立体几何空间中的垂直关系及答案

合集下载

高三数学立体几何复习:空间中的垂直关系 知识精讲 人教实验版(B)

高三数学立体几何复习:空间中的垂直关系 知识精讲 人教实验版(B)

高三数学立体几何复习:空间中的垂直关系知识精讲人教实验版(B)【本讲教育信息】一. 教学内容:立体几何复习:空间中的垂直关系二. 教学目的掌握空间中的垂直关系及其应用三. 知识分析【知识梳理】【空间中的垂直关系】1、空间任意直线互相垂直的一般定义如果两条直线相交于一点或经过平移后相交于一点,并且交角为90°,则称这两条直线互相垂直.2、直线与平面垂直(1)空间直线与平面垂直的定义:如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过交点(O)⊥,直线AB叫做的任何直线都垂直,我们就说这条直线和这个平面互相垂直,记作ABα平面的垂线,平面α叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离.(2)直线与平面垂直的判定定理:定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于这个平面.(3)直线与平面垂直的性质定理:定理:如果两条直线垂直于同一个平面,那么这两条直线平行.另外,一条直线垂直于一个平面,那么它就和平面内的所有直线都垂直.3、平面与平面的垂直(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作αβ⊥.(2)平面与平面垂直的判定定理:定理:如果一个平面过另一个平面的一条垂线,则两个平面互相垂直.(3)平面与平面垂直的性质定理定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.★★几点说明★★1、直线和平面垂直、平面和平面垂直是直线与平面、平面与平面相交的特殊情况,对这种特殊位置关系的认识,既可以从直线和平面、平面和平面的交角为90°的角度讨论,又可以从已有的线线垂直、线面垂直关系出发进行推理和论证,还可以利用向量把几何推理和论证过程转化为代数运算过程.2、无论是线面垂直还是面面垂直,都源自于线与线的垂直,这种转化为“低维”垂直的思想方法,在解题时非常重要,在处理实际问题的过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的垂直关系,从而架起已知与未知之间的“桥梁”。

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。

理解和掌握这些关系,对于解决相关的几何问题具有关键作用。

下面我们通过一些例题来深入探讨,并对相关知识点进行总结。

一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。

2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。

证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。

又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。

(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。

2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。

证明:连接 AC 交 BD 于 O,连接 MO。

因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。

又因为 M 是 PC 的中点,所以MO∥PA。

因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。

(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。

2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。

证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。

二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。

高中数学第八章立体几何初步-平面与平面垂直的判定课件及答案

高中数学第八章立体几何初步-平面与平面垂直的判定课件及答案

则 AD⊥BC,SD⊥BC,∴∠ADS 为二面角 A-BC-S 的平面角.在 Rt△BSC
中,∵SB=SC=a,
∴SD=
22a,BD=B2C=
2 2 a.
在 Rt△ABD 中,AD= 22a.在△ADS 中, ∵SD2+AD2=SA2,∴∠ADS=90°,即二面角 A-BC-S 为直二面角,故平
面 ABC⊥平面 SBC.
(3)垂线法.过二面角的一个面内异于棱上的 A 点向另一个平面作垂线,垂 足为 B,由点 B 向二面角的棱作垂线,垂足为 O,连接 AO,则∠AOB 为二面 角的平面角或其补角.如图③,∠AOB 为二面角 α-l-β 的平面角.
【对点练清】
1.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两
D.AO⊥l,BO⊥l,且 AO⊂α,BO⊂β 答案:D
3.如图,在正方体 ABCD-A1B1C1D1 中,二面角 A-BC-A1 的平面 角等于 ________. 答案:45°
知识点二 平面与平面垂直
(一)教材梳理填空 1.面面垂直的定义:
一般地,两个平面相交,如果它们所成的二面角是_直__二__面__角__,就说 定义
D.不存在
()
答案:C 3.若平面 α⊥平面 β,平面 β⊥平面 γ,则
()
A.α∥γ
B.α⊥γ
C.α 与 γ 相交但不垂直 答案:D
D.以上都有可能
题型一 二面角的概念及其大小的计算
【学透用活】 (1)一个二面角的平面角有无数个,它们的大小是相等的. (2)构成二面角的平面角的三要素:“棱上”“面内”“垂直”,即二面角的 平面角的顶点必须在棱上,角的两边必须分别在两个半平面内,角的两边必须都 与棱垂直,这三个条件缺一不可. (3)当二面角的两个半平面重合时,规定二面角的大小是 0°;当二面角的两 个半平面合成一个平面时,规定二面角的大小是 180°,所以二面角的平面角 α 的取值范围是 0°≤α≤180°.

第十一讲 立体几何(一) 平行与垂直.

第十一讲 立体几何(一) 平行与垂直.

第十一讲立体几何(一)平行与垂直【内容要点】垂直与平行是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解线面平行与垂直、面面平行与垂直的判定与性质,并能利用它们解决一些问题.直线与平面是立体几何的核心内容,主要包括:三条公理、三个推论、三线平行公理(公理4)、三垂线定理及其逆定理、三种位置关系(直线与直线、直线与平面、平面与平面)。

其中“平行问题”与“垂直问题”是两类重要的证明问题。

【例题剖析】例1. 如图,已知平面α∥β∥γ,A,C∈α,B,D∈γ,异面直线AB和CD分别与β交于E和G,连结AD和BC分别交β于F,H.(2)判断四边形EFGH是哪一类四边形;(3)若AC=BD=a,求四边形EFGH的周长.需经过分别与AB(或CD)共面的直线(例如AD)进行过渡,再利用平面几何知识达到论证的目标。

