2021版高考数学大一轮温习第八章立体几何初步第5节垂直关系学案北师大版
2019届高考数学大一轮复习第八章立体几何与空间向量8.5垂直关系学案理北师大版

§8.5垂直关系1.直线与平面垂直a⊥b,bα(b为α内的任意一条直线)a⊥m,a⊥n,m,nα,m∩n=Oa⊥α,bα2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理⎭⎬⎫lβl⊥α⇒α⊥β⎭⎪⎬⎪⎫α⊥βα∩β=alβl⊥a⇒l⊥α知识拓展重要结论(1)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( ×)(2)垂直于同一个平面的两平面平行.( ×)(3)直线a⊥α,b⊥α,则a∥b.( √)(4)若α⊥β,a⊥β,则a∥α.( ×)(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √)(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( ×)题组二教材改编2.下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案 D解析对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.3.在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的________心;(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.∵PC⊥PA,PB⊥PC,PA∩PB=P,∴PC⊥平面PAB,又AB平面PAB,∴PC⊥AB,∵AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG平面PGC,∴AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.题组三易错自纠4.(2017·湖南六校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下列给出的条件中一定能推出m⊥β的是( )A.α⊥β且mαB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥β答案 C解析由线面垂直的判定定理,可知C正确.5.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是( )A.与AC,MN均垂直B.与AC垂直,与MN不垂直C.与AC不垂直,与MN垂直D.与AC,MN均不垂直答案 A解析因为DD1⊥平面ABCD,所以AC⊥DD1,又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1,因为OM平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.6.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B 的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是( )A.MN∥ABB.平面VAC⊥平面VBCC.MN与BC所成的角为45°D.OC⊥平面VAC答案 B解析由题意得BC⊥AC,因为VA⊥平面ABC,BC平面ABC,所以VA⊥BC.因为AC∩VA=A,所以BC⊥平面VAC.因为BC平面VBC,所以平面VAC⊥平面VBC.故选B.题型一直线与平面垂直的判定与性质典例如图所示,在四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD平面ABCD,∴PA⊥CD.又∵AC⊥CD,PA∩AC=A,PA,AC平面PAC,∴CD⊥平面PAC.而AE平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,PC,CD平面PCD,∴AE⊥平面PCD,而PD平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,AB平面ABCD,∴PA⊥AB.又∵AB⊥AD,且PA∩AD=A,∴AB⊥平面PAD,而PD平面PAD,∴AB⊥PD.又∵AB∩AE=A,AB,AE平面ABE,∴PD⊥平面ABE.思维升华证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.跟踪训练如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊈平面AA1C1C,AC平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1平面BCC1B1,BC平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1平面B1AC,所以BC1⊥AB1.题型二 平面与平面垂直的判定与性质典例 (2018·开封模拟)如图,在四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE ∥平面PAD ; (2)求证:平面EFG ⊥平面EMN .证明 (1)方法一 取PA 的中点H ,连接EH ,DH .因为E 为PB 的中点, 所以EH 綊12AB .又CD 綊12AB ,所以EH 綊CD .所以四边形DCEH 是平行四边形,所以CE ∥DH . 又DH 平面PAD ,CE ⊈平面PAD , 所以CE ∥平面PAD . 方法二 连接CF .因为F 为AB 的中点, 所以AF =12AB .又CD =12AB ,所以AF =CD .又AF∥CD,所以四边形AFCD为平行四边形.因此CF∥AD,又CF⊈平面PAD,AD平面PAD,所以CF∥平面PAD.因为E,F分别为PB,AB的中点,所以EF∥PA.又EF⊈平面PAD,PA平面PAD,所以EF∥平面PAD.因为CF∩EF=F,故平面CEF∥平面PAD.又CE平面CEF,所以CE∥平面PAD.(2)因为E,F分别为PB,AB的中点,所以EF∥PA. 又因为AB⊥PA,所以EF⊥AB,同理可证AB⊥FG.又因为EF∩FG=F,EF,FG平面EFG,所以AB⊥平面EFG.又因为M,N分别为PD,PC的中点,所以MN∥CD,又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又因为MN平面EMN,所以平面EFG⊥平面EMN.引申探究1.在本例条件下,证明:平面EMN⊥平面PAC.证明因为AB⊥PA,AB⊥AC,且PA∩AC=A,PA,AC平面PAC,所以AB⊥平面PAC.又MN∥CD,CD∥AB,所以MN∥AB,所以MN⊥平面PAC.又MN平面EMN,所以平面EMN⊥平面PAC.2.在本例条件下,证明:平面EFG∥平面PAC.证明因为E,F,G分别为PB,AB,BC的中点,所以EF∥PA,FG∥AC,又EF⊈平面PAC,PA平面PAC,所以EF∥平面PAC.同理FG∥平面PAC.又EF∩FG=F,所以平面EFG ∥平面PAC . 思维升华 (1)判定面面垂直的方法 ①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.跟踪训练 (2017·南昌模拟)如图,已知在四棱锥P —ABCD 中,底面ABCD 是边长为4的正方形,△PAD 是正三角形,平面PAD ⊥平面ABCD ,E ,F ,G 分别是PD ,PC ,BC 的中点.(1)求证:平面EFG ⊥平面PAD ;(2)若M 是线段CD 上一点,求三棱锥M —EFG 的体积. (1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,CD 平面ABCD ,且CD ⊥AD ,所以CD ⊥平面PAD . 又因为在△PCD 中,E ,F 分别是PD ,PC 的中点, 所以EF ∥CD ,所以EF ⊥平面PAD .因为EF 平面EFG ,所以平面EFG ⊥平面PAD . (2)解 因为EF ∥CD ,EF 平面EFG ,CD ⊈平面EFG ,所以CD ∥平面EFG ,因此CD 上的点M 到平面EFG 的距离等于点D 到平面EFG 的距离, 所以V 三棱锥M —EFG =V 三棱锥D —EFG ,取AD 的中点H ,连接GH ,EH ,FH ,则EF ∥GH , 因为EF ⊥平面PAD ,EH 平面PAD , 所以EF ⊥EH .于是S △EFH =12EF ×EH =2=S △EFG ,因为平面EFG ⊥平面PAD ,平面EFG ∩平面PAD =EH ,△EHD 是正三角形,所以点D 到平面EFG 的距离等于正△EHD 的高,即为 3. 所以三棱锥M —EFG 的体积V 三棱锥M —EFG =V 三棱锥D —EFG =13×S △EFG ×3=233. 题型三 垂直关系中的探索性问题典例 如图所示,平面ABCD ⊥平面BCE ,四边形ABCD 为矩形,BC =CE ,点F 为CE 的中点.(1)证明:AE ∥平面BDF ;(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM ⊥BE ?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由. (1)证明 连接AC 交BD 于点O ,连接OF .∵四边形ABCD 是矩形,∴O 为AC 的中点. 又F 为EC 的中点,∴OF ∥AE . 又OF 平面BDF ,AE ⊈平面BDF ,∴AE ∥平面BDF .(2)解 当点P 为AE 的中点时,有PM ⊥BE ,证明如下:取BE 的中点H ,连接DP ,PH ,CH .∵P 为AE 的中点,H 为BE 的中点,∴PH ∥AB . 又AB ∥CD ,∴PH ∥CD ,∴P,H,C,D四点共面.∵平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,CD⊥BC,CD平面ABCD,∴CD⊥平面BCE.又BE平面BCE,∴CD⊥BE,∵BC=CE,且H为BE的中点,∴CH⊥BE.又CH∩CD=C,且CH,CD平面DPHC,∴BE⊥平面DPHC.又PM平面DPHC,∴PM⊥BE.思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)对于探索性问题用向量法比较容易入手.一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.跟踪训练如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC的中点.AB=BC,AC=2,AA1= 2.(1)求证:B1C∥平面A1BM;(2)求证:AC1⊥平面A1BM;(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时BNBB1的值;如果不存在,请说明理由.(1)证明连接AB1与A1B,两线交于点O,连接OM.在△B1AC中,∵M,O分别为AC,AB1的中点,∴OM∥B1C,又∵OM 平面A 1BM ,B 1C ⊈平面A 1BM , ∴B 1C ∥平面A 1BM .(2)证明 ∵侧棱AA 1⊥底面ABC ,BM 平面ABC , ∴AA 1⊥BM ,又∵M 为棱AC 的中点,AB =BC ,∴BM ⊥AC . ∵AA 1∩AC =A ,AA 1,AC 平面ACC 1A 1, ∴BM ⊥平面ACC 1A 1, ∴BM ⊥AC 1. ∵AC =2,∴AM =1.又∵AA 1=2,∴在Rt△ACC 1和Rt△A 1AM 中, tan∠AC 1C =tan∠A 1MA =2, ∴∠AC 1C =∠A 1MA ,即∠AC 1C +∠C 1AC =∠A 1MA +∠C 1AC =90°, ∴A 1M ⊥AC 1.∵BM ∩A 1M =M ,BM ,A 1M 平面A 1BM , ∴AC 1⊥平面A 1BM .(3)解 当点N 为BB 1的中点,即BN BB 1=12时,平面AC 1N ⊥平面AA 1C 1C . 证明如下:设AC 1的中点为D ,连接DM ,DN .∵D ,M 分别为AC 1,AC 的中点, ∴DM ∥CC 1,且DM =12CC 1.又∵N 为BB 1的中点,∴DM ∥BN ,且DM =BN , ∴四边形BNDM 为平行四边形, ∴BM ∥DN ,∵BM ⊥平面ACC 1A 1,∴DN ⊥平面AA 1C 1C . 又∵DN 平面AC 1N , ∴平面AC 1N ⊥平面AA 1C 1C .立体几何证明问题中的转化思想典例 (12分)如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.思想方法指导 (1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理.(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等.(3)证明过程一定要严谨,使用定理时要对照条件,步骤书写要规范.规范解答证明(1)如图所示,连接NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD.[2分]∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形,[3分]∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,∴四边形AA1KN为平行四边形,∴AN∥A1K.[4分]又∵A1K平面A1MK,AN⊈平面A1MK,∴AN∥平面A1MK.[6分](2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1.[8分]在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C,[10分]∴MK⊥B1C.∵A1B1平面A1B1C,B1C平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK平面A1MK,∴平面A1B1C⊥平面A1MK.[12分]1.若平面α⊥平面β,平面α∩平面β=直线l,则( )A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直答案 D解析对于A,垂直于平面β的平面与平面α平行或相交,故A错误;对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错误;对于C,垂直于平面β的平面与直线l平行或相交,故C错误.D正确.2.