反比例函数与一次函数的综合
一次函数与反比例函数的综合应用(含答案)

一次函数与反比例函数的综合应用一、选择题1. (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( )考点:二次函数的图象;正比例函数的图象;反比例函数的图象. 专题:数形结合.分析:由已知二次函数y =ax 2+bx +c 的图象开口方向可以知道a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数xay =与正比例函数y =bx 在同一坐标系内的大致图象.解答:解:∵二次函数y =ax 2+bx +c 的图象开口方向向下,∴a <0,对称轴在y 轴的左边,∴x =-ab2<0,∴b <0, ∴反比例函数xay =的图象在第二四象限, 正比例函数y =bx 的图象在第二四象限. 故选B .点评:此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象最少能反映出2个条件:开口向下a <0;对称轴的位置即可确定b 的值. 2. (2011•青海)一次函数y=﹣2x+1和反比例函数y=的大致图象是( )O xy O yxAO yxBO yxDO yxCA、B、C、D、考点:反比例函数的图象;一次函数的图象。
分析:根据一次函数的性质,判断出直线经过的象限;再根据反比例函数的性质,判断出反比例函数所在的象限即可.解答:解:根据题意:一次函数y=﹣2x+1的图象过一、二、四象限;反比例函数y=过一、三象限.故选:D.点评:此题主要考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b及y=中k2的取值.3.(2011山东青岛,8,3分)已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>3 考点:反比例函数与一次函数的交点问题。
一次函数与反比例函数综合应用教案

一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。
2. 培养学生运用一次函数和反比例函数解决实际问题的能力。
3. 引导学生通过合作交流,提高解决问题的策略和思维能力。
二、教学内容1. 一次函数的基本概念和性质。
2. 反比例函数的基本概念和性质。
3. 一次函数和反比例函数的综合应用。
三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。
2. 教学难点:一次函数和反比例函数的综合应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。
2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。
3. 采用合作交流法,培养学生团队协作和沟通能力。
五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。
2. 自主学习:让学生自主探究一次函数和反比例函数的性质。
3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。
4. 合作交流:分组讨论,让学生分享解题策略和心得。
5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。
引导学生提出一次函数的表达式,并解释其含义。
2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。
通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。
3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。
通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。
七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。
通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。
一次函数与反比例函数综合练习题