(2)在(1)的基础上,不难判断EFGH四边形的类型。

(3)利用(1)、(2)的结果再进一步进行探索。

解:(1)由AB,AD确定的平面,与平行平面β和γ的交线分别为(2)面CBD分别交β,γ于HG和BD.由于β∥γ,所以HG∥BD.同理EH∥AC.故EFGH为平行四边形。

评述此问题的最终解决都是利用平面几何的有关知识进行的,这里利用了辅助平面ABD和ADC是关键所在,本题也是利用线面、面面、线线平行的互相转化这一基本思想得到最后结果的.例2. 正方形ABCD和正方形ABEF所在平面互相垂直,点M,N分别在对角线AC和BF上,且AM=FN 求证:MN∥平面BEC分析:证线面平行⇐线线平行,需找出面BEC中与MN平行的直线。

证明(一):作NK∥AB交BE于K,作MH∥AB交BC于H∴MH∥NK∵ABCD与ABEF是两个有公共边AB的正方形∴它们是全等正方形∵AM=FN ∴CM=BN又∠HCM=∠KBN,∠HMC=∠KNB∴△HCM≌△KBN ∴MH=NK∴MHKN是平行四边形∴MN∥HK∵HK⊂平面BEC MN⊄平面BEC∴MN∥平面BEC证明(二):分析:利用面面平行⇒线面平行过N作NP∥BE,连MP,∵NP∥AF∴FN/FB=AP/AB∵AM=FN,AC=BF∴FN/FB=AM/AC ∴AP/AB=AM/AC∴MP∥BC ∴平面MNP∥平面BCE∴MN∥平面BCE解题中经常需要作互相平行的直线,为了使作直线的位置符合要求,构造成平行四边形,利用平行四边形对边这一关系是作平行线的依据之一。

易错点12 立体几何中的平行与垂直(解析版)

易错点12  立体几何中的平行与垂直(解析版)

易错点12 立体几何中的垂直与平行在立体几何中,点、线、面之间的位置关系,特别是线面、面面的平行和垂直关系,是高中立体几何的理论基础,是高考命题的热点与重点之一,一般考查形式为小题(位置关系基本定理判定)或解答题(平行、垂直位置关系的证明),难度不大。

