:(3)由题意得:|x﹣(﹣2)|+|x﹣3|=9∴x1=﹣4,x2=5故答案为:﹣4或5.3.解:(1)∵2<x<4,∴3﹣2x2<0,∴第二次向左运动;故答案为:左;(2)x+3﹣2x2+2(x2+1)=x+5,∵2<x<4,∴7<x+5<9,点A第3次运动后的大概在7~9之间;(3)x+3﹣2x2+2(x2+1)﹣(9﹣x)=x﹣1,∵2<x<4,∴x﹣1>0,∴点A想回到原点,则需要再向左移动x﹣1个单位;故答案为:左,x﹣1;(4)∵|x|+|3﹣2x2|+|2(x2+1)|+|﹣(9﹣x)|=x+4x2+5,∴点A在这4次运动过程中运动距离的总和为:x+4x2+5.4.解:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是﹣3+7=4,A、B两点间的距离是7;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是3﹣7+5=1,A、B两点间的距离为2;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是﹣4+16﹣25=﹣13,A、B两点间的距离是9.故答案为:(1)4,7;(2)1,2;(3)﹣13,9.5.解:(1)AB=2﹣a=2﹣(﹣1)=3,故答案为:3;(2)∵点C到原点的距离为3,∴设点C表示的数为c,则|c|=3,即c=±3,∵点A在点B的左侧,点C在点A的左侧,且点B表示的数为2,∴点C表示的数为﹣3,∵BC﹣AC=4,∴2﹣(﹣3)﹣[a﹣(﹣3)]=4,解得a =﹣2.6.解:(1)数轴上点D 1,D 2,D 3分別对应0,3.5和11,则点D 1是点M ,N 的“倍联点”,点N 是D 2,D 3这两点的“倍联点”;故答案为:D 1;D 2,D 3;(2)设点P 表示的数为x , 第一种情况:NP =2NM , 则x ﹣6=2×[6﹣(﹣3)], 解得x =24.第二种情况:2NP =NM , 则2(x ﹣6)=6﹣(﹣3),解得:.综上所述,点P 表示的数为24或.7.解:(1)A 、B 位置如图(2)2÷8=0.25, 32×0.25=8 8﹣3.5=4.5 3.5﹣4.5=﹣1故点C对应数字是﹣1,位置如上图;(3)小彬家与学校位置的距离是3千米.8.解:(1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上数字a与数轴上的数5对应时a=2;(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上了数字0、1、2与正半轴上的整数每3个一组0、1、2,3、4、5,6、7、8,…分别对应,∴数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是3n+1.故答案为:a=2;3n+1.9.解:(1)当C1=﹣时,AC1=|﹣+2|=,BC1=|2+|=,有BC1=2AC1,因此C1符合题意;当C2=0时,AC2=|0+2|=2,BC2=|2+0|=2,有BC2=AC2,因此C2不符合题意;当C3=1时,AC3=|1+2|=3,BC3=|2﹣1|=1,有3BC3=AC3,因此C3不符合题意;当C4=6时,AC4=|6+2|=8,BC4=|2﹣6|=4,有2BC4=AC4,因此C4符合题意;故答案为:C1、C4;(2)①点M在点A的左侧,则m<﹣1,点M是点A、B的“至善点”,因此有2MA=MB,即2(﹣1﹣m)=3﹣m,解得,m=﹣5,②点M在点B的右侧,则m>3,点M、A、B中,有一个点恰好是其它两个点的“至善点”,Ⅰ)若M是A、B的“至善点”,则2MB=MA,即2(m﹣3)=m+1,解得m=7,Ⅱ)若A是B、M的“至善点”,则2AB=AM,即2(3+1)=m+1,解得m=7,Ⅲ)若B是A、M的“至善点”,则2AB=BM或AB=2BM,即2(3+1)=m﹣3或3+1=2(m﹣3),解得m=11或m=5,答:点M表示的数m可以为5,7,11.10.解:(1)当t<7时,PA=t,PB=7﹣t,PC=17﹣t;(2)②PC+PB是定值正确;∵当P运动到点B与点C之间时,PB=t﹣7,PC=17﹣t,∴PB+PC=(t﹣7)+(17﹣t)=10,故PB+PC是定值.1、最困难的事就是认识自己。