一 次 函 数 与 反 比 例 函 数 综 合 练 习 题1.如图是反比率函数 y =的图象的一支,依据图象回答以下问题:( 1) 图象的另一支在哪个象限?常数 n 的取值范围是什么?( 2) 若函数图象经过点( 3,1) ,求 n 的值;( 3) 在这个函数图象的某一支上任取点 A( a 1 , b 1 ) 和点 B( a 2 ,b 2 ) ,假如 a 1< a 2 ,试比较 b 1 和 b 2 的大小.y2 如图,已知反比率函数yk与一次函数 y x b 的图象在第一象限订交于点4A(1, k4) .x2( 1)试确立这两个函数的表达式;( 2)求出这两个函数图象的另一个交点B 的坐标,并依据图象写出使反比率函数的值大于一次函数的值的 x 的取值范围.3 如图,在直角坐标系中,矩形 OABC 的极点 O 与坐标原点重合,极点O24xA , C 分别在座标轴上,极点B 的坐标为( 4, 2).过点 D ( 0, 3)和 E( 6, 0)的直线分别与AB ,BC 交于点 M , N .( 1)求直线 DE 的分析式和点M 的坐标;(m ( x2)若反比率函数 yx> 0)的图象经过点 M ,求该反比率函数的分析式,并经过计算判断点N能否在该函数的图象上;(3)若反比率函数 ymy(x >0)的图象与△D..xMABMNB 有公共点,请直接 写出 m 的取值范围.ykx 2mN4.如图,一次函数的图象与反比率函数的图象交于点 P ,点 PyExxOC在第一象限. PA ⊥x 轴于点 A , PB ⊥ y 轴于点 B .一次函数的图象分别交x 轴、 y 轴于点 C 、 D , 且 S PBD =4, OC 1 .( 1)求点 D 的坐标;( 2)求一次函数与反比率函数的分析式;△OA 2x 的取值范围 .( 3)依据图象写出当x 0 时,一次函数的值大于反比率函数的值的5 已知:如图,在平面直角坐标系xOy 中,直线 AB 分别与 x 、y 轴交于点 B 、 A ,与反比率函数的图象分别交于点 C 、 D , CE ⊥ x 轴于点 E , tan ABO1,OB4, OE 2 .2( 1)求该反比率函数的分析式;( 2)求直线 AB 的分析式.6.如图,在平面直角坐标系 xOy 中,一次函数 y=kx+ b 与反比率函数ymA ,与 x的图象交于点3x轴交于点 B , AC ⊥ x 轴于点 C , tanABC, AB=10 , OB=OC .4( 1)求反比率函数和一次函数的分析式;(2)若一次函数与反比率函数的图象的另一交点为D ,连结 OA 、 OD ,求 △ AOD 的面积.yA7.如图,直线 AB : ykx b 与反比率函数ym交于 B ,与 x 轴交于点 A ,4,C( 6,0), BCxtan OABBO 5 .5m (1) 求直线 AB 和反比率函数y的分析式;x(2) 求线段 AB 的长 .8.如图,一次函数yx 1 与反比率函数 ymA.一次函数 yx 1 与坐标交于第二象限点x1 轴分别交于 B 、 C 两点,连结 AO ,若 tanAOB.3(1) 求反比率函数的分析式;(2) 求 AOC 的面积 .9.如图 ,已知在平面直角坐标系xOy 中,一次函数mykx b(k0) 的图象与反比率函数yx (m 0) 的图象订交于 A 、B 两点,且点B 的纵坐标为6,过点 A 作AEx 轴于点 E,tan ∠ AOE=1, AE=2.求:( 1)求反比率3函数与一次函数的分析式;(2) 求 △ AOB 的面积;10 .如图,一次函数y 1 ax b 的图象与反比率函数y 2k的yx图象交于A, B 两点,已知OA10, tan AOC1,点B 的3 3A坐标为 (, m).2OC x(1) 求反比率函数的分析式和一次函数的分析式;B(2) 察看图象,直接写出使函数值y 1 y 2 建立的自变量 x 的取值范围 .11 .如图,一次函数 y ax b 的图象与反比率函数 yk A , B 两点,与 y 轴交的图象订交于x于点 C ,与 x 轴交于点 D ,点 D 的坐标为2,0 ,点 A 的横坐标是( 1)求点 A 的坐标;( 2)求一次函数和反比率函数的分析式;( 3)求△ AOB 的面积;2, tan ∠ CDO = 1.2yACDBO x12 .如图,已知反比率函数my的图象经过点A(1, 3),一次函数xy kx b 的图象经过点A与点C(0,4), 且与反比率函数的图象订交于另一点B(3, n).