激光拉曼光谱仪的激光光源

合集下载

激光共聚焦拉曼光谱仪(raman)的工作原理及应用优势

激光共聚焦拉曼光谱仪(raman)的工作原理及应用优势

激光共聚焦拉曼光谱仪(raman)的工作原理及应用优势
激光共聚焦拉曼光谱仪(Raman spectroscopy)利用拉曼散射现象来获得样品的信息。

其工作原理如下:
激光激发:激光光源照射在样品上,激发样品中的分子振动和转动。

拉曼散射:样品中的分子在受到激光激发后,会发生拉曼散射。

在这个过程中,一部分光子的能量被转移给样品分子,使得散射光子的能量发生改变,这种能量变化对应于样品分子的振动和转动能级差。

光谱测量:拉曼散射光子的能量变化被测量,生成拉曼光谱。

这个光谱提供了关于样品分子的结构、化学成分、晶体结构等信息。

激光共聚焦拉曼光谱仪的应用优势包括:
非破坏性分析:拉曼光谱是一种非破坏性的分析技术,可以直接对样品进行测试而无需破坏样品。

高灵敏度:拉曼光谱可以检测到样品中的微量成分,具有很高的灵敏度。

高空间分辨率:激光共聚焦技术结合在一起,可以提供高空间分辨率的拉曼光谱图像,对微区域样品的分析提供了可能。

无需或简化样品准备:拉曼光谱不需要复杂的样品准备过程,对样品的要求相对较低,可以节省时间和成本。

多领域应用:拉曼光谱在材料科学、药物研发、生命科学、环境监测等领域都有广泛应用,可以用于分析固体、液体、气体等不同类型的样品。

总的来说,激光共聚焦拉曼光谱仪因其非破坏性、高灵敏度、高空间分辨率等优势,在科学研究和工业领域具有重要的应用价值。

对拉曼光谱仪用激光光源的实验研究

对拉曼光谱仪用激光光源的实验研究

由上 ,针对特定检测 目 标为汽油等液体违禁品,从降
荧光背景较弱。对 比表 1 ,常见 的红 ~红外波段的激光器
6 匿圃圈 21 ̄第1 8 02 期
* 采 口0
主要有 N :A dY G激光器 、氦氖激光器 、半导体 激光器 和二
6 1 m激光器与 自建光路对汽油和乙醇样品测量得到的拉 7n 曼光谱。显然 ,汽油和乙醇在6 1 m光激发下荧光背景较 7n 低 ,具有 明显的拉曼光谱信号 。因此 ,6 1m激光器符合 7n
格低等优点 。但是较高功率 的氦氖激光器 ( 2 mW 有时 >0 J
综上所述 ,我们从仪器 的应用场合 、小型化开发 目标 以及信号的背景噪声等出发 ,对适用于液体 违禁 品检测的
在6 0 m附近产生异常高的强度 ,从而引起光谱信号的突 5n 变 ,因此也 不符合我们的开发要求。输 出波长为7 5 m的 8n 近红外激光器属于半导体 激光器 ,具有体积小 、效率高、
于我们的开发方案。
的荧光背景强度与入射光频率 即物质分子的选择 性吸收有 关。荧光光谱一般从外观上要 比拉曼峰宽很多 ,看起来就 像拉曼光谱缓慢 变化的基线 。对于有些物质 ,即使其浓度 很低 ,但由于其荧光横截面 比拉曼横截面大 1 ,从而 0倍 产生的荧光背景会 比整体 材料产生的拉 曼光谱还要强 ,因
浦介质 ,一般在 某个波长范围输 出波长可调的激光,常用
于共 振 拉曼 光谱 仪 。其 它 激光 器 中的 自由电子 激光 器
( E F LJ可在一个宽 的频率范 围 ( 微波至真空紫外 ) 出 输
平均功率为几k W的相干共线激光 。自旋反转拉曼激光器
则采 用处于低温和磁场下具有 自旋反转效应 的半导体材料