(2017·深圳四校联考)若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为( )A.过点P垂直于平面α的直线平行于平面βB.过点P垂直于直线l的直线在平面α内C.过点P垂直于平面β的直线在平面α内D.过点P且在平面α内垂直于l的直线必垂直于平面β答案 B解析由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,因此也平行于平面β,因此A正确;过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B不正确;根据面面垂直的性质定理,知选项C,D正确.3.设α,β是两个不同的平面,l,m是两条不同的直线,且lα,mβ( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m答案 A解析选项A,∵l⊥β,lα,∴α⊥β,A正确;选项B,α⊥β,lα,mβ,l 与m的位置关系不确定;选项C,∵l∥β,lα,∴α∥β或α与β相交;选项D,∵α∥β,lα,mβ,此时,l与m的位置关系不确定.故选A.4.(2017·中原名校联盟联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )A.α⊥β且mαB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且n∥β答案 C解析对于选项A,由α⊥β且mα,可得m∥β或m与β相交或mβ,故A不成立;对于选项B,由α⊥β且m∥α,可得mβ或m∥β或m与β相交,故B不成立;对于选项C,由m∥n且n⊥β,可得m⊥β,故C正确;对于选项D,由m⊥n且n∥β,可得m∥β或m与β相交或mβ,故D不成立.故选C.5.(2018·衡水调研)如图,在正四面体P—ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC答案 D解析因为BC∥DF,DF平面PDF,BC⊈平面PDF,所以BC∥平面PDF,故选项A正确;在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,且AE,PE平面PAE,所以BC⊥平面PAE,因为DF∥BC,所以DF⊥平面PAE,又DF平面PDF,从而平面PDF⊥平面PAE.因此选项B,C均正确.6.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M 为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A.①② B.①②③C.① D.②③答案 B解析对于①,∵PA⊥平面ABC,∴PA⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∵AC∩PA=A,∴BC⊥平面PAC,又PC平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA平面PAC,OM⊈平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.7.如图,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.答案 4解析∵PA⊥平面ABC,AB,AC,BC平面ABC,∴PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.由BC⊥AC,且AC∩PA=A,得BC⊥平面PAC,从而BC⊥PC,因此△ABC,△PBC也是直角三角形.8.(2018·洛阳模拟)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为正确的条件即可)答案 DM ⊥PC (或BM ⊥PC 等)解析 ∵PA ⊥底面ABCD ,∴BD ⊥PA ,连接AC ,则BD ⊥AC ,且PA ∩AC =A ,∴BD ⊥平面PAC ,∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD , 而PC 平面PCD ,∴平面MBD ⊥平面PCD .9.如图,∠BAC =90°,PC ⊥平面ABC ,则在△ABC 和△PAC 的边所在的直线中,与PC 垂直的直线有________;与AP 垂直的直线有________.答案 AB ,BC ,ACAB解析 ∵PC ⊥平面ABC ,∴PC 垂直于直线AB ,BC ,AC ;∵AB ⊥AC ,AB ⊥PC ,AC ∩PC =C ,∴AB ⊥平面PAC ,∴与AP 垂直的直线是AB .10.如图,在直三棱柱ABC -A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E ,要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.答案 12解析 设B 1F =x ,因为AB 1⊥平面C 1DF ,DF 平面C 1DF , 所以AB 1⊥DF .由已知可得A 1B 1=2,设Rt△AA 1B 1斜边AB 1上的高为h , 则DE =12h .又12×2×2=12×h 22+(2)2, 所以h =233,DE =33.在Rt△DB 1E 中,B 1E =⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫332=66. 由面积相等得12×66×x 2+⎝⎛⎭⎪⎫222=12×22x , 得x =12.11.如图1,四边形ABCD 为等腰梯形,AB =2,AD =DC =CB =1,将△ADC 沿AC 折起,使得平面ADC ⊥平面ABC ,E 为AB 的中点,连接DE ,DB (如图2).(1)求证:BC ⊥AD ;(2)求点E 到平面BCD 的距离. (1)证明 作CH ⊥AB 于点H ,则BH =12,AH =32,又BC =1,∴CH =32, ∴CA =3,∴AC ⊥BC ,∵平面ADC ⊥平面ABC ,且平面ADC ∩平面ABC =AC ,BC 平面ABC , ∴BC ⊥平面ADC ,又AD 平面ADC , ∴BC ⊥AD .(2)解 ∵E 为AB 的中点,∴点E 到平面BCD 的距离等于点A 到平面BCD 距离的一半. 而平面ADC ⊥平面BCD , ∴过A 作AQ ⊥CD 于Q ,又∵平面ADC ∩平面BCD =CD ,且AQ 平面ADC , ∴AQ ⊥平面BCD ,AQ 就是点A 到平面BCD 的距离. 由(1)知AC =3,AD =DC =1, ∴cos∠ADC =12+12-(3)22×1×1=-12,又0<∠ADC <π,∴∠ADC =2π3, ∴在Rt△QAD 中,∠QDA =π3,AD =1,∴AQ =AD ·sin∠QDA =1×32=32. ∴点E 到平面BCD 的距离为34. 12.(2017·湖北七市联考)《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM —DCP 与刍童ABCD —A 1B 1C 1D 1的组合体中,AB =AD ,A 1B 1=A 1D 1.台体体积公式:V =13(S ′+S ′S +S )h ,其中S ′,S 分别为台体上、下底面的面积,h 为台体的高.(1)证明:BD ⊥平面MAC ;(2)若AB =1,A 1D 1=2,MA =3,三棱锥A —A 1B 1D 1的体积V ′=233,求该组合体的体积.(1)证明 由题意可知ABM —DCP 是底面为直角三角形的直棱柱,∴AD ⊥平面MAB ,∴AD ⊥MA , 又MA ⊥AB ,AD ∩AB =A ,AD ,AB 平面ABCD ,∴MA ⊥平面ABCD ,∴MA ⊥BD .又AB =AD ,∴四边形ABCD 为正方形,∴BD ⊥AC ,又MA ∩AC =A ,MA ,AC 平面MAC ,∴BD ⊥平面MAC .(2)解 设刍童ABCD —A 1B 1C 1D 1的高为h ,则三棱锥A —A 1B 1D 1的体积V ′=13×12×2×2×h =233, ∴h =3,故该组合体的体积V =12×1×3×1+13×(12+22+12×22)×3=32+733=1736.13.(2018届南宁市联考)如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点.现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H .下列说法错误的是________.(填序号)①AG ⊥△EFH 所在平面;②AH ⊥△EFH 所在平面;③HF ⊥△AEF 所在平面;④HG ⊥△AEF 所在平面.答案 ①③④解析 折之前AG ⊥EF ,CG ⊥EF ,折之后也垂直,所以EF ⊥平面AHG ,折之前∠B ,∠D ,∠C 均为直角,折之后三点重合,所以折之后AH ,EH ,FH 三条直线两两垂直,所以AH ⊥△EFH 所在平面,②对;同时可知AH ⊥HG ,又HF ⊥△AEH 所在平面,过AE 不可能做两个平面与直线HF 垂直,③错;如果HG ⊥△AEF 所在平面,则有HG ⊥AG ,与②中AH ⊥HG 矛盾,④错;若AG ⊥△EFH 所在平面,则有AG ⊥HG ,与②中AH ⊥HG 矛盾,所以①也错.14.如图,PA ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案①②③解析由题意知PA⊥平面ABC,∴PA⊥BC.又AC⊥BC,且PA∩AC=A,PA,AC平面PAC,∴BC⊥平面PAC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,BC,PC平面PBC,∴AF⊥平面PBC,∴AF⊥PB,又AE⊥PB,AE∩AF=A,AE,AF平面AEF,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.15.(2017·兰州模拟)如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,且E为CD的中点,M,N分别是AD,BE的中点,将△ADE沿AE折起,则下列说法正确的是________.(写出所有正确说法的序号)①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置(不在平面ABC内),都有MN⊥AE;③不论D折至何位置(不在平面ABC内),都有MN∥AB;④在折起过程中,一定存在某个位置,使EC⊥AD.答案①②④解析由已知,在未折叠的原梯形中,AB∥DE,BE∥AD,所以四边形ABED为平行四边形,所以BE=AD,折叠后如图所示.①过点M作MP∥DE,交AE于点P,连接NP.因为M,N分别是AD,BE的中点,所以点P为AE的中点,故NP∥EC.又MP∩NP=P,DE∩CE=E,所以平面MNP∥平面DEC,故MN∥平面DEC,①正确;②由已知,AE⊥ED,AE⊥EC,所以AE⊥MP,AE⊥NP,又MP∩NP=P,所以AE⊥平面MNP,又MN平面MNP,所以MN⊥AE,②正确;③假设MN∥AB,则MN与AB确定平面MNBA,从而BE平面MNBA,AD平面MNBA,与BE和AD是异面直线矛盾,③错误;④当EC⊥ED时,EC⊥AD.因为EC⊥EA,EC⊥ED,EA∩ED=E,所以EC⊥平面AED,AD平面AED,所以EC⊥AD,④正确.16.(2018·泉州模拟)点P在正方体ABCD—A1B1C1D1的面对角线BC1上运动,给出下列命题:①三棱锥A—D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是________.答案①②④解析连接BD交AC于点O,连接DC1交D1C于点O1,连接OO1,则OO1∥BC1,所以BC1∥平面AD 1C ,动点P 到平面AD 1C 的距离不变,所以三棱锥P —AD 1C 的体积不变.又因为11P AD C A D PC V V --=三棱锥三棱锥,所以①正确; 因为平面A 1C 1B ∥平面AD 1C ,A 1P 平面A 1C 1B , 所以A 1P ∥平面ACD 1,②正确;由于当点P 在B 点时,DB 不垂直于BC 1,即DP 不垂直BC 1,故③不正确; 由于DB 1⊥D 1C ,DB 1⊥AD 1,D 1C ∩AD 1=D 1,所以DB 1⊥平面AD 1C .又因为DB 1平面PDB 1,所以平面PDB 1⊥平面ACD 1,④正确.。
2021高考数学一轮复习第8章立体几何初步第4节垂直关系教学案文北师大版