立体几何中平行与垂直的易错点易错点1:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大。

易错点2:有关线面平行的证明问题中,对定理的理解不够准确,往往忽视",//,"a a b b αα⊄⊂三个条件中的某一个。

易错点3:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大;题组一:基本性质定理 1.(2021年浙江卷)已知正方形1111ABCD A B C D -,,M N 分别是11,A D D B 的中点,则( ). A .直线1A D 与直线1D B 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD B C .直线1A D 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD B【答案】A【解析】如图,连结1AD ,//,MN AB ∴//MN 平面ABCD ,1,AB A D ⊥11A D AD ⊥,1A D ∴⊥平面1AD B ,11A D D B ∴⊥2.(2021新高考1卷多选题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则A .当1λ=时,1AB P △的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P【答案】BD【解析】由点P 满足1BP BC BB λμ=+,可知点P 在正方形11BCC B 内.A 选项,当1λ=时,可知点P 在线段1CC (包括端点)上运动.1AB P △中,1AB =AP =1B P =1L AB AP B P =++不为定值,所以选项A 错误;B 选项,当1μ=时,可知点P 在线段11BC (包括端点)上运动.由图可知,线段11B C //平面1A BC ,即点P 到平面1A BC 的距离处处相等,1A BC △的面积是定值,所以三棱锥1P A BC -的体积为定值,所以选项B 正确;BCC 1B 1PABC A 1B 1C 1PABCA 1B 1C 1PC 选项,当12λ=时,分别取线段BC ,11B C 中点为D ,1D ,可知点P 在线段1DD (包括端点)上运动.很显然若点P 与D 或1D 重合时,均满足题意,所以选项C 错误.D 选项,当12μ=时,分别取线段1BB ,1CC 中点为M ,N ,可知点P 在线段MN (包括端点)上运动.此时,有且只有点P 与N 点重合时,满足题意. 所以选项D 正确.因此,答案为BD.3.(2019全国Ⅲ理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】 如图所示,联结,.因为点为正方形的中心,为正三角形,平面平面,是线段的中点,所以平面,平面,因为是中边上的中线,是中边上的中线,直线,是相交直线,设,则,ABCA 1B 1C 1D D 1PAB C A 1B 1C 1MNP A BCA 1B 1C 1MN(P)BE BD N ABCD ECD △ECD ⊥ABCD M ED BM ⊂BDE EN ⊂BDE BM BDE △DE EN BDE △BD BM EN DE a =2BD a =, 所以,, 所以.故选B .4.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【解析】 对于A ,内有无数条直线与平行,则与相交或,排除; 对于B ,内有两条相交直线与平行,则;对于C ,,平行于同一条直线,则与相交或,排除; 对于D ,,垂直于同一平面,则与相交或,排除.故选B .题组二:线面平行5. (2021天津卷)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:1//D F 平面11A EC ;【解析】(1)以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立如图空间直角坐标系, 则()0,0,0A ,()10,0,2A ,()2,0,0B ,()2,2,0C ,()0,2,0D ,()12,2,2C ,()10,2,2D , 因为E 为棱BC 的中点,F 为棱CD 的中点,所以()2,1,0E ,()1,2,0F , 所以()11,0,2D F =-,()112,2,0A C =,()12,1,2A E =-, 设平面11A EC 的一个法向量为()111,,m x y z =,则11111111222020m x y m AC E x y A z ⎧⋅+=⎪⎨⋅+-=⎪==⎩,令12x =,则()2,2,1m =-, 因为1220m D F ⋅-==,所以1D F m ⊥, 因为1D F ⊄平面11A EC ,所以1//D F 平面11A EC ;6.(2017新课标Ⅱ)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面三角形ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=,E 是PD 的中点. (1) 证明:直线CE ∥平面PAB ;BE ==BM=EN a ==BM EN ≠αβαββα∥αββα∥αβαββα∥αβαββα∥【解析】(1)取PA的中点F,连结EF,BF.因为E是PD的中点,所以EF AD∥,12EF AD=.由90BAD ABC∠=∠=得BC AD∥,又12BC AD=,所以EF BC∥,四边形BCEF是平行四边形,CE BF∥,又BF⊂平面PAB,CE⊄平面PAB,故CE∥平面PAB.7.(2019全国Ⅰ理18)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D.由题设知A1B1DC,可得B1C A1D,故ME ND,因此四边形MNDE为平行四边形,MN∥ED.又MN平面EDC1,所以MN∥平面C1DE.题组三线线垂直8.(2021全国甲卷理)已知直三棱柱111CBAABC-中,侧面BBAA11为正方形,FEBCAB,,2==分别为AC和1CC的中点,D为棱11BA上的点,11BABF⊥.(1)证明:DEBF⊥;【解析】(1)因为E F,是直三棱柱111ABC A B C-中AC和1CC的中点,且2AB BC==,所以15CF BF==,,连结AF,由11BF A B⊥且11//AB A B,则BF AB⊥,于是3AF=,所以,22AC=,由222AB BC AC+=,则BA BC⊥,故如图右图所示,建立空间直角B xyz-坐标系:EMDCBAP1212===⊄于是(2,0,0)(0,0,0)(0,2,2)(1,1,0)(0,2,1)A B C E F ,,,,, 设1B D m =,则(,0,2)D m .于是,(0,2,1)BF =,(1,1,2)DE m =-- 由BF⃗⃗⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗ =0可得BF ⊥DE ;9.(2021全国甲卷理)已知直三棱柱ABC −A 1B 1C 1中,侧面AA 1B 1B 为正方形.AB =BC =2,E ,F 分别为AC 和CC 1的中点,BF ⊥A 1B 1. (1)略(2)已知D 为棱A 1B 1上的点,证明:BF ⊥DE . 【解析】(2)取BC 中点M ,连接EM ,1MB ,1EA , 因为,E F 分别为1AC CC ,的中点,所以//EM AB ,因为11//A B AB ,所以11//EM A B ,所以11,,,E M B A 四点共面, 因为侧面11AA B B 为正方形,所以1BB AB =,又AB BC =,所以1BB BC =,所以侧面11BB C C 为正方形, 又F 为1CC 中点,M 为BC 中点,由平面几何知识可知1BF B M ⊥, 又11A B BF ⊥,1111B MA B B =,所以BF ⊥平面11EMB A ,而DE ⊆平面11EMB A ,所以BF DE ⊥.10.(2021新高考1卷)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;【解析】(1)因为在ABD △中,AB AD =,O 为BD 中点,所以AO BD ⊥, 因为平面ABD ⊥平面BCD ,且平面ABD 平面=BCD BD ,AO ⊂平面ABD ,AO BD ⊥,所以AO ⊥平面BCD ,又因为CD ⊂面BCD ,所以AO CD ⊥.11.(2021浙江卷)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.【解析】(1)因为ABCD 是平行四边形,∠ABC =120°,AB =1,所以60DCB ∠=︒,AB ∥DC ,DC =AB =1.因为M 为BC 中点,BC =4,所以CM =2.