(1)试确立这两个函数的分析式;(2)求 AOB 的面积;(3)依据图象直接写出反比率函数值大于一次函数值时自变量的取值范围 .13 .如图,若直线y kx b( k 0) 与 x 轴交于点A(5m,0) ,与双曲线 y(m 0) 在第二象OAB 的面积为52x限交于点 B ,且 OA OB ,2(1)求直线AB的分析式及双曲线的分析式;(2)求∠ ABO值 .14. 如图,在平面直角坐标系中,一次函数y kx b(k0) 与反比率函数y mm 0 的图象x分别交于一、三象限的A,B 两点,与x轴交于点 C ,与 y 轴交于点 D ,线段OC=2,点A的坐标为 n,3,且 cos ∠ACO =4. (1)求该反比率函数和一次函数的分析式;( 2)求△AOB的面积 .5yk1 x b 的图象分别与 x 轴、y轴的正半轴交于15 .如图,已知一次函数y A 、 B 两点,且与反比例函数 y k2交于 C、 E 两点,点 C 在第二象限,过点C 作 CD ⊥x轴于点 D , OD=1, OE=A x D10 ,cos∠AOE=3 10.(1)求反比率函数与一次函数的分析式;CO 10B(2)求△ OCE 的面积;k过面积为y16 .若反比率函数y19 的正方形 AMON 的极点 A ,且过点 A 的直线y2mx n 的x1, a )图象与反比率函数的另一交点为B(M A( 1)求出反比率函数与一次函数的分析式;( 2)求AOB 的面积;Ok 17 、如图,四边形OABC 是面积为 4 的正方形,函数yxN x (x > 0)的图象经过点B.B(1)求 k 的值;(2) 将正方形 OABC 分别沿直线AB 、 BC 翻折,获得正方形MABC′、 NA′ BC.设线段 MC′、 NA′分别与函数y k E、 F ,求线段 EF 所在直线的分析式.(x> 0) 的图象交于点x18 、如图,RtVABO的极点 A 是反比率函数y k与一次xy函数 yx ( k1) 的图象在第四象限的交点,AB x轴于 B,且S V ABO 5 。
2023年九年级中考数学专题专练--反比例函数与一次函数的综合【含答案】

2023年九年级中考数学专题专练--反比例函数与一次函数的综合1.如图,在平面直角坐标系中,点A(m ,n)(m >0)在双曲线y = 上.4x (1)如图1,m =1,∠AOB =45°,点B 正好在y = (x >0)上,求B 点坐标; 4x (2)如图2,线段OA 绕O 点旋转至OC ,且C 点正好落在y = 上,C(a ,b),试求m 与a4x 的数量关系.2.如图,一次函数y=kx+3的图象与反比例函数y= 的图象交于P 、Q 两点,PA ⊥x 轴于点A ,mx 一次函数的图象分别交x 轴、y 轴于点C ,点B,其中OA=6,且 .12OC CA(1)求一次函数和反比例函数的表达式; (2)求△APQ 的面积;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值.3.如图,已知一次函数y 1=k 1x+b (k 1为常数,且k 1≠0)的图象与反比例函数y 2= (k 2为常数,2k x 且k 2≠0)的图象相交于A (1,2),B (m ,﹣1)两点.(1)求一次函数和反比例函数的解析式;(2)若A 1(m 1,n 1),A (m 2,n 2),A 3(m 3,n 3)为反比例函数图象上的三点,且m 1<m 2<0<m 3,请直接写出n 1、n 2、n 3的大小关系式;(3)结合图象,请直接写出关于x 的不等式k 1x+b > 的解集.2k x 4.如图,在平面直角坐标系xOy 中,直线y=x﹣2与双曲线y= (k≠0)相交于A,B 两点,且点Akx 的横坐标是3.(1)求k 的值;(2)过点P(0,n)作直线,使直线与x 轴平行,直线与直线y=x﹣2交于点M ,与双曲线y=kx (k≠0)交于点N ,若点M 在N 右边,求n 的取值范围.5.已知双曲线y= 和直线y=kx+4.6x (1)若直线y=kx+4与双曲线y= 有唯一公共点,求k 的值.6x(2)若直线y=kx+4与双曲线交于点M (x 1,y 1),N (x 2,y 2).当x 1>x 2,请借助图象比较y 1与y 2的大小.6.