第四节垂直关系[最新考纲] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.(对应学生用书第131页)1.直线与平面垂直(1)定义:如果一条直线和一个平面内的任意一条直线都垂直,那么称这条直线和这个平面垂直.(2)定理文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直⎭⎪⎬⎪⎫aαbαl⊥al⊥ba∩b=A⇒l⊥α性质定理如果两条直线同垂直于一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒ a∥b(1)定义:从一条直线出发的两个半平面所组成的图形叫作二面角.这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的度量——二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.平面角是直角的二面角叫作直二面角.3.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直⎭⎪⎬⎪⎫l⊥αlβ⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎬⎫α⊥βlβα∩β=al⊥a⇒l⊥α[常用结论]1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.2.一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.4.过一点有且只有一条直线与已知平面垂直.5.过一点有且只有一个平面与已知直线垂直.一、思考辨析(正确的打“√”,错误的打“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α. ( )(2)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β. ( )(3)若两条直线与一个平面所成的角相等,则这两条直线平行.( )[答案](1)×(2)×(3)×二、教材改编1.下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γA[两个平面垂直,一个平面内只有垂直于交线的直线才垂直于另一个平面,故A错误.选A.]2.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体SEFG 中必有( )A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面A[四面体SEFG如图所示:由SG⊥GE,SG⊥GF.且GE∩GF=G得SG⊥△EFG所在的平面.故选A.]3.如图,三棱锥VABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角VABC的度数为________.60°[如图,取AB的中点D,连接VD,CD.由VA=VB=AC=BC知,VD⊥AB,CD⊥AB,从而∠VDC就是二面角VABC的平面角.在△VAB和△ABC中分别求得VD=CD=1,因此△VDC是等边三角形,故∠VDC=60°.]4.在三棱锥PABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的________心;(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.(1)外(2)垂[(1)如图1,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.图1 图2(2)如图2,延长AO,BO,CO分别交BC,AC,AB于点H,D,G.∵PC⊥PA,PB⊥PC,PA∩PB=P,PA,PB平面PAB,∴PC⊥平面PAB,又AB平面PAB,∴PC⊥AB,∵AB⊥PO,PO∩PC=P,PO,PC平面PGC,∴AB⊥平面PGC,又CG平面PGC,∴AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.](对应学生用书第132页)⊙考点1 直线与平面垂直的判定与性质证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.证明直线与平面垂直如图,在斜三棱柱ABCA1B1C1中,底面ABC是边长为2的正三角形,M为棱BC的中点,BB1=3,AB1=10,∠CBB1=60°.(1)求证:AM⊥平面BCC1B1;(2)求斜三棱柱ABCA1B1C1的体积.[解](1)证明:如图,连接B1M,因为底面ABC是边长为2的正三角形,且M为棱BC的中点,所以AM⊥BC,且AM=3,因为BB 1=3,∠CBB 1=60°,BM =1,所以B 1M 2=12+32-2×1×3×cos 60°=7, 所以B 1M =7.又因为AB 1=10,所以AM 2+B 1M 2=10=AB 21, 所以AM ⊥B 1M . 又因为B 1M ∩BC =M , 所以AM ⊥平面BCC 1B 1.(2)设斜三棱柱ABC A 1B 1C 1的体积为V ,则V =3VB 1ABC =3VA B 1BC=3×13S △B 1BC ·|AM |=12×2×3×sin 60°× 3 =92. 所以斜三棱柱ABC A 1B 1C 1的体积为92.(1)已知线段的长度,一般情况下用勾股定理的逆定理证明线线垂直,如本例第(1)问.(2)解答本例第(2)问时,易误认为B 1M 是斜三棱柱ABC A 1B 1C 1的高,从而得到错误答案.证明空间两条直线垂直(2019·成都模拟)如图,在多面体ABCDFE 中,四边形ABCD 是矩形,四边形ABEF为等腰梯形,且AB ∥EF ,AF =2,EF =2AB =4AD =42,平面ABCD ⊥平面ABEF .(1)求证:BE ⊥DF ;(2)求三棱锥C AEF 的体积V .[解](1)证明:取EF 的中点G ,连接AG . ∵EF =2AB ,∴AB =EG .又AB ∥EG ,∴四边形ABEG 为平行四边形, ∴AG ∥BE ,且AG =BE =AF =2.在△AGF 中,GF =12EF =22,AG =AF =2,∴AG 2+AF 2=GF 2,∴AG ⊥AF . ∵四边形ABCD 是矩形, ∴AD ⊥AB .又平面ABCD ⊥平面ABEF ,且平面ABCD ∩平面ABEF =AB , ∴AD ⊥平面ABEF . 又AG平面ABEF ,∴AD ⊥AG .∵AD ∩AF =A ,∴AG ⊥平面ADF . 又∵AG ∥BE ,∴BE ⊥平面ADF . 又DF平面ADF ,∴BE ⊥DF .(2)连接DE .∵CD ∥AB ,且CD 平面ABEF ,AB平面ABEF ,∴CD ∥平面ABEF ,∴V C AEF =V D AEF .由(1)得,AD ⊥平面ABEF ,S △AEF =12×42×2=4,∴V C AEF =V D AEF =13×4×2=423.证明线线垂直一般是先证线面垂直,再根据线面垂直的性质得到线线垂直.[教师备选例题](2017·江苏高考)如图,在三棱锥A BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .[证明](1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以EF ∥AB . 又因为EF平面ABC ,AB平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD ,BC 平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD .又因为AC平面ABC, 所以AD⊥AC.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥PABCD中,∵PA⊥平面ABCD,CD平面ABCD,∴PA⊥CD.又∵AC⊥CD,且PA∩AC=A,∴CD⊥平面PAC.而AE平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.又PD平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB.又∵AB⊥AD,且PA∩AD=A,∴AB⊥平面PAD,而PD平面PAD,∴AB⊥PD.又AB∩AE=A,∴PD⊥平面ABE.⊙考点2 面面垂直的判定与性质证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化(1)(2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线B [取CD 的中点F ,DF 的中点G ,连接EF ,FN ,MG ,GB ,BD ,BE .∵点N 为正方形ABCD 的中心,∴点N 在BD 上,且为BD 的中点.∵△ECD 是正三角形,∴EF ⊥CD . ∵平面ECD ⊥平面ABCD , ∴EF ⊥平面ABCD . ∴EF ⊥FN .不妨设AB =2,则FN =1,EF =3, ∴EN =FN 2+EF 2=2. ∵EM =MD ,DG =GF ,∴MG ∥EF , ∴MG ⊥平面ABCD ,∴MG ⊥BG . ∵MG =12EF =32,BG =CG 2+BC 2=⎝ ⎛⎭⎪⎫322+22=52,∴BM =MG 2+BG 2=7. ∴BM ≠EN .∵BM ,EN 是△DBE 的中线,∴BM ,EN 必相交. 故选B.](2)(2019·青岛模拟)如图,四棱锥P ABCD 中,△PCD 为等边三角形,CD =AD =2AB ,E ,S ,T ,Q 为CD ,PA ,PB ,AD 的中点,∠ABC =∠BCD =∠PEA =90°,平面STRQ ∩平面ABCD =RQ .①证明:平面PAE ⊥平面STRQ ; ②若AB =1,求三棱锥Q BCT 的体积.[解] ①证明:因为E 为CD 的中点,CD =2AB ,∠ABC =∠BCD =90°,所以四边形ABCE 为矩形,所以AE ⊥CD .由已知易得RQ ∥CD ,所以RQ ⊥AE . 因为∠PEA =90°,PE ∩CD =E , 故AE ⊥平面PCD , 又因为AE平面ABCD .故平面PCD ⊥平面ABCD .因为PE ⊥CD ,所以PE ⊥平面ABCD . 因为RQ平面ABCD ,所以RQ ⊥PE .又PE ∩AE =E ,所以RQ ⊥平面PAE . 所以平面PAE ⊥平面STRQ .②由①可知,PE ⊥平面ABCD ,又T 是PB 的中点, ∴点T 到平面BCQ 的距离为12PE =32,易知S △BCQ =12S 梯形ABCD =12×12×(1+2)×3=334.故三棱锥Q BCT 的体积V =13×334×32=38.解答本例T (2)第(2)问时,借助已知的点面距求高,这是常用的方法,求S △BCQ 时,可先求底边和高,再求面积.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ABP 的体积.[解](1)证明:由已知可得,∠BAC =90°,BA ⊥AC . 又BA ⊥AD ,且AC平面ACD ,AD平面ACD ,AC ∩AD =A ,所以AB ⊥平面ACD .又AB平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2.又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP 的体积为V Q ABP =13×QE ×S △ABP =13×1×12×3×22sin 45°=1.⊙考点3 点到平面的距离求点到平面的距离(高)的两种方法(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.定义法求距离(高)(1)(2019·全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为________.2 [如图,过点P 作PO ⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F , 连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC . 又PE =PF =3,所以OE =OF , 所以CO 为∠ACB 的平分线, 即∠ACO =45°.在Rt△PEC 中,PC =2,PE =3,所以CE =1, 所以OE =1,所以PO =PE 2-OE 2=32-12= 2.](2)(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. [解] ①证明:因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC ,OB平面ABC ,AC平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H . 又由①可得OP ⊥CH ,OP平面POM ,OM平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin∠ACB OM =455.所以点C 到平面POM 的距离为455.解答本例T (2)第②问时也可以使用等体积法求解.[教师备选例题]如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的高及四棱锥的侧面积.[解](1)证明:由已知∠BAP =∠CDP =90°, 得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,因为AP ∩PD =P ,从而AB ⊥平面PAD . 又AB平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面PAD ,故AB ⊥PE ,可得PE ⊥平面ABCD ,所以PE 为四棱锥的高.由AB ⊥平面PAD ,得AB ⊥AD ,又AB ∥CD ,AB =CD ,则四边形ABCD 为矩形.设AB =x ,则由已知可得AD =2x ,PE =22x . 故四棱锥P ABCD 的体积V P ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,解得x =2.故四棱锥的高PE =2,从而PA =PD =2,AD =BC =22,PB =PC =2 2.可得四棱锥P ABCD 的侧面积为12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.等体积法求距离(高)如图,在三棱柱ABC A 1B 1C 1中,侧面ABB 1A 1为矩形,AB =1,AA 1=2,D 是AA 1的中点,BD 与AB 1交于点O ,且CO ⊥平面ABB 1A 1.(1)证明:BC ⊥AB 1;(2)若OC =2OA ,求三棱柱ABC A 1B 1C 1的高.[解](1)证明:在矩形ABB 1A 1中,由平面几何知识可知AB 1⊥BD , 又CO ⊥平面ABB 1A 1,∴AB 1⊥CO ,CO ∩BD =O ,BD ,CO 平面BCD ,∴AB 1⊥平面BCD .因为BC平面BCD ,∴BC ⊥AB 1.(2)在矩形ABB 1A 1中,由平面几何知识可知OA =33,OB =63, ∵OC =2OA ,∴OC =63, ∴AC =1,BC =233,S △ABC =23,设三棱柱ABC A 1B 1C 1的高为h ,即三棱锥A 1ABC 的高为h . 又S △ABA 1=22,由VC ABA 1=VA 1ABC 得 S △ABC ·h =S △ABA 1·OC ,∴h =62. 解答本例第(2)问的关键是把三棱柱的高转化为求三棱锥的高,再利用等体积法求解.[教师备选例题]如图所示,在五面体ABCDEF 中,四边形ABCD 为菱形,且∠BAD =60°,EA =ED =AB =2EF =4,EF ∥AB ,M 为BC 的中点.(1)求证:FM ∥平面BDE ;(2)若平面ADE ⊥平面ABCD ,求点F 到平面BDE 的距离. [解](1)证明:取BD 中点O ,连接OM ,OE , 因为O ,M 分别为BD ,BC 中点,所以OM ∥CD 且OM =12CD ,由已知EF ∥AB 且EF =12AB ,又在菱形ABCD 中,AB ∥CD 且AB =CD ,所以EF ∥CD 且EF =12CD .所以OM ∥EF 且OM =EF , 所以四边形OMFE 为平行四边形, 所以MF ∥OE. 