在DCM △中,由余弦定理得22212cos601422132DM DC CM DC CM =+-⋅⋅︒=+-⨯⨯⨯=所以DM =90CDM ∠=︒,所以DM DC ⊥,因为PD DC PDMD D PD PDM MD PDM ⊥=⊂⊂,,面,面,所以DC PDM ⊥面,所以DC PM ⊥.因为PM MD ⊥,DC MD D DC ABCD MD ABCD =⊂⊂,面,面,所以PM ABCD ⊥面,所以AB PM ⊥.题组四:线面垂直 12.(2016全国II )如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将ΔDEF 沿EF折到ΔD EF '的位置,OD '=(I )证明:D H '⊥平面ABCD ;【解析】(I )证明:∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥. ∵四边形ABCD 为菱形,∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥.∵6AC =,∴3AO =;又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO =⋅=,∴3DH D H '==, ∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OHEF H =,∴'D H ⊥面ABCD .13.(2018全国卷Ⅱ)如图,在三棱锥-P ABC中,==AB BC PA PB PC ===4AC =,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB.因为AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==.由222OP OB PB +=知PO OB ⊥. 由⊥OP OB ,⊥OP AC 知PO ⊥平面ABC .14.(2019全国Ⅱ理17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;【解析】 (1)由已知得,平面,平面,O MPCBA11B C ⊥11ABB A BE ⊂11ABB A故.又,所以平面.题组五:面面垂直15.(2021新高考2卷)在四棱锥Q ABCD-中,底面ABCD是正方形,若2AD=,QD QA==,3QC=,(1)证明:平面QAD⊥平面ABCD;【解析】(1)证明:取AD的中点M,连接,QM CM,QD QA=,∴QM AD⊥2QM==,CM3QC=,222QC QM CM∴=+,∴QM CM⊥又,AD CM⊂平面ABCD,AD CM M⋂=所以QM⊥平面ABCD,又QM⊂平面QAD,所以平面QAD⊥平面ABCD.16(2019全国Ⅲ理19)图1是由矩形ADEB、R t△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;11B C⊥BE1BE EC⊥BE⊥11EB CAB CDQMHAB CDQ【解析】 (1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB BE ,AB BC ,故AB 平面BCGE . 又因为AB 平面ABC ,所以平面ABC 平面BCGE . 17.(2018全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ;【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .18.(2018全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又BC CM =C ,所以DM ⊥平面BMC .而DM 平面AMD ,故平面AMD ⊥平面BMC .1.已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】若m α⊄,n α⊂,m ∥n ,由线面平行的判定定理知m ∥α.若m ∥α,m α⊄,n α⊂,不一定推出m ∥n ,直线m 与n 可能异面,故“m ∥n ”是“m ∥α”的充分不必要条件.故选A .⊥⊥⊥⊂⊥PFE D CBAMD CBA⊂⊂2.若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“l ∥α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】由“m α⊥且l m ⊥”推出“l α⊂或l α∥”,但由“m α⊥且l α∥”可推出“l m ⊥”,所以“l m ⊥”是“l α∥”的必要而不充分条件,故选B .3.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.证明:PB ∥平面AEC ;【解析】连接BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .4.如图,直三棱柱中,分别是的中点, (Ⅰ)证明://平面;【解析】(Ⅰ)连结,交于点O ,连结DO ,则O 为的中点,因为D 为AB 的中点,所以OD ∥,又因为OD 平面,平面,所以 //平面;5.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.证明:PB ∥平面AEC ;【解析】(Ⅰ)连接BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC,PB ⊄平面AEC ,所以PB ∥平面AEC .6.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,111ABC A B C -,D E 1,ABBB 1AA AC CB AB ===1BC 1A CDA 11AC 1A C 1AC 1BC⊂1A CD 1BC ⊄1A CD 1BC 1A CD=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.证明MN 平面PAB ;【解析】由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN . 又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .7.如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,1BAA ∠=60°.证明1AB A C ⊥;【解析】取AB 中点E ,连结CE ,,,∵AB =,=,∴是正三角形,∴⊥AB , ∵CA =CB , ∴CE ⊥AB ,∵=E ,∴AB ⊥面, ∴AB ⊥;8.如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=. 证明:平面PAB ⊥平面PAD ;B D1A B 1A E 1AA 1BAA ∠0601BAA ∆1A E 1CE A E ⋂1CEA 1A C D CB A P【解析】由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .9.如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.证明:平面ACD ⊥平面ABC ;【解析】由题设可得,ABD CBD ∆≅∆,从而AD DC =.又ACD ∆是直角三角形,所以0=90ACD ∠取AC 的中点O ,连接DO ,BO ,则DO AC ⊥,DO AO =.又由于ABC ∆是正三角形,故BO AC ⊥.所以DOB ∠为二面角D AC B --的平面角.在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故90DOB ∠=.所以平面ACD ⊥平面ABC .10.如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .证明:平面AEC ⊥平面AFC ;【解析】连接BD ,设BD AC G ,连接,,EG FG EF . 在菱形ABCD 中,不妨设1GB ,由120∠=ABC ,可得3AGGC , 由⊥BE 平面ABCD ,AB BC 可知,AE EC ,又∵⊥AE EC ,∴3EG,⊥EG AC , 在Rt EBG ∆中,可得2BE ,故22DF.在Rt FDG ∆中,可得62FG . 在直角梯形BDFE 中,由2BD ,2BE ,22DF ,可得322EF , ∴222EG FG EF +=,∴EG ⊥FG ,∵AC ∩FG =G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC .ABC DE。