《数轴》说课 ppt课件

《数轴》说课 ppt课件
第一章 有理数
课题: 数轴
✓背景分析 ➢教学目标设计 ➢教法与学法
➢教学过程设计
➢教学评价设计
1.学习任务分析
“数轴”是人教版《数学(七年级 上册)》第一章第二节的内容,是在有 理数概念基础上,从标有刻度的温度计 表示温度高低这一事例出发引出数轴的 画法和有理数在数轴上的表示方法。它 不仅是学习相反数、绝对值等有理数知 识的重要工具,还是以后学好不等式的 解法,函数的图象及其性质的内容的必 要基础。 因此本节课的教学重点为:正确理解数 轴的概念和有理数在数轴上的表示方法。
0
5
5
5
10
10
10
151515设计意图让学生观察温 度计,并填空, 为学习数轴概念 作准备。
__C0 __C0 __C0
☺环节2:得出定义,揭示内涵
15 10 5 0 5 1015
-3 -2 -1 0 1 2 3
(1)画直线,取原点
画数轴 (2)标正方向
(3)选取单位长度,标数
定义:规定了原点、正方向和 单位长度的直线叫数轴
➢背景分析 ✓教学目标设计 ➢教法与学法 ➢教学过程设计 ➢教学评价设计
知识与技能目标:①、理解并掌握数轴三要 素,能正确地画出数轴。②、能准确地 将已知有理数在数轴上表示出来,能说 出数轴上已知点所表示的有理数。
过程与方法 :经历从实际问题中抽象出数 学问题的过程,初步学会数学的类比方法和 数形结合的思想方法。
讨论:
在数轴上会不会有两个点表示同一个有理数? 会不会有一个点表示两个不同的有理数?
仔细观察,注重实质
☺环节7:布置作业 引导预习
1、必做题 :(1)课本14页第2题;
(2)指出下面数轴上A、B、C、D各点所

第一章 有理数 绝对值(人教版七年级上)

第一章 有理数 绝对值(人教版七年级上)

3

3

0 1 2 3 4 -3与3在数轴上所表示的点到原点的距 离是3个单位长度,它们的符号不同.我们把 这个距离3叫做+3和-3的绝对值.
-3 -2 -1
一般地,数轴上表示数a的点与 原点的距离叫做数a的绝对值,记做 |a| .
互为相反数的两个数的绝对值 有什么关系?
一对相反数虽然分别在原点两边, 但它们到原点的距离是相等的.
(2)当a<0,|a|=-a; (3)当a=0,|a|=0.
a 0
练一练
1.写出下列各数的绝对值.
3 12, -5, , -8, 0, 3.2 . 5
12
5
3 5
8
0
3.2
练一练
2.判断下列说法是否正确.
(1)一个数的绝对值是4 ,则这数是-4. × (2)|3|>0. √ (3)|-1.3|>0. √ (4)有理数的绝对值一定是正数. × (5)若a=-b,则|a|=|b|. √ (6)若|a|=|b|,则a=b. × (7)若|a|=-a,则a必为负数.× (8)互为相反数的两个数的绝对值相等. √
这里的数a可以表示什么样的数?
这里的数a可以是正数,负数和0.
小红由图得出4的绝对值为3,你 认为对吗?为什么?
3个长度单位
-3 -2 -1
0
1
2
3
4
绝对值是5的数有几个?各是什么? 有没有绝对值是-4.5的数?
一个正数的绝 对值是它本身
绝对值是 5 的数有两个,各是 5 与-5; 没有绝对值是-4.5的数.