如图,已知A (﹣2,﹣2),B (1,4)是一次函数y =kx+b (k≠0)的图象和反比例函数(m≠0)的图象的两个交点,直线AB 与y 轴交于点C.my x =(1)求一次函数和反比例函数的解析式;(2)求△AOC 的面积;(3)结合图象直接写出不等式的解集.mkx b x +<7.如图,在平面直角坐标系系中,一次函数y 1=kx+b(k0)与反比例函数y 2= (m≠0)的图象交mx 于第二、第四象限A ,B 两点,过点A 作AD ⊥x 轴,垂足为D ,AD=4,sin ∠AOD= ,且点B 的45坐标为(n ,-2).(1)求一次函数与反比例函数的表达式;(2)将一次函数y 1=kx+b(k0)向下移动2个单位的函数记为y 3,当y 3<y 2时,求x 的取值范围。
中考数学压轴题提升训练一次函数与反比例函数综合题含解析

一次函数与反比例函数综合题【例1】。
如图,直线l:y=ax+b交x轴于点A(3,0),交y于第一象限的点P,点P的轴于点B(0,-3),交反比例函数y kx横坐标为4.的解析式;(1)求反比例函数y kx(2)过点P作直线l的垂线l1,交反比例函数y k的图象于x点C,求△OPC的面积.【答案】见解析。
【解析】解:(1)∵y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),∴3a+b=0,b=-3,解得:a=1,即l1的解析式为:y=x-3,当x=4时,y=1,即P(4,1),将P点坐标代入y k得:k=4,x;即反比函数的解析式为:y4x(2)设直线l1与x轴、y轴分别交于点E,D,∵OA=OB=3,∴∠OAB=∠OBA=45°,∵l⊥l1,∴∠DPB=90°,∴∠ODP=45°,设直线l1的解析式为:y=-x+b,将点P(4,1)代入得:b=5,联立:y=-x+5,y4x,解得:x=1,y=4或x=4,y=1,即C(1,4),∴S△OPC=S△ODE-S△OCD-S△OPE=12×5×5-12×5×1-12×5×1=152.【变式1—1】.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–12x+3交AB,BC于点M,N,反比例函数kyx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)∵B(4,2),四边形OABC为矩形,∴OA=BC=2,在y=–12x+3中,y=2时,x=2,即M(2,2),将M(2,2)代入kyx=得:k=4,∴反比例函数的解析式为:4yx=.(2)在4yx=中,当x=4时,y=1,即CN=1,∵S四边形BMON=S矩形OABC-S△AOM-S△CON=4×2-12×2×2-12×4×1=4,∴S△OPM=4,即12·OP·OA=4,∵OA=2,∴OP=4,∴点P 的坐标为(4,0)或(-4,0)。
反比例函数与一次函数综合

专题02 反比例函数与一次函数五种综合问题类型一、求面积例1.如图,矩形ABCD的两边,ABBC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数0kykx=¹的图象经过点E,与BC交于点F,且1CFBE-=.
(1)求反比例函数的解析式;(2)在y轴上找一点P,使得23CEPABCDSS=V矩形,求此时点P的坐标.
【答案】(1)36-yx=;(2)(0,14)或(0,-2)【解析】(1)矩形ABCD中,AB=3,BC=8,E为AD的中点,∴AD=BC=8,CD=AB=3,∵E为AD的中点,∴DE=AE=4,∴22
5BEABAE=+=
∵1CFBE-=,∴CF=6,
设E点坐标为(-4,a),则F点坐标为(-6,a-3),∵E,F两点在反比例函数(0)kyxx=
∴-4a=-6(a-3),解得a=9,∴E(-4,9),∴k=-4×9=-36,.
∴反比例函数的解析式为36-yx=;
(2)∵a=9,∴C(0,6),∵3824ABCDS=´=矩形,23CEPABCDSS=V矩形,
∴224=163CEPS=´V,
∵点P在y轴上,设P点坐标为(0,y),∴PC=|6-y|∴1|6-y|4=162CEPS=´V,∴y=14或-2;∴点P的坐标为(0,14)或(0,-2)【变式训练1】如图,点1,Am,点1,2Bnæöç÷èø是一次函数11922yx=-+与反比例函数20kyxx=>图象的两个交点,ACy^轴,BDx^轴.