立体几何复习专题及答案-高中数学

立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

高中数学-立体几何-空间中的平行和垂直关系

高中数学-立体几何-空间中的平行和垂直关系

高中数学总复习-第七章立体几何-空间中的平行和垂直关系【知识结构图】第3课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。

2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。

3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。

【基础练习】1.若ba、为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。

3.对于任意的直线l 与平面a ,在平面a 内必有直线m ,使m 与l 垂直 。

4. 已知a 、b 、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a ∥c ,b ∥c ⇒a ∥b ;②a ∥r ,b ∥r ⇒a ∥b ;③α∥c ,β∥c ⇒α∥β; ④α∥r ,β∥r ⇒α∥β;⑤a ∥c ,α∥c ⇒a ∥α;⑥a ∥r ,α∥r ⇒a ∥α. 其中正确的命题是 ①④ 。

【范例导析】例1.如图,在四面体ABCD 中,截面EFGH 是平行四边形. 求证:AB ∥平面EFG . 证明 :∵面EFGH 是截面.∴点E ,F ,G ,H 分别在BC ,BD ,DA ,AC 上. ∴EH面ABC ,GF面ABD ,由已知,EH ∥GF .∴EH ∥面ABD . 又 ∵EH 面BAC ,面ABC ∩面ABD=AB∴EH ∥AB . ∴AB ∥面EFG .例2. 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,并且CM=DN.求证:MN ∥平面AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。