-3
3km -2 -1
3km
0 1 2


东 4

沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解

1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。

《数轴》数学PPT课件(10篇)

《数轴》数学PPT课件(10篇)

PPT素材:/s ucai/ PPT图表:www.1ppt .co m/tu biao/ PPT教程: /powerpoint/ 个人简历:www.1ppt. co m/jia nli/ 教案下载:www.1ppt. co m/jia oan/ PPT课件:www.1ppt. co m/ ke jian/ 数学课件:www.1ppt.c om/keji an/shuxue/ 美术课件:www.1ppt.c om/keji an/mei shu/ 物理课件:www.1ppt.c om/keji an/wuli / 生物课件:www.1ppt.c om/keji an/sheng wu/
这一情境. 历史课件:/kejian/lishi/
电槐 汽 柳

线

西
杆树 站 树


-4.8 -3 0 3
7.5
思 考 怎样用数简明地表示这些树、电线杆与汽车站的相对位置
新人教版七年级上册第一章1.2.2
学习目标 情境一 情景二
典型例题 知识要点
目录

1.掌握数轴的概念,理解数轴上的点和有理数的对应关系.(重点)
PPT模板:www. 1ppt.co m/ mob an/ PPT背景:/beiji ng/ PPT下载:/xiaz ai/ 资料下载:www. 1ppt.co m/zilia o/ 试卷下载:/shiti / 手抄报:/shouc haobao/ 语文课件:/keji an/yuwen/ 英语课件:/keji an/ying yu/ 科学课件:/keji an/kexue/ 化学课件:/keji an/huaxue/ 地理课件:/keji an/dili/
PPT素材:/s ucai/ PPT图表:www.1ppt .co m/tu biao/ PPT教程: /powerpoint/ 个人简历:www.1ppt. co m/jia nli/ 教案下载:www.1ppt. co m/jia oan/ PPT课件:www.1ppt. co m/ ke jian/ 数学课件:www.1ppt.c om/keji an/shuxue/ 美术课件:www.1ppt.c om/keji an/mei shu/ 物理课件:www.1ppt.c om/keji an/wuli / 生物课件:www.1ppt.c om/keji an/sheng wu/ 历史课件:www.1ppt.c om/keji an/lishi /

人教版七年级数学上册第一章数轴课件

教学重点:
正确理解数轴的概念和有理数在数轴 上的表示方法。
教学难点:
建立有理数与数轴上的点的对应关系 (数与形的结合)。
1.了解数轴的概念,学会如何画数轴;
2.知道如何在数轴上表示有理数,能 说出数轴上表示有理数的点所表示 的数
3.知道任何一个有理数在数轴 上都有唯一的点与之对应。
(一) 创设情景 引入课题
课下思考:
有了数轴以后,所有的有理数都可以表示 在数轴上,那么反过来,数轴上的点是否 只表示有理数呢?
(三) 手脑并用 深入理解
1、画数轴并表示出下列有理数。
2.5,
-2

2,0,
9 2
,-
2 3
2、指出数轴上A、B、C、D 、E点 分别表示什么数?
C
ED A
B
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
数轴的定义:规定了原点、正方向和单 位长度的直线叫做数轴。
2、思考:分数和小数在数轴上怎么表示?
单位长度
原点
正方向(向左或向右)
5 -2 -1 0 1 1 1.5 2 3
2
2
3、观察数轴上的有理数排列的大小?
-3 -2 -1 0 1 2 3
① 位于数轴左(下)边的数总比右(上)边的数_。
② 一般地,设a是一个正数,则数轴上表示数 a在原点的____边,与原点的距离是____ 个单位长度;表示数-a的点在原点的____ 边,与原点的距离是____个单位长度。
Oபைடு நூலகம்
4.8 3
01 3
7.5
(三) 创设情景 引入课题
3、对比观察
30
30
30
25
25

【暑假预习】人教版数学七年级上册讲义:第1讲:有理数和数轴(含答案)