又OE平面BDE,MF平面BDE,所以MF ∥平面BDE. (2)由(1)得FM ∥平面BDE ,所以F 到平面BDE 的距离等于M 到平面BDE 的距离. 取AD 的中点H ,连接EH ,BH , 因为EA =ED ,所以EH ⊥AD ,因为平面ADE ⊥平面ABCD ,平面ADE ∩平面ABCD =AD ,EH 平面ADE ,所以EH ⊥平面ABCD .由已知得EH =23,BE =EH 2+HB 2=26,所以等腰三角形BDE 的面积为S △BDE =12×26×42-62=215.又S △BDM =12S △BCD =12×⎝ ⎛⎭⎪⎫12×4×4×32=23,设F 到平面BDE 的距离为h ,由V E BDM =V M BDE 得13·S △BDM ·EH =13·S △BDE ·h ,即13×23×23=13×h ×215, 解得h =2155,所以点F 到平面BDE 的距离为2155.(2019·武汉模拟)如图,在四棱锥P ABCD 中,底面ABCD 是边长为1的菱形,∠DAB =π3,平面PAD ⊥平面ABCD ,PA =PD =102.(1)证明:PB ⊥BC ;(2)求点A 到平面PBC 的距离.[解](1)如图,取AD 的中点H ,连接PH ,HB ,BD .∵底面ABCD 是边长为1的菱形,∴AD =AB =1,∴AH =12AD=12, 由BH 2=AB 2+AH 2-2AB ·AH ·cos∠DAB , 得BH 2=1+14-2×1×12×12=34,∴BH =32,∴AH 2+BH 2=AB 2, ∴BH ⊥AD .∵PA =PD ,H 为AD 的中点, ∴PH ⊥AD ,又PH ∩BH =H , ∴AD ⊥平面PHB ,又PB 平面PHB ,∴AD ⊥PB ,又AD ∥BC, ∴PB ⊥BC .(2)法一(定义法):∵AD ∥BC ,BC平面PBC ,AD平面PBC ,∴AD ∥平面PBC ,∴点A 与点H 到平面PBC 的距离相等. 由(1)知AD ⊥平面PHB , ∴BC ⊥平面PHB ,又BC 平面PBC ,∴平面PBC ⊥平面PHB . 过点H 作HM ⊥PB 于M . 由平面PHB ∩平面PBC =PB , 知HM 即点H 到平面PBC 的距离.∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH平面PAD ,PH ⊥AD ,∴PH ⊥平面ABCD , 又BH平面ABCD ,∴PH ⊥BH .PH =PA 2-AH 2=32,BH =32,∴PB =PH 2+BH 2=3, ∴HM =PH ·BH PB =32×323=34.法二(等体积法):由(1)知,在△PAD 中,PH =PA 2-AH 2=32,在△ABD 中,BH =32, 在△PHB 中,PB =PH 2+BH 2= 3. 又PB ⊥BC ,∴S △PBC =32, 设点A 到平面PBC 的距离为h ,则有S △PBC ·h =S △ABC ·PH ,即32h =12×1×1×sin 2π3×32, 解得h =34.⊙考点4 直线与平面所成的角求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.(1)(2018·全国卷Ⅰ)在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3C [如图,连接AC 1,BC 1,AC . ∵AB ⊥平面BB 1C 1C ,∴∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角,∴∠AC 1B =30°.又AB =BC =2,在Rt△ABC 1中,AC 1=2sin 30°=4.在Rt△ACC 1中,CC 1=AC 21-AC 2=42-22+22=22,∴V 长方体=AB ×BC ×CC 1=2×2×22=8 2.](2)(2018·天津高考)如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.①求证:AD ⊥BC ;②求异面直线BC 与MD 所成角的余弦值; ③求直线CD 与平面ABD 所成角的正弦值.[解] ①证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .②如图,取棱AC 的中点N ,连接MN ,ND . 又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt△DAM 中,AM =1, 故DM =AD 2+AM 2=13. 因为AD ⊥平面ABC ,所以AD ⊥AC . 在Rt△DAN 中,AN =1, 故DN =AD 2+AN 2=13. 在等腰三角形DMN 中,MN =1, 可得cos∠DMN =12MN DM =1326.所以,异面直线BC 与MD 所成角的余弦值为1326. ③如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM = 3. 又因为平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,而CM 平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角. 在Rt△CAD 中,CD =AC 2+AD 2=4. 在Rt△CMD 中,sin∠CDM =CM CD =34. 所以,直线CD 与平面ABD 所成角的正弦值为34. 在相互垂直的平面内作交线的垂线,是得到线面垂直的常用方法.1.已知正方体ABCD A 1B 1C 1D 1中,点E 是线段CC 1的中点,则直线D 1E 与平面ADE 所成角的余弦值为( )A.35B.45C.55D.255A [如图所示,过点D 1作D 1F ⊥DE ,垂足为F ,而AD ⊥D 1F ,AD ∩DE =D ,故D 1F ⊥平面ADE ,则∠D 1EF 为D 1E 与平面ADE 所成的角,不妨设AB =2,则D 1E =5,DF =DD 1·cos∠D 1DF =DD 1·sin∠CDE =255,EF =355,故cos∠D 1EF =EF D 1E =35. 故选A.]2.(2019·天津高考)如图,在四棱锥P ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面PAC ⊥平面PCD ,PA ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. [解](1)证明:连接BD ,易知AC ∩BD =H ,BH =DH . 又由BG =PG ,故GH ∥PD .又因为GH 平面PAD ,PD 平面PAD ,所以GH ∥平面PAD . (2)证明:取棱PC 的中点N ,连接DN . 依题意,得DN ⊥PC .又因为平面PAC ⊥平面PCD ,平面PAC ∩平面PCD =PC , 所以DN ⊥平面PAC .又PA 平面PAC ,所以DN ⊥PA . 又已知PA ⊥CD ,CD ∩DN =D , 所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面PAC ,可知∠DAN 为直线AD 与平面PAC 所成的角. 因为△PCD 为等边三角形,CD =2且N 为PC 的中点, 所以DN = 3.又DN ⊥AN ,在Rt△AND 中,sin∠DAN =DN AD =33. 所以,直线AD 与平面PAC 所成角的正弦值为33.。
高考数学大一轮复习 第八章 立体几何与空间向量 8.4 平行关系学案 文 北师大版

§8.4平行关系1.直线与平面平行的判定与性质aα,b⊈α,a∥b a∥α,aβ,α∩β=b2.面面平行的判定与性质aβ,bβ,a∩b=P,a∥α,b∥αα∥β,aβ知识拓展重要结论:(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)(5)若直线a与平面α内无数条直线平行,则a∥α.( ×)(6)若α∥β,直线a∥α,则a∥β.( ×)题组二教材改编2.下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊈α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知b∥α,正确.3.如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊈平面ACE,EO平面ACE,所以BD1∥平面ACE.题组三易错自纠4.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.5.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:①aα,bβ,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.其中能推出α∥β的条件是________.(填上所有正确的序号)答案②④解析在条件①或条件③中,α∥β或α与β相交;由α∥γ,β∥γ⇒α∥β,条件②满足;在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足.6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF ∥HG .同理EH ∥FG , ∴四边形EFGH 是平行四边形.题型一 直线与平面平行的判定与性质命题点1 直线与平面平行的判定典例 如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又F 是PC 的中点,∴FO ∥AP ,又FO 平面BEF ,AP ⊈平面BEF ,∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点,∴FH ∥PD ,又PD 平面PAD ,FH ⊈平面PAD , ∴FH ∥平面PAD .又O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,又AD 平面PAD ,OH ⊈平面PAD ,∴OH ∥平面PAD .又FH ∩OH =H ,∴平面OHF ∥平面PAD . 又GH 平面OHF ,∴GH ∥平面PAD . 命题点2 直线与平面平行的性质典例 (2017·长沙调研)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积. (1)证明 因为BC ∥平面GEFH ,BC 平面PBC , 且平面PBC ∩平面GEFH =GH ,所以GH ∥BC . 同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为PA =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 底面ABCD , 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊈平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK=4+82×3=18.思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a ⊈α,b α,a ∥b ⇒a ∥α). (3)利用面面平行的性质(α∥β,a α⇒a ∥β).(4)利用面面平行的性质(α∥β,a ⊈α,a ⊈β,a ∥α⇒a ∥β).跟踪训练 (2018届昆明一中摸底)如图,在直三棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =AC =2,点M ,N 分别为A 1C 1,AB 1的中点.(1)证明:MN ∥平面BB 1C 1C ;(2)若CM ⊥MN ,求三棱锥M —NAC 的体积.(1)证明 连接A 1B ,BC 1,点M ,N 分别为A 1C 1,AB 1的中点,所以MN 为△A 1BC 1的一条中位线,MN ∥BC 1,又因为MN ⊈平面BB 1C 1C ,BC 1平面BB 1C 1C ,所以MN ∥平面BB 1C 1C .(2)解 设点D ,E 分别为AB ,AA 1的中点,AA 1=a ,连接ND ,CD ,则CM 2=a 2+1,MN 2=1+a 2+44=a 2+84,CN 2=a 24+5=a 2+204,由CM ⊥MN ,得CM 2+MN 2=CN 2,解得a =2,又NE ⊥平面AA 1C 1C ,NE =1,V 三棱锥M —NAC =V 三棱锥N —AMC =13S △AMC ·NE=13×12×2×2×1=23. 所以三棱锥M —NAC 的体积为23. 题型二 平面与平面平行的判定与性质典例 如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EFA 1∥平面BCHG .证明 (1)∵G ,H 分别是A 1B 1,A 1C 1的中点, ∴GH 是△A 1B 1C 1的中位线, ∴GH ∥B 1C 1.又∵B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面. (2)∵E ,F 分别是AB ,AC 的中点, ∴EF ∥BC .∵EF ⊈平面BCHG ,BC 平面BCHG , ∴EF ∥平面BCHG . ∵A 1G 綊EB ,∴四边形A 1EBG 是平行四边形, ∴A 1E ∥GB .又∵A 1E ⊈平面BCHG ,GB 平面BCHG , ∴A 1E ∥平面BCHG .又∵A 1E ∩EF =E ,A 1E ,EF 平面EFA , ∴平面EFA 1∥平面BCHG . 引申探究在本例条件下,若D 1,D 分别为B 1C 1,BC 的中点,求证:平面A 1BD 1∥平面AC 1D .证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B平面A1BD1,DM⊈平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊈平面A1BD1,BD1平面A1BD1,∴DC1∥平面A1BD1.又∵DC1∩DM=D,DC1,DM平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练 (2018届南昌摸底)如图,在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面PAB;(2)求三棱锥P —ABM 的体积.(1)证明 ∵M ,N 分别为PD ,AD 的中点,∴MN ∥PA . 又∵MN ⊈平面PAB ,PA 平面PAB , ∴MN ∥平面PAB .在Rt△ACD 中,∠CAD =60°,CN =AN , ∴∠ACN =60°.