高中数学必修2立体几何专题线面垂直典型例题的判定与性质

高中数学必修2立体几何专题线面垂直典型例题的判定与性质

线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间中的垂直关系1.线线垂直如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直.2.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,我们就说______________________,记作______.直线l叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P叫做______.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的________.(2)判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α⇒b⊥α.(3)性质定理:垂直于同一个平面的两条直线__________.3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________.4.二面角的有关概念(1)二面角:从一条直线出发的______________________叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________.5.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的________,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直.自查自纠:1.直角2.(1)直线l与平面α互相垂直l⊥α平面α的垂线直线l的垂面垂足距离(2)两条相交直线(3)平行3.锐角[0°,90°]4.(1)两个半平面所组成的图形(2)垂直于棱[0°,180°]5.(1)直二面角(2)垂线(3)交线(2018·广东清远一中月考)已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α⊥β⇒l∥m;②α∥β⇒l⊥m;③l⊥m⇒α∥β;④l∥m⇒α⊥β,其中正确命题的序号是() A.①②③B.②③④C.①③D.②④.(2017·全国卷Ⅲ)在正方体ABCD­A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC.(2017·湖北武汉模拟)如图,在正方形ABCD中,E,F分别是BC,CD的中点,连接AC,交EF于点G,沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么在这个空间图形中必有()A.AG⊥平面EFH B.AH⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF(2018·临沂检测)设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:____________.(用序号表示)(2017重庆八中适应性考试)在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中正确的是________.(2017重庆八中适应性考试)在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中正确的是________.①BC∥平面PDF;②DF⊥平面P AE;③平面PDF⊥平面ABC;④平面P AE⊥平面AB C.类型一线线垂直问题(2018·湖州模拟改编)如图所示,在四棱锥A­BCDE中,底面BCDE为菱形,侧面ABE为等边三角形,且侧面ABE⊥底面BCDE,O,F分别为BE,DE的中点.求证:(1)AO⊥CD;(2)CE⊥AF.点拨:本题主要考查线线、线面位置关系.证明线线垂直,其实质是通过证明线面垂直,再化归为线线垂直.(2017武汉市武钢第三子弟中学月考)如图,三棱柱ABC­A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABC­A1B1C1的体积.类型二线面垂直问题如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC交EF于点O,沿EF将△CEF翻折到△PEF,连接P A,PB,PD,得到五棱锥P­ABFED,且PB=10.(1)求证:BD⊥平面POA;(2)求四棱锥P­BDEF的体积.点拨:证明线面垂直的基本思路是证明该直线和平面内的两条相交直线垂直,亦可利用面面垂直的性质定理来证明;题(2)的难点在于证明PO即是所求四棱锥的高.(2017锦州市第二高级中学月考)如图,在正方体ABCD­A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.类型三面面垂直问题如图所示,在长方体ABCD­A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.(1)求异面直线A1M和C1D1所成的角的正切值;(2)证明:平面ABM⊥平面A1B1M.点拨:求异面直线所成的角,一般方法是通过平移直线,把异面问题转化为共面问题,通过解三角形求出所构造的角;证明面面垂直,可转化为证明线面垂直,而线面垂直又可以转化为证明线线垂直,在证明过程中,需充分利用规则几何体本身所具有的几何特征简化问题,有时还需应用勾股定理的逆定理,通过计算来证明垂直关系,这在高考题中是常用方法之一.(2018·豫南九校质检)在四棱锥P­ABCD中,平面P AD⊥平面ABCD,AB∥CD,△P AD是等边三角形,已知AD=2,BD=23,AB=2CD=4.(1)设M是PC上一点,求证:平面MBD⊥平面P AD;(2)求四棱锥P­ABCD的体积.类型四垂直综合问题(2017大连经济技术开发区一中月考)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=2,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′­BCDE,其中A′O=3.(1)证明:A′O⊥平面BCDE;(2)求二面角A′­CD­B的平面角的余弦值.点拨:本题主要考查线面垂直及二面角的计算等.折叠要注意不变量;作二面角,往往要通过作垂线来实现.如图1,在矩形ABCD中,AB=2,BC=4,E为AD的中点,O为BE的中点.将△ABE 沿BE折起到A′BE,使得平面A′BE⊥平面BCDE(如图2).图1图2(1)求证:A′O⊥CD;(2)求直线A′C与平面A′DE所成角的正弦值.1.判断(证明)线线垂直的方法(1)根据定义.(2)如果直线a∥b,a⊥c,则b⊥c.(3)如果直线a⊥面α,c⊂α,则a⊥c.(4)向量法:两条直线的方向向量的数量积为零.2.证明直线和平面垂直的常用方法(1)利用判定定理:两相交直线a,b⊂α,a⊥c,b⊥c⇒c⊥α.(2)a∥b,a⊥α⇒b⊥α.(3)利用面面平行的性质:α∥β,a⊥α⇒a⊥β.(4)利用面面垂直的性质:α⊥β,α∩β=m ,a ⊂α,a ⊥m ⇒a ⊥β;α⊥γ,β⊥γ,α∩β=m ⇒m ⊥γ. 3.证明面面垂直的主要方法(1)利用判定定理:a ⊥β,a ⊂α⇒α⊥β.(2)用定义证明.只需判定两平面所成二面角为直二面角.(3)如果一个平面垂直于两个平行平面中的一个,则它也垂直于另一个平面:α∥β,α⊥γ⇒β⊥γ. 4.平面与平面垂直的性质的应用当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.5.垂直关系的相互转化6.线面角、二面角求法 求这两种空间角的步骤:根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)⇒证⇒求(算)三步曲.也可用射影法:设斜线段AB 在平面α内的射影为A ′B ′,AB 与α所成角为θ,则cos θ=||A ′B ′||AB ;设△ABC 在平面α内的射影三角形为△A ′B ′C ′,平面ABC 与α所成角为θ,则cos θ=S △A ′B ′C ′S △ABC .1.(2017·唐山三模)已知平面α⊥平面β,则“直线m ⊥平面α”是“直线m ∥平面β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2018·上饶质检)已知P 是△ABC 所在平面外一点,P 到AB ,AC ,BC 的距离相等,且P 在△ABC 所在平面的射影O 在△ABC 内,则O 一定是△ABC 的 ( ) A .内心 B .外心 C .垂心 D .重心3.(2018·福建泉州)如图,在下列四个正方体ABCD ­A 1B 1C 1D 1中,E ,F ,G 均为所在棱的中点,过E ,F ,G 作正方体的截面,则在各个正方体中,直线BD 1与平面EFG 不垂直的是 ( )A BC D4.(2017沈阳市第一中学月考)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2018·广东模拟)如图所示是一个几何体的平面展开图,其中ABCD为正方形,E,F分别为所在棱P A,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P A D.其中正确结论的个数是()A.1 B.2 C.3 D.46.