第一讲 有理数与数轴入门测成绩(满分10): 完成情况: 优/中/差1.如果向右走5步记为+5,那么向左走3步记为A .+3B .﹣3C .31+D .31-B2.以下4个有理数中,最小的是A .-1B .1C .0D .-2D 3.31-的相反数是 . 134.下列说法正确的是①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③一个有理数不是正数就是负数 ④两个数比较,绝对值大的反而小 A .①② B .①③ C .①②③ D .①②③④ A5.若数轴上点A 表示的数是-3, 则与点A 相距4个单位长度的点B 表示的数是 . -7或16.有理数a ,b ,c ,d 在数轴上对应点的位置如图所示,这四个数中,绝对值最大的是 AA .aB .bC .cD .d7.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为25.0+,1-,5.0+,75.0-.小红快速准确地算出了4筐白菜的总质量为 千克.99教学目标1.理解并掌握有理数、数轴、相反数、绝对值的意义2.会比较有理数的大小3.会求有理数的相反数和绝对值4.会利用绝对值的知识解决简单的化简问题知识梳理1.正数和负数大于的数叫做0 正数,等在正数前面加上负号"" 的数小于的数叫做,形如-3-0.50 负数0 既不是正数也不是负数2.有理数、和统称为正整数0 负整数整数、统称为正分数负分数分数和统称为整数分数有理数所以有理数可以分为.和正有理数 0 负有理数 3.数轴数轴:规定了 . 和 的直线叫做数轴原点 正方向 单位长度所有的有理数都可用数轴上的点来表示4.数轴的画法(1)画一条直线(一般画成水平的直线)(2)在直线上根据需要选取一点为原点(在原点下面标上“0”) (3)确定正方向(一般规定向右为正,并用箭头表示出来); (4)选取适当的长度为单位长度,从原点向右,每隔一个单位长度取一点,依次表示1,2,3,… 从原点向左,用类似的方法依次表示-1,-2,-3,…5.相反数相反数:只有 不同的两个数叫做互为相反数符号就是0的相反数 0求一个数的相反数只要在 加上"-"即可,若求一个代数式的相反数就是用括号把这 个代数式括起来,再在这个 加上"-".前面括号前性质:若a 与b 互为相反数,则0a b +=,1ab=-(b 0≠)两个数相加为零,则这两个数互为,他们分别位于原点的,且到原点的相反数两侧距离相等6.绝对值绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离在数轴上离开的距离就叫做这个数的原点绝对值一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是绝对值的代数意义:||() () ()aa aaa a=>=-<⎧⎨⎪⎩⎪00典型例题例题1:1.我们把向东运动5米记作“+5米”,则向西运动3米记作________米.-32.中国人很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入了负数.如果收入100元记作+100元,那么-80元表示A.支出80元B.收入20元C.支出20元D.收入80元A练习1:1.如果零上5℃记作5+℃,那么零下5℃记作CA.-5B.-10C.-5 D.-10练习2:1.在-3,-1,2,0这四个数中,是正数的数是CA.-3 B.-1 C.2 D.0例题2:1.有8筐白菜, 以每筐25千克为标准, 超过的千克数记作正数, 不足的千克数记作负数,称后的记录如下:1.5 -3 2 -0.5 1 -2 -2 -2.5回答下列问题:(1)这8筐白菜中, 最接近25千克的那筐白菜为__________千克; 24.5(2)以每筐25千克为标准, 这8筐白菜总计超过多少千克或不足多少千克?5.5(3)若白菜每千克售价2.6元, 则出售这8筐白菜可卖多少元?505.7练习1:1.某日,司机小张作为志愿者在东西向的公路上免费接送游客。

人教版七年级上册数学第一章《有理数》单元测试卷(Word版,含答案)