拉曼光谱仪器的构成及各部分的作用

拉曼光谱仪器的构成及各部分的作用

拉曼光谱仪器的构成及各部分的作用
拉曼光谱仪是一种用于研究物质的分子结构和化学成分的仪器。

它主要由以下几个部分组成:
1. 激光源:激光源产生单色、单频、高亮度的激光光束,通常使用氩离子激光器、二极管激光器等。

2. 光学系统:光学系统包括透镜、反射镜和光栅等元件,用于对激光光束进行聚焦、衍射和分光,以及将样品上的散射光收集并传送到探测器上。

3. 样品室:样品室是放置待测样品的区域,通常有一个可调节的样品台,用于固定和定位样品。

4. 探测器:探测器用于接收样品产生的散射光,并转换为电信号。

常用的探测器包括光电二极管 (PD)、多道光电二极管阵列 (PDA) 和电荷耦合器件 (CCD) 等。

5. 分光光学系统:分光光学系统通过光栅或其他衍射元件将散射光按波长进行分离和选择,以便进行光谱分析。

6. 数据处理系统:数据处理系统包括计算机和相关的软件,用于控制光谱仪的操作、采集和处理光谱数据,并提供可视化的结果和分析报告。

拉曼光谱仪的工作原理是基于拉曼散射现象,当激光光束通过样品时,部分光子与样品中的分子相互作用,发生能量转移,产生了拉曼散射光。

通过测量和分析这些散射光的强度和频率变化,可以得到样品的拉曼光谱,从而了解样品的分子结构和化学成分。

总之,拉曼光谱仪器的各部分在整个测量过程中起着不同的作用,从激光源的产生到探测器的信号接收,再到数据处理与分析,每个部分都是不可或缺的,共同完成对样品的拉曼光谱分析。

激光拉曼光谱仪原理

激光拉曼光谱仪原理

激光拉曼光谱仪原理
激光拉曼光谱仪是一种基于拉曼散射原理的仪器,用于研究和分析样品的分子结构。

它利用激光光源照射样品,将激光光子与样品分子相互作用的结果,通过光学系统收集、分析和解读后,得到样品的拉曼散射光谱。

激光拉曼光谱仪的工作原理如下:
1. 激光源:使用可调谐激光源,通常是单色激光器,产生具有特定波长的单色激光光源。

常用的激光波长包括532 nm和
785 nm。

2. 光学系统:激光光源经过准直、聚焦等光学元件,使光线在样品上聚焦成一个细小的光斑点。

同时,收集样品上产生的拉曼散射光。

3. 样品与激光相互作用:激光光斑照射在样品上,激发样品分子的振动、转动等运动。

一部分激光能量被样品吸收,剩余的能量以散射光的形式发出。

激光散射光中,有一部分与样品分子的振动、转动等运动信息相关,称为拉曼散射光。

4. 光谱分析:拉曼散射光由光学系统收集后,经过分光装置进行波长分离,最后通过光电探测器转化为电信号。

通过记录和分析这些电信号,可以得到样品的拉曼光谱。

激光拉曼光谱仪的优点是非常灵敏、无需样品处理,能够在非破坏性条件下对样品进行分析。

它广泛应用于化学、材料科学、生物分析等领域,可以用于表征样品的组分、结构、反应动力学等信息。

激光拉曼散射光谱知识

激光拉曼散射光谱知识

凡是具有对称中心 的分子,它们的红外吸 收光谱与拉曼散射光谱 没有频率相同的谱带一 一互相排斥定则由于拉 曼与红外光谱具有互补 性,因而二者结合使用 能够得到更丰富的信息。
高分子的红外二向色性及拉曼去偏振度
在聚酰胺-6的红外光谱中,某些谱带显示了 明显的二向色性特性。
它们是NH伸缩振动(3300cm-1)、CH2伸缩振动 (3000-2800cm-1)、酰胺I(1640cm-1)及配胺 Ⅱ(1550cm-1)吸收和酰胺Ⅲ(1260cm-1和1201cm- 1)吸收谱带。
对于一般红外及拉曼 光谱,可用以下几个 经验规则判断:
1、互相排斥规则
凡有对称中心的分子, 若有拉曼活性,则红 外是非活性的;若有 红外活性,则拉曼是 非活性的;
2、互相允许规则
凡无对称中心的分子,除属于点 群D5h, D2h和O的分子外.都有 一些既能在拉曼散射中出现,又 能在红外吸收中出现的跃迁。若 分子无任何对称性,则它的红外 和拉曼光谱就非常相似。
拉曼光谱中,完全自由取向的分子所散
射的光也可能是偏振的,因此一般在拉曼光 谱中用退偏振比(或称去偏振度)ρ表征分子 对称性振动模式的高低。
= I
I
ρ<3/4的谱带称为偏振谱带, 表示分子有较高的对称振动 模式;ρ=3/4的谱带称为退 偏振谱带,表示分子的对称 振动模式较低。
式中I∥和I┴——分别代 表与激光电矢量相垂直 和相平行的谱线的强度
◆ 分子对称骨架振 动的红外信息很少 见到。故拉曼光谱 和红外光谱虽产生 的机理不同,但它 们能相互补充,较 完整地获得分子振 动能级跃迁的信息。
拉曼光谱仪
便携式拉曼光谱仪
1.激光器功率: 150 - 200 mW 或 300 - 400 mW* 通过调整可以获得高能量输出 2.光谱范围: 300 - 3900 cm-1 3.像素: 14 µ m x 200 µ m (2048 像素) 4.分辨率: < 6 cm-1 5.光谱覆盖 ~ 200 cm-1 ~2400 cm-1 (785 nm /808 nm激发