又∵∠BAC =60°,∴CN ∥AB . ∵CN ⊈平面PAB ,AB 平面PAB , ∴CN ∥平面PAB .又∵CN ∩MN =N ,CN ,MN 平面CMN , ∴平面CMN ∥平面PAB .(2)解 由(1)知,平面CMN ∥平面PAB ,∴点M 到平面PAB 的距离等于点C 到平面PAB 的距离.由已知得,AB =1,∠ABC =90°,∠BAC =60°, ∴BC =3,∴三棱锥P —ABM 的体积V =V 三棱锥M —PAB =V 三棱锥C —PAB =V 三棱锥P —ABC =13×12×1×3×2=33.题型三 平行关系的综合应用典例 如图所示,平面α∥平面β,点A ∈α,点C ∈α,点B ∈β,点D ∈β,点E ,F 分别在线段AB ,CD 上,且AE ∶EB =CF ∶FD .(1)求证:EF ∥平面β;(2)若E ,F 分别是AB ,CD 的中点,AC =4,BD =6,且AC ,BD 所成的角为60°,求EF 的长. (1)证明 ①当AB ,CD 在同一平面内时,由平面α∥平面β,平面α∩平面ABDC =AC ,平面β∩平面ABDC =BD 知,AC ∥BD . ∵AE ∶EB =CF ∶FD ,∴EF ∥BD . 又EF ⊈β,BD β,∴EF ∥平面β.②当AB 与CD 异面时,如图所示,设平面ACD ∩平面β=DH ,且DH =AC ,∵平面α∥平面β,平面α∩平面ACDH =AC , ∴AC ∥DH ,∴四边形ACDH 是平行四边形, 在AH 上取一点G ,使AG ∶GH =CF ∶FD , 连接EG ,FG ,BH .又∵AE ∶EB =CF ∶FD =AG ∶GH , ∴GF ∥HD ,EG ∥BH . 又EG ∩GF =G ,BH ∩HD =H , ∴平面EFG ∥平面β.又EF 平面EFG ,∴EF ∥平面β. 综合①②可知,EF ∥平面β.(2)解 如图所示,连接AD ,取AD 的中点M ,连接ME ,MF .∵E ,F 分别为AB ,CD 的中点, ∴ME ∥BD ,MF ∥AC , 且ME =12BD =3,MF =12AC =2.∴∠EMF 为AC 与BD 所成的角或其补角, ∴∠EMF =60°或120°. ∴在△EFM 中,由余弦定理得EF =ME 2+MF 2-2ME ·MF ·cos∠EMF=32+22±2×3×2×12=13±6,即EF =7或EF =19.思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG 平面ABD ,EF ⊈平面ABD , ∴EF ∥平面ABD .又∵EF 平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊈平面EFGH ,EF 平面EFGH , ∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH . (2)解 设EF =x (0<x <4), ∵EF ∥AB ,FG ∥CD ,∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x 4. ∴FG =6-32x .∵四边形EFGH 为平行四边形,∴四边形EFGH 的周长l =2⎝ ⎛⎭⎪⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围是(8,12).1.若直线l 不平行于平面α,且l ⊈α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α与直线l 至少有两个公共点 D .α内的直线与l 都相交 答案 B解析 因为l α,直线l 不平行于平面α,所以直线l 只能与平面α相交,于是直线l 与平面α只有一个公共点,所以平面α内不存在与l 平行的直线. 2.已知直线a 和平面α,那么a ∥α的一个充分条件是( ) A .存在一条直线b ,a ∥b 且b α B .存在一条直线b ,a ⊥b 且b ⊥αC.存在一个平面β,aβ且α∥βD.存在一个平面β,a∥β且α∥β答案 C解析在A,B,D中,均有可能aα,错误;在C中,两平面平行,则其中一个平面内的任一条直线都平行于另一平面,故C正确.3.(2018·攀枝花质检)平面α∥平面β,点A,C∈α,点B,D∈β,则直线AC∥直线BD 的充要条件是( )A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面答案 D解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.4.一条直线l上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是( )A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或lα答案 D解析当l∥α时,直线l上任意点到α的距离都相等;当lα时,直线l上所有的点到α的距离都是0;当l⊥α时,直线l上有两个点到α的距离相等;当l与α斜交时,也只能有两个点到α的距离相等.故选D.5.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是( )A.若m∥α,n∥α,则m∥n B.若m∥α,nα,则m∥nC.若m∥α,n⊥α,则m∥n D.若m⊥α,n⊥α,则m∥n答案 D解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.6.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别是BC,CD的中点,则( )A.BD∥平面EFG,且四边形EFGH是平行四边形B.HG∥平面ABD,且四边形EFGH是平行四边形C.EF∥平面BCD,且四边形EFGH是梯形D.EF∥平面ADC,且四边形EFGH是梯形答案 C解析 如图,由条件知,EF ∥BD ,且EF =15BD ,GH ∥BD ,且HG =12BD ,∴EF ∥HG ,且EF =25HG ,∴四边形EFGH 为梯形,排除A ,B ; ∵EF ∩平面ADC =F ,∴排除D.故选C.7.如图,E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体与过E ,F ,G 的截面平行的棱的条数是________.答案 2解析 此四面体与过E ,F ,G 的截面平行的棱为AC ,BD ,只有两条.8.设α,β,γ是三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题. ①α∥γ,n β;②m ∥γ,n ∥β;③n ∥β,m γ. 可以填入的条件有________. 答案 ①或③解析 由面面平行的性质定理可知,①正确;当n ∥β,m γ时,n 和m 在同一平面内,且没有公共点,所以平行,③正确.9.(2017·承德模拟)如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______时,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案 点M 在线段FH 上(或点M 与点H 重合) 解析 连接HN ,FH ,FN ,则FH ∥DD 1,HN ∥BD , ∴平面FHN ∥平面B 1BDD 1,只需M ∈FH , 则MN 平面FHN ,∴MN ∥平面B 1BDD 1.10.(2018·海口调研)将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是______.(填序号) 答案 ①③解析 由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.11.如图,E ,F ,G ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)如图,取B 1D 1的中点O ,连接GO ,OB , 因为OG 綊12B 1C 1綊BE ,所以BE 綊OG ,所以四边形BEGO 为平行四边形,故OB ∥EG ,因为OB平面BB1D1D,EG⊈平面BB1D1D,所以EG∥平面BB1D1D.(2)由题意可知BD∥B1D1.连接HB,D1F,因为BH綊D1F,所以四边形HBFD1是平行四边形,故HD1∥BF.又B1D1∩HD1=D1,BD∩BF=B,所以平面BDF∥平面B1D1H.12.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC 的中点,CB=3CG.(1)求证:PC⊥BC;(2)AD边上是否存在一点M,使得PA∥平面MEG?若存在,求出AM的长;若不存在,请说明理由.(1)证明因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC.因为四边形ABCD是正方形,所以BC⊥CD.又PD∩CD=D,PD,CD平面PCD,所以BC⊥平面PCD.因为PC平面PDC,所以PC⊥BC.(2)解连接AC,BD交于点O,连接EO,GO,延长GO交AD于点M,连接EM,则PA∥平面MEG.证明如下:因为E为PC的中点,O是AC的中点,所以EO∥PA.因为EO平面MEG,PA⊈平面MEG,所以PA ∥平面MEG . 因为△OCG ≌△OAM , 所以AM =CG =23,所以AM 的长为23.13.(2018·南昌质检)在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的是( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45° 答案 C解析 因为截面PQMN 是正方形,所以MN ∥QP , 又PQ 平面ABC ,MN ⊈平面ABC ,则MN ∥平面ABC , 由线面平行的性质知MN ∥AC ,又MN 平面PQMN ,AC ⊈平面PQMN ,则AC ∥截面PQMN ,同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故A ,B 正确.又因为BD ∥MQ ,所以异面直线PM 与BD 所成的角等于PM 与QM 所成的角,即为45°,故D 正确.14.(2018届广西桂林模拟)在正四棱柱ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,若存在实数λ,使得CQ =λCC 1时,平面D 1BQ ∥平面PAO ,则λ=________. 答案 12解析 当Q 为CC 1的中点时,平面D 1BQ ∥平面PAO .理由如下:当Q 为CC 1的中点时,∵Q 为CC 1的中点,P 为DD 1的中点,∴QB ∥PA .∵P ,O 为DD 1,DB 的中点,∴D 1B ∥PO . 又PO ∩PA =P ,D 1B ∩QB =B ,D 1B ∥平面PAO ,QB ∥平面PAO ,∴平面D 1BQ ∥平面PAO .15.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图像大致是( )答案 C解析 过M 作MQ ∥DD 1,交AD 于点Q ,连接QN .∵MN ∥平面DCC 1D 1,MQ ∥平面DCC 1D 1,MN ∩MQ =M ,∴平面MNQ ∥平面DCC 1D 1.又平面ABCD 与平面MNQ 和DCC 1D 1分别交于QN 和DC , ∴NQ ∥DC ,可得QN =CD =AB =1,AQ =BN =x , ∵MQ AQ =DD 1AD=2,∴MQ =2x .在Rt△MQN 中,MN 2=MQ 2+QN 2,即y 2=4x 2+1,∴y 2-4x 2=1(x ≥0,y ≥1),∴函数y =f (x )的图像为焦点在y 轴上的双曲线上支的一部分.故选C.16.(2018·哈尔滨模拟)在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________. 答案452解析 如图,取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,SG ,BG 平面SGB , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB 平面SAB ,平面SAB ∩平面DEFH =HD , 则SB ∥HD . 同理SB ∥FE .又D ,E 分别为AB ,BC 的中点, 则H ,F 也为AS ,SC 的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD , 所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝ ⎛⎭⎪⎫12AC ·⎝ ⎛⎭⎪⎫12SB =452.。
2021版高考数学一轮复习第8章立体几何第5节直线、平面垂直的判定及性质课件文新人教A版

型主要以解答题的形式出现,解 论证明一些空间图形的垂直关系
题要求有较强的推理论证能力, 的简单命题.
会广泛应用转化与化归的思想.
[核心素养]
1.直观想象 2.逻辑推理
1
课 前 ·基 础 巩 固
‖知识梳理‖ 1.直线与平面垂直 (1)直线和平面垂直的定义 如果一条直线 l 与平面 α 内的 1 __任__意_____一条直线都垂直,就说直线 l 与平面 α 互 相垂直.
3.二面角 (1)定义:从一条直线出发的 14 __两__个__半__平__面__所组成的图形叫做二面角. (2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分 别作 15 _垂__直__于__棱__的两条射线,这两条射线所构成的角叫做二面角的平面角. (3)二面角的范围:[0,π].
第八章 立体几何
第五节 直线、平面垂 直的判定及性质
栏
课 前 ·基 础 巩 固 1
目
导
课 堂 ·考 点 突 破 2
航
3 课 时 ·跟 踪 检 测
[最新考纲]
[考情分析]
直线、平面垂直的判定及其 1.以立体几何的定义、公理和定理
性质是高考中的重点考查内容, 为出发点,认识和理解空间中线
涉及线线垂直、线面垂直、面面 面垂直的有关性质与判定定理.
8 __a_⊥__α___ 9 __b_⊥__α___⇒a∥b
2.直线和平面所成的角 (1)定义:一条斜线和它在平面上的 10 __射__影_____所成的 11 __锐__角_____叫做这条直线 和这个平面所成的角,一条直线垂直于平面,则它们所成的角是 12 __直__角_____;一条直 线和平面平行或在平面内,则它们所成的角是 0°的角. (2)范围: 13 __0_,__π2____.