人教版七年级上册数学第一章《有理数》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个..是正确的).1.下列说法正确的是( )A .所有的整数都是正数B .不是正数的数一定是负数C .0不是最小的有理数D .正有理数包括整数和分数2. 下列说法正确的有( )①0是绝对值最小的数 ②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小.A .1个B .2个C .3个D .4个3.2--的相反数是( )A .2B .21 C .-12 D .-2 4.在2222,(2),(2),2,(2)--------中,负数的个数是( )A. l 个B. 2个 C . 3个 D . 4个5.下列有理数大小关系判断正确的是( )A .11()910-->-- B . 100-> C . 33+<- D. 01.01->- 6. 如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A 点,则A 点表示的数是( )A .﹣π+1B .﹣π﹣1C .π+1D .π﹣17. 若|x |=﹣x ,则x 一定是( )A .负数B .负数或零C .零D .正数 8. 若|2|1x -=则x 的值是( ).A. 3B. 1 C . 1或 D . 3或1-9. 已知:2000199920012000M =-,1999199820001999N =-,那么M +N 的值必定是( )A .正数B .零C .负数D .不能确定10. 如图,数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB=BC=3CD .若A ,D 两点所表示的数分别是﹣5和6,且线段BE=2,EF=1则离原点最近的点是( )A .B B .EC .FD .C二、填空题(本大题共10小题,每小题2分,共20分).11.一次考试中,老师采取一种记分制:得120分记为+20分,那么86分应记为 分,李明的成绩记为 ﹣8分,那么他的实际得分为 分. 12.在15,38-,0.15,-30,-12.8,225中,负分数的有 . 13. 绝对值最小的数是 ;一个数的平方是它本身,这个数是 ;绝对值是它本身的数是 .14.有理数a 、b 、c 在数轴上的位置如图所示,试化简:(1)|a |= ;(2)|a +c |+|a +b |﹣|b ﹣c |= .15.若,则的值为 .16.近似数5.3万精确到 位;近似数5.27×610有 个有效数字;将87000保留两个有效数字用科学记数法表示为 .17.在数轴上任取一条长度为120169的线段,则此线段在这条数轴上最多能盖住的整数点的个数是 . 18.已知P 是数轴上的一个点.把点P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离是4个单位,则P 点表示的数是______.19. 有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +1, a ⊕(b +1)= n -2 现在已知1⊕1 = 2,那么20122012⊕= .20.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层 多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆 圈的个数为(1)1232n n n +++++=.图1 图2 图3 图4如果图1中的圆圈共有12层,23(2)0m n -++=2m n +第2层 第1层 …… 第n 层⊕ 我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;⊕ 我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,则图4中所有圆圈中各数的绝对值之和为 .三、解答题21.计算:(12分)⊕ 13323(2)5(8)4545+---- ⊕ 7115[45()36]59126--+⨯÷⊕ 322012111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦ ⊕()2431(2)453⎡⎤-+-÷⨯--⎣⎦22.(5分)若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求的值.。

新人教版七年级上册第一章教案:《数轴》

新人教版七年级上册第一章教案:《数轴》七年级上册第8页至第10页《相反数》教学设计论“。

”分别换成+“既然是七年级上册第10页至第11页《一元一次方程》教学设计为1、学生自主、合作、交流⑵、⑷、学生积极探讨:关键字“大、七年级上册第79页至第82页《合并同类项》教学设计、、-3X+0.5X=10 ;七年级上册第88页至第89页《合并同类项与移项(第3课时)》教学设计七年级上册第91页至第93页《一元一次方程的解法(习题课)》教学设计一、学情分析:在学生较系统的学完了解一般方程的方法后,对这些方法的尽快熟练以及正确运用是很重要的,同时,由于前面的课对解方程的步骤强调得较多,学生很有可能生搬硬套,所以要向学生说明,解方程要根据题目的形式选择解题的方法,它的步骤不是一成不变的。