激光拉曼光谱分析

激光拉曼光谱分析
•2
2 拉曼效应(1) 1)瑞利散射
一个频率为 的单色光(一般为可见光),当
不被物体吸收时,大部分将保持原来的方向穿过 物体,但大约有1/105——1/103的光被散射到各 个方向。并且在与入射光垂直的方向,可以看到 这种散射光。1871年科学家Rayleigh发现了这种 现象,因此称之为瑞利散射。该种散射为弹性碰 撞,光的频率不变。
•11
2 拉曼效应(10)
拉曼散射的多个不同的波数
•12
2 拉曼效应(11)
拉曼散射的多个不同的波数
•13
3 拉曼光谱仪(1)
1)激光光源:氩离子激光器,激光波长 514.5nm(绿光), 氦氖激光器,激光波长 488.0nm(紫光)。
激光的特点:偏振光,强度大,可聚集成很 细的一束。 照射在样品上的一个点(1微米区域),因 此把激光拉曼光谱又称之外激光拉曼微探 针:Laser Raman Microscopy (LRM)
•5
2 拉曼效应(4)
若入射光的波数为0,则拉曼散射的0i 。 又称之为拉曼位移。
E1为分子的基态; E2为除基态以外的某
一能级(如某一振 动态) E3和E3’为该分子的受 激虚态之能级。
•6
2 拉曼效应(5)
1)处于基态E1的分子受入射 光子h0的激发,跃迁到受 激虚态E3,而后又回到基 态E1。或者E2的分子激发 到E3’,很快又回到E2,这 两种情况下,能量都没有 改变,这种弹性碰撞称之 为瑞利散射,散射光的波 数等于入射光的波数。
散射波的波数等于0+’
•9
2 拉曼效应(8)
斯托克斯散射和反斯 托克斯散散统称为拉 曼散射。实际上,反 斯托克斯散射的强度 比较大,因此在拉曼 光谱测定上习惯采用 反斯托克斯散射。