2021高三数学北师大版(文)一轮教师用书:第8章 规范答题系列3:高考中的立体几何问题 Word版含解析

(对应学生用书第142页)[命题解读]从近五年全国卷高考试题来看,立体几何解答题主要出现在18题或19题的位置上,解答题一般有两个问题,第一个问题重点考查线、面的平行、垂直关系,第二个问题,有三个热点题型:一是考查空间几何体的体积;二是考查点面距离;三是与平行、垂直有关的存在性问题.[典例示范](本题满分12分)(·全国卷Ⅱ)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C①1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积②.[信息提取]看到①想到线面垂直的判定定理及其几何体中与BE有关的垂直关系;看到②想到四棱锥的底面形状和如何求高.[规范解答](1)证明:由已知得B1C1⊥平面ABB1A1 1分BE平面ABB1A1,故B1C1⊥BE. 2分又BE⊥EC1,B1C1∩EC1=C1,所以BE⊥平面EB1C1. 4分(2)由(1)知∠BEB1=90°. 5分由题设知Rt△ABE≌Rt△A1B1E,6分所以∠AEB=∠A1EB1=45°,7分故AE=AB=3,AA1=2AE= 6.8分如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3. 10分所以四棱锥E-BB1C1C的体积V =13×3×6×3=18.12分[易错防范]易错点防范措施证明时书写步骤不规范,缺少BE平面ABB1A1及B1C1∩EC1=C1等必要条件严格按照线面垂直的判定定理及性质定理的要求书写得不到AE=AB=3这个结论,而是凭感觉直接使用这个结论在计算过程中,需要用到的结论,都需要通过推理得到[通性通法]证明线面垂直的方法较多,常用的有:(1)线面垂直的判定定理;(2)面面垂直的性质定理等.体积的计算是高考的重点与热点,其方法灵活多样,而直接求解、分割、补形、等积变换是常见方法.[规范特训](·石家庄模拟)如图,已知三棱锥P-ABC中,PC⊥AB,△ABC 是边长为2的正三角形,PB=4,∠PBC=60°.(1)证明:平面P AC ⊥平面ABC ;(2)设F 为棱P A 的中点,在AB 上取点E ,使得AE =2EB ,求三棱锥F -ACE 与四棱锥C -PBEF 的体积之比.[解](1)在△PBC 中,∠PBC =60°,BC =2,PB =4,由余弦定理可得PC =23,∴PC 2+BC 2=PB 2,∴PC ⊥BC ,又PC ⊥AB ,AB ∩BC =B ,∴PC ⊥平面ABC ,∵PC 平面P AC ,∴平面P AC ⊥平面ABC .(2)设三棱锥F -ACE 的高为h 1,三棱锥P -ABC 的高为h ,则V F -ACE =13×S △ACE ×h 1 =13×S △ABC ×23×h ×12=13×S △ABC ×h ×13=13×V P -ABC .∴三棱锥F-ACE与四棱锥C-PBEF的体积之比为1∶2.。
2021高考数学一轮复习第8章立体几何初步规范答题系列3高考中的立体几何问题教学案文北师大版

规范答题系列3 高考中的立体几何问题(对应学生用书第142页)[命题解读] 从近五年全国卷高考试题来看,立体几何解答题主要出现在18题或19题的位置上,解答题一般有两个问题,第一个问题重点考查线、面的平行、垂直关系,第二个问题,有三个热点题型:一是考查空间几何体的体积;二是考查点面距离;三是与平行、垂直有关的存在性问题.[典例示范] (本题满分12分)(2019·全国卷Ⅱ)如图,长方体ABCD A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C ①1;(2)若AE =A 1E ,AB =3,求四棱锥E BB 1C 1C 的体积②.[信息提取] 看到①想到线面垂直的判定定理及其几何体中与BE 有关的垂直关系;看到②想到四棱锥的底面形状和如何求高.[规范解答](1)证明:由已知得B 1C 1⊥平面ABB 1A 1 1分 BE 平面ABB 1A 1,故B 1C 1⊥BE . 2分又BE ⊥EC 1,B 1C 1∩EC 1=C 1,所以BE ⊥平面EB 1C 1.4分 (2)由(1)知∠BEB 1=90°.5分 由题设知Rt△ABE ≌Rt△A 1B 1E ,6分所以∠AEB =∠A 1EB 1=45°,7分 故AE =AB =3,AA 1=2AE =6.8分 如图,作EF ⊥BB 1,垂足为F ,则EF ⊥平面BB 1C 1C ,且EF =AB =3.10分 所以四棱锥E BB 1C 1C 的体积 V =13×3×6×3=18.12分[易错防范]易错点防范措施 证明时书写步骤不规范,缺少BE 平面ABB 1A 1及B 1C 1∩EC 1=C 1等必要条件严格按照线面垂直的判定定理及性质定理的要求书写 得不到AE =AB =3这个结论,而是凭感觉直接使用这个结论在计算过程中,需要用到的结论,都需要通过推理得到[通性通法] 证明线面垂直的方法较多,常用的有:(1)线面垂直的判定定理;(2)面面垂直的性质定理等.体积的计算是高考的重点与热点,其方法灵活多样,而直接求解、分割、补形、等积变换是常见方法.[规范特训] (2019·石家庄模拟)如图,已知三棱锥P ABC 中,PC ⊥AB ,△ABC 是边长为2的正三角形,PB =4,∠PBC =60°.(1)证明:平面PAC ⊥平面ABC ;(2)设F 为棱PA 的中点,在AB 上取点E ,使得AE =2EB ,求三棱锥F ACE 与四棱锥C PBEF 的体积之比.[解](1)在△PBC 中,∠PBC =60°,BC =2,PB =4,由余弦定理可得PC =23,∴PC 2+BC 2=PB 2,∴PC ⊥BC ,又PC ⊥AB ,AB ∩BC =B ,∴PC ⊥平面ABC ,∵PC 平面PAC , ∴平面PAC ⊥平面ABC .(2)设三棱锥F ACE 的高为h 1,三棱锥P ABC 的高为h ,则V F ACE =13×S △ACE ×h 1 =13×S △ABC ×23×h ×12=13×S △ABC ×h ×13=13×V P ABC . ∴三棱锥F ACE 与四棱锥C PBEF 的体积之比为1∶2.。
浙江省2021届高考数学一轮复习第八章立体几何与空间向量第5节直线平面垂直的判定及其性质课件

又BN∩A1N=N,BN,A1N⊂平面A1BN,所以AD⊥平面A1BN.
规律方法 (1)证明直线和平面垂直的常用方法有: ①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质 (a⊥α,α∥β⇒a⊥β);④面面垂直的性质(α⊥β,α∩β=a,l⊥a,l⊂β⇒l⊥α). (2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的 性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
由余弦定理得CD2=DB2+BC2-2DB·BCcos 30°=3, 所以CD2+DB2=BC2,即CD⊥AB. 因为PD⊥平面ABC,CD⊂平面ABC, 所以PD⊥CD,由PD∩AB=D得,CD⊥平面PAB, 又PA⊂平面PAB,所以PA⊥CD.
考点二 面面垂直的判定与性质 【例2】 (2018·江苏卷)在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.
诊断自测 1.判断下列说法的正误.
(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( ) (2)垂直于同一个平面的两平面平行.( ) (3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( ) (4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( )
解析 (1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α, 故(1)错误. (2)垂直于同一个平面的两个平面平行或相交,故(2)错误. (3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一 平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误. (4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误. 答案 (1)× (2)× (3)× (4)×
2021版高考数学一轮复习第八章立体几何第5讲直线、平面垂直的判定与性质教案文新人教A版

第5讲直线、平面垂直的判定与性质一、知识梳理1.直线与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a,b⊂αa∩b=Ol⊥al⊥b⇒l⊥α性质定理垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b2.平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎪⎬⎪⎫l⊂βl⊥α⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角,如图,∠PAO就是斜线AP与平面α所成的角.(2)线面角θ的范围:θ∈⎣⎢⎡⎦⎥⎤0,π2.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行或在平面内,则它们所成的角是0°的角; ③当直线与平面斜交时,它们所成的角是锐角. 常用结论1.与线面垂直相关的两个常用结论:(1)两平行线中的一条与平面垂直,则另一条也与这个平面垂直. (2)一条直线垂直于两平行平面中的一个,则与另一个平面也垂直. 2.三种垂直关系的转化:线线垂直判定定理性质定理线面垂直判定定理性质定理面面垂直二、习题改编1.(必修2P72探究改编)已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n解析:选C.由题意知,α∩β=l ,所以l ⊂β,因为n ⊥β,所以n ⊥l . 2.(必修2P67练习T2改编)在三棱锥P ABC 中,点P 在平面ABC 中的射影为点O . (1)若PA =PB =PC ,则点O 是△ABC 的 心;(2)若PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,则点O 是△ABC 的 心.解析:(1)如图,连接OA ,OB ,OC ,OP ,在Rt △POA ,Rt △POB 和Rt △POC 中,PA =PB =PC ,所以OA =OB =OC ,即O 为△ABC 的外心.(2)如图,延长AO ,BO ,CO 分别交BC ,AC ,AB 于点H ,D ,G .因为PC ⊥PA ,PB ⊥PC ,PA ∩PB =P ,所以PC⊥平面PAB,又AB⊂平面PAB,所以PC⊥AB,因为AB⊥PO,PO∩PC=P,所以AB⊥平面PGC,又CG⊂平面PGC,所以AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.答案:(1)外(2)垂一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)已知直线a,b,c,若a⊥b,b⊥c,则a∥c.( )(2)直线l与平面α内的无数条直线都垂直,则l⊥α.( )(3)设m,n是两条不同的直线,α是一个平面,若m∥n,m⊥α,则n⊥α.( )(4)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )(5)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( )答案:(1)×(2)×(3)√(4)×(5)×二、易错纠偏常见误区(1)证明线面垂直时,易忽视平面内两条直线为相交直线这一条件;(2)面面垂直的判定中找不到哪个面和哪条线垂直.1.(2020·安徽江南十校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )A.α⊥β且m⊂αB.m⊥n且n∥βC.m∥n且n⊥βD.m⊥n且α∥β解析:选C.由线线平行性质的传递性和线面垂直的判定定理,可知C正确.2.(2020·辽宁大连第一次(3月)双基测试)已知直线l和平面α,β,且l⊂α,则“l⊥β”是“α⊥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由面面垂直的判定定理可得,若l⊂α,l⊥β,则α⊥β,充分性成立;若l⊥β,α⊥β,则l⊂α或l∥α,必要性不成立,所以若l⊂α,则“l⊥β”是“α⊥β”的充分不必要条件,故选A.线面垂直的判定与性质(师生共研)(1)(2018·高考全国卷Ⅱ节选)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.证明:PO ⊥平面ABC .(2)(2020·重庆市七校联合考试)如图,直三棱柱ABC A 1B 1C 1的所有棱长都是2,D ,E 分别是AC ,CC 1的中点.求证:AE ⊥平面A 1BD .