(1)求反比例函数表达式;(2)点P是直线AB下方反比例函数图象上一点,连结,,,PAPBPCPD,若PCAV和PDB△面积相等,求点P的坐标.【答案】(1)240yxx=>;(2)(22,2)【解析】(1)∵A(1,m)为一次函数和反比例函数图像的交点,∴19422m=-+=,代入20kyxx=>中,得41k=,则k=4,∴反比例函数表达式为240yxx=>;
(2)∵点B,P在反比例函数图像上,∴142n=,设P(p,4p),∴n=8,∵PCAV和PDB△面积相等,AC⊥y轴,BD⊥x轴,
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。
反比例函数与一次函数综合练习题(总复习用)
y x 0反比例函数与一次函数综合练习题1.如图是反比例函数 y=m+2x 的图象的一支,根据图象回答下列问题: (1)图象的另一支在哪个象限?常数m 的取值范围是什么? (2)已知点(-3,y 1), (-1,y 2), (2,y 3), 则函数值y 1、y 2、y 3的大小关系怎样?2.已知:如图,一次函数的图象经过第一、二、三象限,与y 轴交于点C ,与x 轴交于点D .OB =10 ,tan ∠DOB =13. ⑴求反比例函数的解析式:⑵设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m的函数关系式,并写出自变量m 的取值范围;3.如图所示,已知反比例函数y= k x的图象经过点A (- 3 ,b ),过点A 作AB ⊥x 轴于点B ,△AOB 的面积为 3 。
⑴求k 、b 的值;⑵若一次函数y=ax+1的图象经过点A ,并且与x 轴相交于点M ,求AO ∶AM ; ⑶如果以AM 为一边的正三角形AMP 的顶点P 在二次函数y=-x 2+ 3 mx+m -9的图象上,求m 的值。
4.如图,已知C 、D 是双曲线y= m x 在第一像限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(x 1,y 1),(x 2,y 2),连结OC 、OD 。
⑴求证:y 1<OC<y 1+ 1y m ; ⑵若∠BOC=∠AOD=α,tan α=13,OC=10 ,求直线CD 的解析式; ⑶在⑵的条件下,双曲线上是否存在一点P ,使得S △POC =S △POD ?若存在,请给出证明;若不存在,请说明理由。
5.已知一次函数y=mx+b 与反比例函数y= m x(m ≠0) ⑴k 满足什么条件时,这两个函数在同一坐标系xOy 中的图象有两个公共点?⑵设⑴中的两个公共点为A ,B ,试判断∠AOB 是锐角还是钝角?6.已知A (m ,2)是直线l 与双曲线y= 3x的交点。
反比例与一次函数综合面积问题,比较大小问题
反比例与一次函数综合(1)考点:1.求反比例函数,一次函数解析式,求点坐标2.面积问题3.通过图像求不等式解集4.线段和差最值课前思考:1.已知点A(4.5,5), B(6,0), C(-2,0), 求△ABC的面积.小结:求面积方法__________________________2.已知点A(-2,1),B(1,-3),C(3,4), 求△ABC的面积.小结:求面积方法__________________________铅锤法:如果三角形的三条边与坐标轴都不平行,则通常有以下计算方法:①如图,过三角形的某个顶点作与x轴或y轴的平行线,将原三角形分割成两个满足一条边与坐标轴平行的三角形,分别求出面积后相加.1122ABC ACD ADB C B ACE CEB A BS S S AD y y S S CE x x∆∆∆∆∆=+=⋅-=+=⋅-其中D,E两点坐标可以通过BC或AB的直线方程以及A或C点坐标得到.②如图,首先计算三角形的外接矩形的面积,然后再减去矩形内其他各块面积.ABC DEBF DAC AEB CBFS S S S S∆∆∆∆=---.所涉及的各块面积都可以通过已知点之间的坐标差直接求得.③如图,通过三个梯形的组合,可求出三角形的面积.该方法不常用.()()()()()()ABABCBCBACACADEBADFCCFEByyxxyyxxyyxxSSSS+--+-++-=-+=212121ABC△经典例题:例1、如图,已知一次函数b +x k =y 11的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数xk =y 22的图分别交于C 、D 两点,点D 的坐标(2,-3),点B 是线段AD 的中点。
(1)求一次函数b +x k =y 11与反比例函数xk =y 22的解析式。
(2)求△COD 的面积;(3)直接写出21y >y 时自变量x 的取值范围。
变式练习:如图,一次函数y=kx+b 的图象与反比例函数y=的图象交于点A ﹙﹣2,﹣5﹚ C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1)求反比例函数y=和一次函数y=kx+b 的表达式; (2)连接OA ,OC .求△AOC 的面积.(3)直接写出kx+b>时自变量x 的取值范围。
一次函数与反比例函数综合题含答案.