拉曼光谱仪工作原理

拉曼光谱仪工作原理
拉曼光谱仪是一种用来测量拉曼散射光谱的仪器。

其工作原理如下:
1. 激光源:拉曼光谱仪使用一束高强度、单色的激光作为光源。

常见的激光源有氦氖激光器、二极管激光器等。

激光的功率和波长选择与待测样品的特性有关。

2. 散射装置:激光束通过一个透镜聚焦成一束平行光,并由散射物体(通常是待测样品)散射。

散射光中的一部分与激光光子
产生频率差(拉曼散射)。

3. 光谱仪:拉曼光谱仪使用一台分光仪来分离频率差的散射光,并测量其强度。

它通常由一个凹面光栅或散射体光栅组成,可以将不同频率的光条带分离为不同的光谱线。

4. 探测器:分离的光谱线经过光谱仪后会落在一个探测器上,例如光电二极管、硅光电二极管或光电倍增管。

这些探测器能够测量散射光的强度。

5. 数据分析:拉曼光谱仪通过计算和分析测得的光谱数据,可以确定样品的分子结构、化学成分和其他物理特性。

常见的数据分析方法有基准校准、强度校正、峰拟合等。

总结起来,拉曼光谱仪通过测量样品散射的拉曼光谱,从而得知样品的分子结构和特性。

它具有非侵入性、无需样品处理和
高灵敏度等优点,因此在化学、生物、材料科学等领域得到广泛应用。

拉曼光谱仪的基本原理

拉曼光谱仪的基本原理
拉曼光谱仪是一种常用于分析物质的仪器,基于拉曼散射现象进行工作。

其基本原理包括以下几个步骤:
1. 激发:拉曼光谱仪使用一定波长的激发光束照射样品。

通常使用激光作为激发光源,常见的波长包括532 nm和785 nm等。

2. 散射:激发光在样品表面散射后,会发生拉曼散射现象。

在散射中,只有很小一部分光子与样品分子发生相互作用,而绝大多数光子会维持其原有的频率和能量。

3. 频移:拉曼散射发生时,一部分激发光子与样品分子发生相互作用,使样品分子的电子和分子振动状态发生变化。

这种相互作用引起光子频移,形成散射光中较弱的拉曼散射光子。

4. 分析:拉曼光谱仪通过收集和分析散射光,以获取样品的拉曼光谱。

拉曼散射光中的频移与样品分子的化学结构和组成相关,因此可以通过分析拉曼光谱来识别和定量分析样品中的分子。

5. 探测:收集的散射光被拉曼光谱仪中的光学元件如滤光片和光栅分散器进行滤波和分光,然后被光敏探测器接收和测量。

常见的光敏探测器包括CCD和PMT等。

6. 分析与解释:获取的拉曼光谱可以在计算机上进行处理和分析。

通过与已知的参考光谱比对或使用化学方法进行定性和定量分析,可以确定样品中的分子成分、结构和其他相关信息。

总的来说,拉曼光谱仪利用激发光与样品分子相互作用产生的拉曼散射光来获取样品的拉曼光谱,从而实现对样品成分和结构的分析和识别。

拉曼光谱激发光源

拉曼光谱激发光源通常使用激光器,如Ar离子激光器、Kr离子激光器、He-Ne 激光器等。

这些激光器通常使用单线输出功率为20~1000mw,并且其功率的稳定性好,变动不大于1%。

此外,样品放置方式也会因实验需求和设备类型的不同而有所不同,包括直接的光学界面、显微镜、光纤维探针和样品等。

在拉曼光谱仪中,激发光源的波长和功率对拉曼散射光的激发效率有着重要影响。

不同的激发光源波长和功率会导致拉曼散射光的能量分布不同,从而影响拉曼光谱的测量结果。

因此,针对不同的实验需求和样品类型,需要选择合适的激发光源波长和功率来获取准确的拉曼光谱信息。

激光拉曼光谱详解

激光为什么是拉曼光 谱 的 理 想 光 源 ?
拉曼散射的发展
1928年,印度物理学家拉曼(G.V.Raman)首次发现拉曼 散射效应,荣获1930年诺贝尔物理学奖。 1928——1930年,拉曼光谱成为研究光谱的主要手段。因 为拉曼光谱喇曼频率及强度、偏振等标志着散射物质的性 质。
1940——1960年,拉曼光谱地位一落千丈,主要是因为拉 曼效应太弱,并要求被测样品体积足够大、无色、无尘埃、 无荧光等。
按照统计分布率,分子数在热平衡下按 能量的分布为玻耳兹曼分布,其中α为 能级E的简并度,因此布居在较高能级上 的分子数要少于较低能级上的,这就使 频率增加的散射谱线(反斯托克斯线) 的强度要比频率减少的散射谱线(斯托 克斯线)弱些。
邱 东 敏
拉曼原理
Rayleigh scattering: I λ-4
hn hn’ n = n’ n = n’
n = n’ 这种现象称为拉曼散射 激发态
anti stokes
stokes
虚能级 准激发态
பைடு நூலகம்基态
Raman Rayleigh Raman scattering
为何斯托克斯谱线强度比反斯 托克斯谱线大?
窄的激光器,多波长激光器一起
使用,这样拉曼效果才能出来比较好
何谓瑞利散射、拉曼散 射、斯托克斯散射、反 斯托克斯散射?
瑞利散射
当一束激发光的光子与作为散射中 心的分子发生相互作用时,大部分 光子仅是改变了方向,发生散射, 而光的频率仍与激发光源一致,这 种散射称为瑞利散射。
拉曼效应
光通过介质时由于入射光与分子运动 相互作用而引起的频率及方向发生变 化的散射。其散射光的强度约占总散 射光强度的10-3。拉曼散射的产生原 因是光子与分子之间发生了能量交换, 改变了光子的能量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光拉曼光谱仪的激光光源
激光拉曼光谱仪的激光光源通常使用激光器作为光源。

常见的激光光源包括:
1. 氦氖激光器(He-Ne Laser):氦氖激光器是最常用的激光光源之一,它发射的激光波长为63
2.8纳米(红光),适用于一些常见的拉曼光谱分析应用。

2. 氩离子激光器(Ar Laser):氩离子激光器发射的激光波长通常在488纳米至514纳米之间,适用于一些特定的拉曼光谱分析应用。

3. 二极管激光器(Diode Laser):二极管激光器可以提供多种波长的激光光源,包括红光、绿光和蓝光等。

它们通常比较紧凑和稳定,适用于便携式和实时监测的应用。

4. 固体激光器(Solid-state Laser):固体激光器通常使用钕(Nd)或铒(Er)等离子体作为激活剂,可以提供多种波长的激光光源,包括红光、近红外光和紫外光等。

这些激光器通常具有较高的功率和较窄的线宽,适用于高分辨率和高灵敏度的拉曼光谱分析。

5. 光纤激光器(Fiber Laser):光纤激光器利用光纤作为激光介质,可以提供多种波长的激光光源,具有较高的功率和较窄的线宽。

光纤激光器通常比较紧凑和稳定,适用于便携式和实时监测的应用。

这些激光光源可以根据实际需求选择,以满足不同的拉曼光谱分析应用要求。

相关文档
最新文档