(2017瓦房店市高级中学月考)如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:①SG⊥平面EFG;②SD⊥平面EFG;③GF⊥平面SEF;④EF⊥平面GSD;⑤GD⊥平面SEF.正确的是()A.①和③B.②和⑤C.①和④D.②和④7.在正方体ABCD­A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)8.(教材改编)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A­BCD,则在三棱锥A­BCD中:①平面ADC⊥平面ABC;②平面ADC⊥平面ABD;③平面ADC⊥平面BD C.其中正确的是____________.(写出所有正确结论的编号)9.(2017钟祥市实验中学月考)如图,在四棱锥P­ABCD中,底面是边长为a的正方形,侧棱PD =a,P A=PC=2a.求证:(1)PD ⊥平面ABCD ;(2)平面P AC ⊥平面PB D .10.(2018·河北石家庄联考)如图,四棱锥P ­ABCD 的底面ABCD 是边长为2的菱形, ∠BAD =60°.PB =PD =2,P A =6.(1)证明:PC ⊥BD ;(2)若E 为P A 上一点,记三棱锥P ­BCE 的体积和四棱锥P ­ABCD 的体积分别为V 1和V 2,当V 1∶V 2=1∶8时,求EPAE的值.11.(2018·北京西城一模)如图1,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB =AC =25,BC =4.将△ADE 沿DE 折起到△A 1DE 的位置,使得平面A 1DE ⊥平面BCED ,F 为A 1C 的中点,如图2所示.(1)求证:EF ∥平面A 1BD ;(2)求证:平面A 1OB ⊥平面A 1OC ;(3)在线段OC 上是否存在点G ,使得OC ⊥平面EFG ?请说明理由.(2018·大连二模)如图所示,在几何体ABCDEF 中,底面ABCD 为矩形,EF ∥CD ,CD ⊥EA ,CD =2EF =2,ED=3,M 为棱FC 上一点,平面ADM 与棱FB 交于点N .(1)求证:ED ⊥CD ; (2)求证:AD ∥MN ;(3)若AD ⊥ED ,试问平面BCF 是否可能与平面ADMN 垂直?若能,求出FMFC 的值;若不能,请说明理由.空间中的垂直关系1.线线垂直如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直. 2.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说______________________,记作______.直线l 叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P 叫做______.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的________.(2)判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直.推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α⇒b⊥α.(3)性质定理:垂直于同一个平面的两条直线__________.3.直线和平面所成的角平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________.4.二面角的有关概念(1)二面角:从一条直线出发的______________________叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________.5.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直.(2)判定定理:一个平面过另一个平面的________,则这两个平面垂直.(3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直.自查自纠:1.直角2.(1)直线l与平面α互相垂直l⊥α平面α的垂线直线l的垂面垂足距离(2)两条相交直线(3)平行3.锐角[0°,90°]4.(1)两个半平面所组成的图形(2)垂直于棱[0°,180°]5.(1)直二面角(2)垂线(3)交线(2018·广东清远一中月考)已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α⊥β⇒l ∥m;②α∥β⇒l⊥m;③l⊥m⇒α∥β;④l∥m⇒α⊥β,其中正确命题的序号是() A.①②③B.②③④C.①③D.②④解:①中l与m可能相交、平行或异面;②中结论正确;③中两平面α,β可能平行,也可能相交;④中结论正确.故选D.(2017·全国卷Ⅲ)在正方体ABCD­A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解:由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1,故选C.(2017·湖北武汉模拟)如图,在正方形ABCD中,E,F分别是BC,CD的中点,连接AC,交EF于点G,沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么在这个空间图形中必有()A.AG⊥平面EFH B.AH⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF解:根据折叠前AB⊥BE,AD⊥DF,得折叠后AH⊥HE,AH⊥HF,又HE∩HF=H,所以AH⊥平面EFH,B正确;因为过点A只有一条直线与平面EFH垂直,所以A不正确;因为AG⊥EF,EF⊥AH,AG∩AH=A,所以EF⊥平面HAG,又EF⊂平面AEF,所以平面HAG⊥平面AEF,过点H作直线垂直于平面AEF,所作直线一定在平面HAG内,所以C不正确;因为HG不垂直于AG,所以HG⊥平面AEF 不正确,所以D不正确.故选B.(2018·临沂检测)设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:____________.(用序号表示)解:若①②③成立,则m与α的位置关系不确定,故①②③⇒④错误;同理①②④⇒③也错误;①③④⇒②与②③④⇒①均正确.故填①③④⇒②(或②③④⇒①).(2017重庆八中适应性考试)在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中正确的是________.①BC∥平面PDF;②DF⊥平面P AE;③平面PDF⊥平面ABC;④平面P AE⊥平面AB C.解:由DF∥BC可得BC∥平面PDF,故①正确;若PO⊥平面ABC,垂足为O,则O在AE上,则DF⊥PO,又DF⊥AE,故DF⊥平面P AE,故②正确;由PO⊥平面ABC,PO⊂平面P AE,可得平面P AE⊥平面ABC,故④正确,平面PDF不过PO,故③不正确.故填①②④.类型一线线垂直问题(2018·湖州模拟改编)如图所示,在四棱锥A­BCDE中,底面BCDE为菱形,侧面ABE为等边三角形,且侧面ABE⊥底面BCDE,O,F分别为BE,DE的中点.求证:(1)AO⊥CD;(2)CE⊥AF.证明:(1)因为△ABE为等边三角形,O为BE 的中点,所以AO⊥BE.又因为平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE,AO⊂平面ABE,所以AO⊥平面BCDE.又因为CD⊂平面BCDE,所以AO⊥C D.(2)连接BD,因为四边形BCDE为菱形,所以CE⊥B D.因为O,F分别为BE,DE的中点,所以OF∥BD,所以CE⊥OF.由(1)可知,AO⊥平面BCDE,因为CE⊂平面BCDE,所以AO⊥CE.因为AO∩OF=O,所以CE⊥平面AOF.又AF⊂平面AOF,所以CE⊥AF.点拨:本题主要考查线线、线面位置关系.证明线线垂直,其实质是通过证明线面垂直,再化归为线线垂直.(2017武汉市武钢第三子弟中学月考)如图,三棱柱ABC­A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABC­A1B1C1的体积.解:(1)证明:取AB的中点O,连接OC,OA1,A1B.因为CA=CB,所以OC⊥A B.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥A B.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C.(2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1=3.又A1C=6,则A1C2=OC2+OA21,故OA1⊥O C.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC­A1B1C1的高.又△ABC的面积S△ABC=3,故三棱柱ABC­A1B1C1的体积为V=S△ABC×OA1=3.类型二线面垂直问题如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC交EF于点O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到五棱锥P­ABFED,且PB =10.(1)求证:BD⊥平面POA;(2)求四棱锥P­BDEF的体积.