二、教学目标:(一)知识目标:使学生灵活运用解方程的一般方法解题。

(二)过程和方法目标:1、培养学生观察、分析的能力,提高他们综合解题的能力。

2、更深刻的体会到数学的化归的思想方法。

三、教学重点:灵活地运用解题步骤;四、教学难点:如何在“灵活”二字上下功夫.五、教学过程设计:A 组 1、方程2x 4x 7236---=-,去分母得( ) A.22(2x-4)=-(x-7)- B.122(2x 4)x 7--=-- C.124x 8(x 7)--=-- D. 122(2x 4)(x 7)--=-- 2、下列方程中,解为x=4的方程是( ) A.2x 34-= B.x 632-= C.1x 372+= D.119x 10210+= 3、如果x=-3是关于x 的方程2(x+k)=5的解,那么k 等于( )A.5.5B.0.5C.-0.5D.0 4、解方程(1)7(x 3)9x -= (2)2(3x)8x 7(2x 5)-+=-- (3)13x x+2123--= (4)x-32x 1143++=- B 组1、 当x 取何值时,式子3x 5+和4x -的值相等?2、 当x 取什么数时,代数式13x 3-比14x 4-的值大10? 3、解方程 (1)32x [1)2]2x 234--=+((2)x 113x 2x 3436++-=-C 组一个数的一半减去这个数的五分之二,再加上这个数的2倍,结果是25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页
七年级(上册)第一章有理数《数轴》
以下是查字典数学网为您推荐的 七年级(上册)第一章
有理数《数轴》教案,希望本篇文章对您学习有所帮助。
七年级(上册)第一章有理数《数轴》
一、教学内容分析
1.2有理数1.2.2数轴。这一节是初中数学中非常重要的内
容,从知识上讲,数轴是数学学习和研究的重要工具,它主
要应用于绝对值概念的理解,有理数运算法则的推导,及不
等式的求解。同时,也是学习直角坐标系的基础,从思想方
法上讲,数轴是数形结合的起点,而数形结合是学生理解数
学、学好数学的重要思想方法。日常生活中带见的用温度计
度量温度,已为学习数轴概念打下了一定的基础。通过问题
情境类比得到数轴的概念,是这节课的主要学习方法。同时,
数轴又能将数的分类直观的表现出来,是学生领悟分类思想
的基础。
二、学生学习情况分析
(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,
对正负数的概念理解不一定很深刻,许多学生容易造成知识
遗忘,所以应全面系统的去讲述;
(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的
三要素,学生不易理解,容易造成画图中掉三落四的现象,
所以教学中教师应予以简单明白、深入浅出的分析;
第 2 页

(3)由于七年级学生的理解能力和思维特征和生理特征,学
生的好动性,注意力容易分散,爱发表见解,希望得到老师
的表扬等特点,所以在教学中应抓住学生这一生理心理特
点,一方面要运用直观生动的形象,一发学生的兴趣,使他
们的注意力始终集中在课堂上;另一方面要创造条件和机
会,让学生发表见解,发挥学生的主动性。
三、设计思想
从学生已有知识、经验出发研究新问题,是我们组织教学的
一个重要原则。小学里曾学过利用射线上的点来表示数,为
此我们可引导学生思考:把射线怎样做些改进就可以用来表
示有理数?伴以温度计为模型,引出数轴的概念。教学中,
数轴的三要素中的每一要素都要认真分析它的作用,使学生
从直观认识上升到理性认识。直线、数轴都是非常抽象的数
学概念,当然对初学者不宜讲的过多,但适当引导学生进行
抽象的思维活动还是可行的。例如,向学生提问:在数轴上
对应一亿万分之一的点,你能画出来吗?它是不是存在等。
四、教学目标
(一)知识与技能
1、掌握数轴的三要素,能正确画出数轴。
2、能将已知数在数轴上表示出来,能说出数轴上已知点所
表示的数。
(二)过程与方法
第 3 页

1、使学生受到把实际问题抽象成数学问题的训练,逐步形
成应用数学的意
识。
2、对学生渗透数形结合的思想方法。
(三)情感、态度与价值观
1、使学生初步了解数学来源于实践,反过来又服务于实践
的辩证唯物主
义观点。
2、通过画数轴,给学生以图形美的教育,同时由于数形的
结合,学生会得
到和谐美的享受。
五、教学重点及难点
1、重点:正确掌握数轴画法和用数轴上的点表示有理数。
2、难点:有理数和数轴上的点的对应关系。
六、教学建议
1、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴
画法和用数轴上的点表示有理数,并会比较有理数的大小.
难点是正确理解有理数与数轴上点的对应关系。数轴的概念
包含两个内容,一是数轴的三要素:原点、正方向、单位长
度缺一不可,二是这三个要素都是规定的。另外应该明确的
是,所有的有理数都可用数轴上的点表示,但数轴上的点所
第 4 页