【证明】 (1)因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,PO ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)因为AB =BC =CA ,D 是AC 的中点,所以BD ⊥AC ,因为直三棱柱ABC A 1B 1C 1中,AA 1⊥平面ABC ,所以平面AA 1C 1C ⊥平面ABC , 所以BD ⊥平面AA 1C 1C ,所以BD ⊥AE .又在正方形AA 1C 1C 中,D ,E 分别是AC ,CC 1的中点, 所以A 1D ⊥AE .又A 1D ∩BD =D , 所以AE ⊥平面A 1BD .判定线面垂直的四种方法如图,在直三棱柱ABCA1B1C1中,底面ABC是正三角形,M,N分别是AB,AA1的中点,且A1M⊥B1N.求证:B1N⊥A1C.证明:连接CM,在直三棱柱ABCA1B1C1中,AA1⊥平面ABC,CM⊂平面ABC,所以AA1⊥CM.在△ABC中,AC=BC,AM=BM,所以CM⊥AB.又AA1∩AB=A,所以CM⊥平面ABB1A1.因为B1N⊂平面ABB1A1,所以CM⊥B1N.又A1M⊥B1N,A1M∩CM=M,所以B1N⊥平面A1CM.因为A1C⊂平面A1CM,所以B1N⊥A1C.面面垂直的判定与性质(师生共研)(2019·高考北京卷节选)如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD 为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE.【证明】(1)因为PA⊥平面ABCD,所以PA⊥BD.因为底面ABCD为菱形,所以BD⊥AC.又PA∩AC=A,所以BD⊥平面PAC.(2)因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.又AB∩PA=A,所以AE⊥平面PAB.因为AE⊂平面PAE,所以平面PAB⊥平面PAE.(1)证明面面垂直的方法①定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直的问题转化为证明平面角为直角的问题.②定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,进而把问题转化为证明线线垂直加以解决.(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.如图,在三棱锥ABCD中,△ABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.证明:平面ACD⊥平面BDP.证明:因为△ABC是等边三角形,∠BAD=∠BCD=90°,所以Rt△ABD≌Rt△CBD,可得AD=CD.因为点P是AC的中点,所以PD⊥AC,PB⊥AC,因为PD∩PB=P,PD⊂平面PBD,PB⊂平面PBD,所以AC⊥平面PBD.因为AC⊂平面ACD,所以平面ACD⊥平面BDP.直线与平面所成的角(师生共研)(2020·宁夏六盘山高级中学二模)空间四边形PABC中,PA⊥平面ABC,AC⊥BC,AC =BC =2,PA =4,则PC 和平面PAB 所成角的正切值为 .【解析】 取AB 的中点O , 连接CO ,PO ,易知CO ⊥平面PAB ,则∠CPO 为PC 和平面PAB 所成的角.易得CO =2,PO =32,所以tan ∠CPO =CO PO =13,所以PC 和平面PAB 所成角的正切值为13.【答案】 13求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线.(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角.(3)把该角归结在某个三角形中,通过解三角形,求出该角.1.(2018·高考全国卷Ⅰ)在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3解析:选C.连接BC 1,因为AB ⊥平面BB 1C 1C ,所以∠AC 1B =30°,AB ⊥BC 1,所以△ABC 1为直角三角形.又AB =2,所以BC 1=2 3.又B 1C 1=2,所以BB 1=(23)2-22=22,故该长方体的体积V =2×2×22=8 2.2.已知边长为2的正方形ABCD 的四个顶点在球O 的球面上,球O 的体积V 球=1605π3,则OA 与平面ABCD 所成的角的余弦值为 .解析:如图,过点O 作OM ⊥平面ABCD ,垂足为点M ,则点M 为正方形ABCD 的中点.因为正方形ABCD 的边长为2,所以AC =22,所以AM = 2.因为V 球=43πr 3=1605π3,所以球O 的半径OA =r =25,OA 与平面ABCD 所成的角的余弦值为cos ∠OAM =AM OA =225=1010.答案:1010核心素养系列16 逻辑推理——空间中平行与垂直的证明如图,在四棱锥P ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面PAD ⊥底面ABCD ,PA ⊥AD ,E 和F 分别是CD 和PC 的中点,求证:(1)PA ⊥底面ABCD ; (2)BE ∥平面PAD ; (3)平面BEF ⊥平面PCD .【证明】 (1)因为平面PAD ⊥底面ABCD , 且PA 垂直于这两个平面的交线AD ,PA ⊂平面PAD , 所以PA ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点, 所以AB ∥DE ,且AB =DE , 所以四边形ABED 为平行四边形. 所以BE ∥AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD , 所以BE ∥平面PAD .(3)因为AB ⊥AD ,而且ABED 为平行四边形. 所以BE ⊥CD ,AD ⊥CD ,由(1)知PA ⊥底面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD ,且PA ∩AD =A ,PA ,AD ⊂平面PAD , 所以CD ⊥平面PAD ,又PD ⊂平面PAD , 所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点, 所以PD ∥EF .所以CD ⊥EF ,又BE ⊥CD 且EF ∩BE =E , 所以CD ⊥平面BEF ,又CD ⊂平面PCD , 所以平面BEF ⊥平面PCD .本题考查数学核心素养中的逻辑推理及直观想象、逻辑推理让学生能发现问题和提出问题;能掌握推理的基本形式,表述论证的过程;能理解数学知识之间的联系,构建知识框架;形成有论据、有条理、合乎逻辑的思维品质,增强数学交流能力.(2020·太原市模拟试题(一))如图,在四棱锥P ABCD 中,底面ABCD是菱形,∠BAD =60°,PA =PD =AD =2,点M 在线段PC 上,且PM =2MC ,N 为AD 的中点.(1)求证:AD ⊥平面PNB ;(2)若平面PAD ⊥平面ABCD ,求三棱锥P NBM 的体积. 解:(1)证明:连接BD . 因为PA =PD ,N 为AD 的中点, 所以PN ⊥AD .又底面ABCD 是菱形,∠BAD =60°, 所以△ABD 为等边三角形, 所以BN ⊥AD .又PN ∩BN =N , 所以AD ⊥平面PNB . (2)因为PA =PD =AD =2, 所以PN =NB = 3.又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PN ⊥AD , 所以PN ⊥平面ABCD .所以PN ⊥NB ,所以S △PNB =12×3×3=32.因为AD ⊥平面PNB ,AD ∥BC ,所以BC ⊥平面PNB . 又PM =2MC ,所以V P NBM =V M PNB =23V C PNB =23×13×32×2=23.[基础题组练]1.设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是( ) A .若a ∥α,b ∥α,则a ∥b B .若a ⊥α,a ∥b ,则b ⊥α C .若a ⊥α,a ⊥b ,则b ∥α D .若a ∥α,a ⊥b ,则b ⊥α解析:选B.若a ∥α,b ∥α,则a 与b 相交、平行或异面,故A 错误;易知B 正确;若a ⊥α,a ⊥b ,则b ∥α或b ⊂α,故C 错误;若a ∥α,a ⊥b ,则b ∥α或b ⊂α,或b 与α相交,故D 错误.故选B.2.(2020·广州一模)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若α⊥β,m ∥α,n ∥β,则m ⊥nB .若m ⊥α,m ∥n ,n ∥β,则α⊥βC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若α∥β,m ⊂α,n ⊂β,则m ∥n解析:选B.若α⊥β,m ∥α,n ∥β,则m 与n 相交、平行或异面,故A 错误; 因为m ⊥α,m ∥n ,所以n ⊥α, 又因为n ∥β,所以α⊥β,故B 正确;若m ⊥n ,m ⊂α,n ⊂β,则α与β的位置关系不确定,故C 错误; 若α∥β,m ⊂α,n ⊂β,则m ∥n 或m ,n 异面, 故D 错误.3.如图,在正四面体PABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论不成立的是( )A .BC ∥平面PDFB .DF ⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC解析:选D.因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A 正确.在正四面体中,AE⊥BC,PE⊥BC,DF∥BC,所以BC⊥平面PAE,则DF⊥平面PAE,从而平面PDF⊥平面PAE.因此选项B,C均正确.4.(2020·辽宁抚顺一模)在三棱锥PABC中,已知PA=AB=AC,∠BAC=∠PAC,点D,E分别为棱BC,PC的中点,则下列结论正确的是( )A.直线DE⊥直线AD B.直线DE⊥直线PAC.直线DE⊥直线AB D.直线DE⊥直线AC解析:选D.如图,因为PA=AB=AC,∠BAC=∠PAC,所以△PAC≌△BAC,所以PC=BC,取PB的中点G,连接AG,CG,则PB⊥CG,PB⊥AG,又因为AG∩CG=G,所以PB⊥平面CAG,则PB⊥AC,因为D,E分别为棱BC,PC的中点,所以DE∥PB,则DE⊥AC.故选D.5.(2019·高考北京卷)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.解析:其中两个论断作为条件,一个论断作为结论,可组成3个命题.命题(1):若l⊥m,m∥α,则l⊥α,此命题不成立,可以举一个反例,例如在正方体ABCDA1B1C1D1中,设平面ABCD为平面α,A1D1和A1B1分别为l和m,满足条件,但结论不成立.命题(2):若l⊥m,l⊥α,则m∥α,此命题正确.证明:作直线m1∥m,且与l相交,故l与m1确定一个平面β,且l⊥m1,因为l⊥α,所以平面α与平面β相交,设α∩β=n,则l⊥n,又m1,n⊂β,所以m1∥n,又m1∥m,所以m∥n,又m在平面α外,n⊂α,故m∥α.命题(3):若m∥α,l⊥α,则l⊥m,此命题正确.证明:过直线m作一平面,且与平面α相交,交线为a,因为m∥α,所以m∥a.因为l⊥α,a⊂α,所以l⊥a,又m∥a,所以l⊥m.答案:②③⇒①或①③⇒②(答案不唯一)6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有;与AP垂直的直线有.解析:因为PC⊥平面ABC,所以PC垂直于直线AB,BC,AC.因为AB⊥AC,AB⊥PC,AC∩PC=C,所以AB⊥平面PAC,又因为AP⊂平面PAC,所以AB⊥AP,与AP垂直的直线是AB.答案:AB,BC,AC AB7.如图,在四棱锥PABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC.证明:(1)因为PC⊥平面ABCD,DC⊂平面ABCD,所以PC⊥DC.又因为AC⊥DC,且PC∩AC=C,所以DC⊥平面PAC.(2)因为AB∥CD,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,AB⊂平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB ⊥平面PAC . 又AB ⊂平面PAB , 所以平面PAB ⊥平面PAC .8.(2020·武汉部分学校调研)如图,已知直三棱柱ABC A 1B 1C 1中,AC =BC =AA 1=1,AC ⊥BC ,E 在AB 上,且BA =3BE ,G 在AA 1上,且AA 1=3GA 1.(1)求三棱锥A 1ABC 1的体积; (2)求证:AC 1⊥EG .解:(1)在直三棱柱ABC A 1B 1C 1中,BC ⊥AC ,所以BC ⊥平面ACC 1A 1, 所以B 到平面ACC 1A 1的距离为1,所以VA 1ABC 1=VB AA 1C 1=13×(12×1×1)×1=16.(2)证明:如图,在AC 上取点D ,使CD =13CA ,连接ED ,DG ,因为BE =13BA ,所以DE ∥BC ,又BC ⊥平面ACC 1A 1, 所以DE ⊥平面ACC 1A 1. 