正半轴于点 M,且点 M 为线段 OB 的中点. (1)求直线 AM 的函数解析式.
(2)试在直线 AM 上找一点 P,使得 S S ,请直接写出点 P 的坐标.
△ ABP
△AOB
(3)若点 H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以 A、B、M、
H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.
2000
已知该公司的加工能力是:每天能精加工 5 吨或粗加工 15 吨,但两种加工不能同时进行.受季节等条件的限制,
公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求 12 天刚好加工完 140 吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润W 元与精加工的蔬菜吨数 m 之间的函数关系式;
;
(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过 10 km 时能够相互望见,求甲、乙两船可以相互望见时 x 的取值范围.
27. 由于连日无雨,某水库的蓄水量随着时间的增加而减少.右图是该水库的蓄水量y (万米 3)与
干旱持续时间 x (天)之间的函数图象. (1)求 y 与 x 之间的函数关系式;
A.12
B.9
C.6
Dபைடு நூலகம்4
7.
如图,反比例函数 y
k x 0 的图象经过矩形OABC
x
对角线的交点 M,分别
与 AB、BC 相交于点 D、E. 若四边形 ODBE 的面积为 6,则 k 的值为( )
y A
D C
B
O
x
A.1 B. 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖州十二中数学快乐教学航标单 八年级下 主备( 章洁 ) 审核( 尹勇 )
反比例函数与一次函数综合的复习航标单
班级 姓名
航标1 会求反比例函数与一次函数的交点坐标
1. 如图,直线y=mx与反比例函数y=kx相交于A,B两点,点A的坐标为(1,3).
(1)求点B的坐标;
(2)计算线段AB的长.
变式:向右平移直线AB,交反比例函数图象于C,D两点,且点C坐标为(3,1),求点
D的坐标。
航标2 会根据反比例函数与一次函数的图象求自变量的取值范围
2. 如图,一次函数y1=kx+b(k≠0)和反比例函数y2=mx(m≠0)的图象交于点A(-1,6),
B(a,-2).
(1)求一次函数与反比例函数的表达式;
(2)根据图象直接写出y1>y2时,x的取值范围.
变式:结合图象直接写出:00mxx当时,不等式kx+b-的解集.
航标3 会根据反比例函数与一次函数的图象求三角形的面积
湖州十二中数学快乐教学航标单 八年级下 主备( 章洁 ) 审核( 尹勇 )
3. 在第2题的条件下,(1)求△AOB的面积.
(2)若P是y轴上一点,且满足△PAB的面积是9,求出OP
的长.
航标4 会求反比例函数与一次函数图象上动点的最值问题
4. 如图,已知A(1,a)是反比例函数y=-3x图象上的一点,直线y=-12x+12与反比例函
数y=-3x的图象在第四象限的交点为B.
(1)求直线AB的表达式;
(2) 动点P(x,0)在x轴的正半轴上运动,当线段PA与
线段PB之和达到最小时,求点P的坐标.
变式:在(2)的条件下,求△APB的面积。
湖州十二中数学快乐教学航标单 八年级下 主备( 章洁 ) 审核( 尹勇 )
1. 如图,双曲线11kyx (k1>0)与直线y2=k2x+b(k2>0)的一个交点的横坐标为2.当x
=3时,y1____y2.(填“>”、“<”或“=”)
(第1题) (第2题)
2. 在平面直角坐标系中直线2yx与反比例函数kyx的图象有唯一公共点,若直
线yxm与反比例函数kyx的图象有2个公共点,则m的取值范围
是 。
3. 如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=mx的图
象都经过点A(2,-2).
(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内
的交点为C,连结AB,AC,求点C的坐标及△ABC的面积.
携生悟道——先独立完成,完成后交小组长,然后老师当堂或课后批阅。