表示的数并不都是有理数。通过学习,使学生初步掌握用数
轴解决问题的方法,为今后充分利用数轴这个工具打下基
础。
2、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的
研究,数形结合是理解数学、学好数学的重要思想方法,本
课知识要点如下:
定 义 规定了原点、正方向、单位长度的直线叫数轴
三要素 原 点 正方向 单位长度
应 用 数形结合
七、学法引导
1、教学方法:根据教师为主导,学生为主体的原则,始终
贯穿激发情趣手脑并用启发诱导反馈矫正的教学方法。
2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、
动脑做练习。
八、课时安排
1课时
九、教具学具准备
电脑、投影仪、三角板
十、师生互动活动设计
讲授新课
(出示投影1)
第 5 页

问题1:三个温度计.其中一个温度计的液面在0上2个刻度,
一个温度计的液面在0下5个刻度,一个温度计的液面在0
刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
问题2:在一条东西向的马路上,有一个汽车站,汽车站东
3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和
4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情
境.(小组讨论,交流合作,动手操作)
师:我们能否用类似的图形表示有理数呢?
师:这种表示数的图形就是今天我们要学的内容数轴(板书
课题).
师:与温度计类似,我们也可以在一条直线上画出刻度,标
上读
数,用直线上的点表示正数、负数和零.具体方法如下
(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通
常取适中的位置,如果所需的都是正数,也可偏向左边)用
这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么
从原点向左为负方向(相当于温度计上0℃以上为正,0℃以
下为负);
第 6 页

3.选取适当的长度作为单位长度,在直线上,从原点向右,
每隔一个长度单位取一点,依次表示为1,2,3,从原点向
左,每隔一个长度单位取一点,依次表示为-1,-2,-3,
师问:我们能不能用这条直线表示任何有理数?(可列举几个
数)
让学生观察画好的直线,思考以下问题:
(出示投影2)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?
原点向左1.5个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出
什么?然后归纳出数轴的定义.
师:在此基础上,给出数轴的定义,即规定了原点、正方向
和单
位长度的直线叫做数轴.
进而提问学生:在数轴上,已知一点P表示数-5,如果数轴
上的原点不选在原来位置,而改选在另一位置,那么P对应
的数是否还是-5?如果单位长度改变呢?如果直线的正方向
改变呢?
通过上述提问,向学生指出:数轴的三要素原点、正方向和
第 7 页

单位长度,缺一不可.
【教法说明】通过观察类比思考概括表达展现知识的形成是
从感性认识上升到理性认识的过程,让学生在获取知识的过
程中,领会数学思想和思维方法,并有意识地训练学生归纳
概括和口头表达能力.
师生同步画数轴,学生概括数轴三要素,师出示投影,生动
手动脑练习
尝试反馈,巩固练习
(出示投影3).画出数轴并表示下列有理数:
1、1.5,-2.2,-2.5, , ,0.
2.写出数轴上点A,B,C,D,E所表示的数:
请大家回答下列问题:
(出示投影4)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
【教法说明】此组练习的目的是巩固数轴的概念.
十一、小结
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,
在此还要提醒同学们,所有的有理数都可用数轴上的点来表
示,但是反过来不成立,即数轴上的点并不是都表示有理数,
至于数轴上的哪些点不能表示有理数,这个问题以后再研
究.
第 8 页

十二、课后练习 习题1.2第2题
十三、教学反思
1、数轴是数形转化、结合的重要媒介,情境设计的原型来
源于生活实际,学生易于体验和接受,让学生通过观察、思
考和自己动手操作、经历和体验数轴的形成过程,加深对数
轴概念的理解,同时培养学生的抽象和概括能力,也体出了
从感性认识,到理性认识,到抽象概括的认识规律。
2、教学过程突出了情竟到抽象到概括的主线,教学方法体
了特殊到一般,数形结合的数学思想方法。
3、注意从学生的知识经验出发,充分发挥学生的主体意识,
让学生主动参与学习活,并引导学生在课堂上感悟知识的生
成,发展与变化,培养学生自主探索的学习方法。

相关文档
最新文档