又AC 1⊂平面ACC 1A 1, 所以DE ⊥AC 1. 在正方形ACC 1A 1中, 由CD =13CA ,A 1G =13A 1A ,得DG ⊥AC 1. 又DE ∩DG =D , 所以AC 1⊥平面DEG .所以AC 1⊥EG .[综合题组练]1.如图,棱长为1的正方体ABCD A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论不正确的是( )A .平面D 1A 1P ⊥平面A 1APB .∠APD 1的取值范围是⎝⎛⎭⎪⎫0,π2C .三棱锥B 1D 1PC 的体积为定值 D .DC 1⊥D 1P解析:选B.在A 中,因为A 1D 1⊥平面A 1AP ,A 1D 1⊂平面D 1A 1P ,所以平面D 1A 1P ⊥平面A 1AP ,故A 正确;在B 中,当P 与A 1重合时,∠APD 1=π2,故B 错误;在C 中,因为△B 1D 1C 的面积是定值,A 1B ∥平面B 1D 1C ,所以点P 到平面B 1D 1C 的距离是定值,所以三棱锥B 1D 1PC 的体积为定值,故C 正确;在D 中,因为DC 1⊥D 1C ,DC 1⊥BC ,D 1C ∩BC =C ,D 1C ,BC ⊂平面BCD 1A 1,所以DC 1⊥平面BCD 1A 1,所以DC 1⊥D 1P ,故D 正确.2.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为 .解析:由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.答案:8π3.如图,四棱锥P ABCD 的底面是正方形,PA ⊥底面ABCD ,PA =AD =2,点M ,N 分别在棱PD ,PC 上,且PC ⊥平面AMN .(1)求证:AM ⊥PD ;(2)求直线CD 与平面AMN 所成角的正弦值.解:(1)证明:因为四边形ABCD 是正方形,所以CD ⊥AD . 又因为PA ⊥底面ABCD ,所以PA ⊥CD ,故CD ⊥平面PAD . 又AM ⊂平面PAD ,则CD ⊥AM ,而PC ⊥平面AMN ,有PC ⊥AM ,又PC ∩CD =C ,则AM ⊥平面PCD ,故AM ⊥PD .(2)延长NM ,CD 交于点E ,因为PC ⊥平面AMN ,所以NE 为CE 在平面AMN 内的射影,故∠CEN 为CD (即CE )与平面AMN 所成的角, 又因为CD ⊥PD ,EN ⊥PN ,则有∠CEN =∠MPN , 在Rt △PMN 中,sin ∠MPN =MN PM =33, 故CD 与平面AMN 所成角的正弦值为33. 4.(2020·广东七校联考)如图,在四棱锥P ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA =AB =2,E 是AB 的中点,G 是PD 的中点.(1)求四棱锥P ABCD 的体积; (2)求证:AG ∥平面PEC ; (3)求证:平面PCD ⊥平面PEC .解:(1)易知V 四棱锥P ABCD =13S 正方形ABCD ·PA =13×2×2×2=83.(2)证明:如图,取PC 的中点F ,连接EF 和FG ,则易得AE ∥FG ,且AE =12CD =FG ,所以四边形AEFG 为平行四边形,所以EF ∥AG . 因为EF ⊂平面PEC ,AG ⊄平面PEC , 所以AG ∥平面PEC .(3)证明:易知CD ⊥AD ,CD ⊥PA ,因为PA ∩AD =A ,PA ⊂平面PAD ,AD ⊂平面PAD , 所以CD ⊥平面PAD .又AG ⊂平面PAD ,所以CD ⊥AG .易知PD ⊥AG ,因为PD ∩CD =D ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以AG ⊥平面PCD , 所以EF ⊥平面PCD . 又EF ⊂平面PEC , 所以平面PEC ⊥平面PCD .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5节 垂直关系 最新考纲 1.以立体几何的概念、公理和定理为起身点,熟悉和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已取得的结论证明一些空间图形的垂直关系的简单命题. 知 识 梳 理 1.直线与平面垂直
(1)直线和平面垂直的概念
若是一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直. (2)判定定理与性质定理
文字语言 图形表示 符号表示
判定定理 如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直
l⊥al⊥ba∩b=Oaαbα
⇒l
⊥α 性质定理
如果两条直线同垂直于一个平
面,那么这两条直线平行
a⊥αb⊥α⇒a∥b
2.直线和平面所成的角 (1)概念:一条斜线和它在平面上的射影所成的锐角叫作这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角. (2)范围:0,π2. 3.二面角 (1)概念:从一条直线起身的两个半平面所组成的图形叫作二面角; (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内别离作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.
(3)二面角的范围:[0,π]. 4.平面与平面垂直 (1)平面与平面垂直的概念 两个平面相交,若是它们所成的二面角是直二面角,就说这两个平面彼此垂直. (2)判定定理与性质定理 文字语言 图形表示 符号表示
判定定理 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 l⊥α
lβ⇒α⊥β
性质定理
如果两个平面互相垂直,则在一个平
面内垂直于它们交线的直线垂直于另一个平面
α⊥βα∩β=al⊥alβ
⇒l⊥
α [常常利用结论与微点提示] 1.两个重要结论 (1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方式). 2.利用线面垂直的概念和线面垂直的判定定理,不要误解为“若是一条直线垂直于平面内的无数条直线,就垂直于这个平面”. 3.线线、线面、面面垂直间的转化
诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)直线l与平面α内的无数条直线都垂直,则l⊥α.( ) (2)垂直于同一个平面的两平面平行.( ) (3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( ) (4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( ) 解析 (1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或lα或l∥α,故(1)错误.
(2)垂直于同一个平面的两个平面平行或相交,故(2)错误. (3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误. (4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误. 答案 (1)× (2)× (3)× (4)× 2.(教材习题改编)下列命题中不正确的是( ) A.若是平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β B.若是平面α⊥平面β,那么平面α内必然存在直线平行于平面β C.若是平面α不垂直于平面β,那么平面α内必然不存在直线垂直于平面β D.若是平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ 解析 按照面面垂直的性质,A不正确,直线l∥平面β或lβ或直线l与β相交. 答案 A 3.(2021·湖南六校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中必然能推出m⊥β的是( ) A.α⊥β且mα B.m⊥n且n∥β C.m∥n且n⊥β D.m⊥n且α∥β 解析 由线线平行性质的传递性和线面垂直的判定定理,可知C正确. 答案 C 4.(2021·全国Ⅲ卷)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( ) A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 解析 如图,由题设知,A1B1⊥平面BCC1B1且BC1平面BCC1B1,从而A1B1⊥BC1. 又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD,又A1E平面A1B1CD,所以A1E⊥BC1. 答案 C 5.边长为a的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________. 解析 如图所示,取BD的中点O,连接A′O,CO,则∠A′OC是二面角A′-BD-C的平面角, 即∠A′OC=90°.
又A′O=CO=22a, ∴A′C=a22+a22=a,即折叠后AC的长(A′C)为a. 答案 a
考点一 线面垂直的判定与性质 【例1】 如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明: (1)CD⊥AE; (2)PD⊥平面ABE. 证明 (1)在四棱锥P-ABCD中, ∵PA⊥底面ABCD,CD平面ABCD, ∴PA⊥CD, 又∵AC⊥CD,且PA∩AC=A, ∴CD⊥平面PAC.又AE平面PAC, ∴CD⊥AE. (2)由PA=AB=BC,∠ABC=60°,可得AC=PA. ∵E是PC的中点,∴AE⊥PC. 由(1)知AE⊥CD,且PC∩CD=C, ∴AE⊥平面PCD.又PD平面PCD,∴AE⊥PD. ∵PA⊥底面ABCD,AB平面ABCD,∴PA⊥AB. 又∵AB⊥AD,且PA∩AD=A, ∴AB⊥平面PAD,又PD平面PAD, ∴AB⊥PD. 又∵AB∩AE=A,∴PD⊥平面ABE. 规律方式 1.证明直线和平面垂直的常常利用方式有: (1)判定定理;(2)垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);(3)面面平行的性质(a⊥α,α∥β⇒a⊥β);(4)面面垂直的性质(α⊥β,α∩β=a,l⊥a,lβ⇒l⊥α).
2.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的大体思想. 【训练1】 如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=13DB,点C为圆O上一点,且BC=3AC,PD⊥平面ABC,PD=DB.
求证:PA⊥CD. 证明 因为AB为圆O的直径,所以AC⊥CB. 在Rt△ABC中,由3AC=BC得,∠ABC=30°. 设AD=1,由3AD=DB得,DB=3,BC=23. 由余弦定理得CD2=DB2+BC2-2DB·BCcos 30°=3, 所以CD2+DB2=BC2,即CD⊥AB. 因为PD⊥平面ABC,CD平面ABC, 所以PD⊥CD,由PD∩AB=D得,CD⊥平面PAB, 又PA平面PAB,所以PA⊥CD. 考点二 面面垂直的判定与性质 【例2】 如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F别离是CD和PC的中点,求证:
(1)PA⊥底面ABCD; (2)BE∥平面PAD; (3)平面BEF⊥平面PCD. 证明 (1)∵平面PAD⊥底面ABCD, 且PA垂直于这两个平面的交线AD,PA平面PAD, ∴PA⊥底面ABCD. (2)∵AB∥CD,CD=2AB,E为CD的中点, ∴AB∥DE,且AB=DE. ∴四边形ABED为平行四边形. ∴BE∥AD. 又∵BE平面PAD,AD平面PAD, ∴BE∥平面PAD. (3)∵AB⊥AD,而且ABED为平行四边形. ∴BE⊥CD,AD⊥CD, 由(1)知PA⊥底面ABCD,CD平面ABCD, ∴PA⊥CD,且PA∩AD=A,PA,AD平面PAD, ∴CD⊥平面PAD,又PD平面PAD, ∴CD⊥PD. ∵E和F别离是CD和PC的中点, ∴PD∥EF. ∴CD⊥EF,又BE⊥CD且EF∩BE=E, ∴CD⊥平面BEF,又CD平面PCD, ∴平面BEF⊥平面PCD. 规律方式 1.证明平面和平面垂直的方式:(1)面面垂直的概念;(2)面面垂直的判定定理. 2.已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直. 【训练2】 (2021·北京卷)如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PA⊥BD; (2)求证:平面BDE⊥平面PAC; (3)当PA∥平面BDE时,求三棱锥E-BCD的体积. (1)证明 ∵PA⊥AB,PA⊥BC, AB平面ABC,BC平面ABC,且AB∩BC=B,
∴PA⊥平面ABC,又BD平面ABC,∴PA⊥BD. (2)证明 ∵AB=BC,D是AC的中点, ∴BD⊥AC. 由(1)知PA⊥平面ABC,∵PA平面PAC,