解:(1)证明:如图,因为点E,F分别是题图中菱形ABCD的边CD,CB的中点,所以BD∥EF.因为菱形ABCD的对角线互相垂直,所以BD⊥AC,所以EF⊥A C.所以EF⊥AO,EF⊥PO.因为AO⊂平面POA,PO⊂平面POA,AO∩PO =O,所以EF⊥平面POA,所以BD⊥平面PO A.(2)如图,设AO∩BD=H,连接BO.因为∠DAB=60°,所以△ABD为等边三角形.所以BD=4,BH=2,HA=23,HO=PO=3.在Rt△BHO中,BO=7.在△PBO中,BO2+PO2=10=PB2,所以PO⊥BO.因为PO⊥EF,EF∩BO=O,EF⊂平面BFED,BO⊂平面BFED,所以PO⊥平面BFE D.因为梯形BFED的面积为S=12(EF+BD)·HO=33,所以四棱锥P­BFED的体积V=13S·PO=3.点拨:证明线面垂直的基本思路是证明该直线和平面内的两条相交直线垂直,亦可利用面面垂直的性质定理来证明;题(2)的难点在于证明PO即是所求四棱锥的高.(2017锦州市第二高级中学月考)如图,在正方体ABCD­A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.证明:(1)如图,连接AD1,由ABCD­A1B1C1D1是正方体,知AD1∥BC1,因为F,P分别是AD,DD1的中点,所以FP∥AD1,从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,则AC⊥B D.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥B D.又AC∩CC1=C,所以BD⊥平面ACC1A1.而AC1⊂平面ACC1A1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.类型三面面垂直问题如图所示,在长方体ABCD­A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.(1)求异面直线A1M和C1D1所成的角的正切值;(2)证明:平面ABM⊥平面A1B1M.解:(1)因为C1D1∥B1A1,所以∠MA1B1为异面直线A1M和C1D1所成的角,因为A1B1⊥平面BCC1B1,所以∠A1B1M=90°.而A1B1=1,B1M=B1C21+MC21=2,故tan∠MA1B1=B1MA1B1=2.(2)证明:由A1B1⊥平面BCC1B1,BM⊂平面BCC1B1,得A1B1⊥BM.①由(1)知,B1M=2,又BM=BC2+CM2=2,B1B=2,B1M2+BM2=B1B2,从而BM⊥B1M.②又A1B1∩B1M=B1,由①②得BM⊥平面A1B1M.而BM⊂平面ABM,所以平面ABM⊥平面A1B1M.点拨:求异面直线所成的角,一般方法是通过平移直线,把异面问题转化为共面问题,通过解三角形求出所构造的角;证明面面垂直,可转化为证明线面垂直,而线面垂直又可以转化为证明线线垂直,在证明过程中,需充分利用规则几何体本身所具有的几何特征简化问题,有时还需应用勾股定理的逆定理,通过计算来证明垂直关系,这在高考题中是常用方法之一.(2018·豫南九校质检)在四棱锥P­ABCD中,平面P AD⊥平面ABCD,AB∥CD,△P AD是等边三角形,已知AD=2,BD=23,AB=2CD=4.(1)设M是PC上一点,求证:平面MBD⊥平面P AD;(2)求四棱锥P­ABCD的体积.解:(1)证明:在△ABD中,AD=2,BD=23,AB=4,由勾股定理可得AD⊥B D.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,所以BD⊥平面P AD,又BD⊂平面MBD,所以平面MBD⊥平面P A D.(2)取AD的中点O,连接PO,则PO是四棱锥P­ABCD的高,易得PO=3,底面四边形ABCD的面积是12×(2+4)×2×234=33,所以四棱锥P­ABCD的体积为13×33×3=3.类型四垂直综合问题(2017大连经济技术开发区一中月考)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=2,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′­BCDE,其中A′O=3.(1)证明:A′O⊥平面BCDE;(2)求二面角A′­CD­B的平面角的余弦值.解:(1)证明:在图1中,易得OC=3,AC=32,AD=22.如图示,连接OD,OE,在△OCD 中,由余弦定理可得OD=OC2+CD2-2OC·CD cos45°=5.由翻折不变性可知A ′D =22,易得A ′O 2+OD 2=A ′D 2,所以A ′O ⊥O D .同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE . (2)过O 作OH ⊥CD 交CD 的延长线于H ,连接A ′H ,因为A ′O ⊥平面BCDE ,易知A ′H ⊥CD ,所以∠A ′HO 为二面角A ′­CD ­B 的平面角.结合图1可知,H 为AC 中点,又O 为BC 中点,故OH =12AB =322,从而A ′H =OH 2+OA ′2=302, 所以cos ∠A ′HO =OH A ′H=155.所以二面角A ′­CD ­B 的平面角的余弦值为155.点 拨:本题主要考查线面垂直及二面角的计算等.折叠要注意不变量;作二面角,往往要通过作垂线来实现.如图1,在矩形ABCD 中,AB =2,BC =4,E 为AD 的中点,O 为BE 的中点.将△ABE 沿BE 折起到A ′BE ,使得平面A ′BE ⊥平面BCDE (如图2).图1 图2 (1)求证:A ′O ⊥CD ;(2)求直线A ′C 与平面A ′DE 所成角的正弦值. 解:(1)证明:如图1,在矩形ABCD 中,因为AB =2,BC =4,E 为AD 中点,所以AB =AE =2,因为O 为BE 的中点,所以AO ⊥BE .由题意可知,A ′O ⊥BE ,平面A ′BE ⊥平面BCDE .因为平面A ′BE ∩平面BCDE =BE ,A ′O ⊂平面A ′BE ,所以A ′O ⊥平面BCDE . 因为CD ⊂平面BCDE ,所以A ′O ⊥C D . (2)取BC 中点为F ,连接OF ,由矩形ABCD 性质,可知OF ⊥BE ,由(1)可知,A ′O ⊥BE , A ′O ⊥OF ,以O 为原点,建立如图所示空间直角坐标系,在Rt △BAE 中,由AB =2,AE =2,则BE =22,OA =2,所以A ′(0,0,2),E (0,2,0),F (2,0,0),B (0,-2,0),C (22,2,0),D (2,22,0),则A ′C →=(22,2,-2),ED →=(2,2,0),A ′E →=(0,2,-2).设平面A ′DE 的一个法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·A ′E →=0,m ·ED →=0,⇒⎩⎪⎨⎪⎧2y -2z =0,2x +2y =0,令y =1,则x =-1,z =1,所以m =(-1,1,1).设直线A ′C 与平面A ′DE 所成角为θ,sin θ=|cos 〈A ′C →,m 〉|=|A ′C →·m ||A ′C →|·|m |=23,所以直线A ′C 与平面A ′DE 所成角的正弦值为23.1.判断(证明)线线垂直的方法(1)根据定义. (2)如果直线a ∥b ,a ⊥c ,则b ⊥c . (3)如果直线a ⊥面α,c ⊂α,则a ⊥c . (4)向量法:两条直线的方向向量的数量积为零. 2.证明直线和平面垂直的常用方法 (1)利用判定定理:两相交直线a ,b ⊂α,a ⊥c ,b ⊥c ⇒c ⊥α.(2)a ∥b ,a ⊥α⇒b ⊥α.(3)利用面面平行的性质:α∥β,a ⊥α⇒a ⊥β. (4)利用面面垂直的性质:α⊥β,α∩β=m ,a ⊂α,a ⊥m ⇒a ⊥β;α⊥γ,β⊥γ,α∩β=m ⇒m ⊥γ.3.证明面面垂直的主要方法(1)利用判定定理:a ⊥β,a ⊂α⇒α⊥β.(2)用定义证明.只需判定两平面所成二面角为直二面角.(3)如果一个平面垂直于两个平行平面中的一个,则它也垂直于另一个平面:α∥β,α⊥γ⇒β⊥γ.4.平面与平面垂直的性质的应用当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.5.垂直关系的相互转化6.线面角、二面角求法 求这两种空间角的步骤:根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)⇒证⇒求(算)三步曲.也可用射影法:设斜线段AB 在平面α内的射影为A ′B ′,AB 与α所成角为θ,则cos θ=||A ′B ′||AB ;设△ABC 在平面α内的射影三角形为△A ′B ′C ′,平面ABC 与α所成角为θ,则cos θ=S △A ′B ′C ′S △ABC.1.(2017·唐山三模)已知平面α⊥平面β,则“直线m ⊥平面α”是“直线m ∥平面β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解:若α⊥β,且m ⊥α,则m ∥β或m ⊂β;若α⊥β,且m ∥β,则m ∥α或m 与α相交或m ⊂α.故选D .2.(2018·上饶质检)已知P 是△ABC 所在平面外一点,P 到AB ,AC ,BC 的距离相等,且P 在△ABC 所在平面的射影O 在△ABC 内,则O 一定是△ABC 的 ( )A .内心B .外心C .垂心D .重心解:因为P 到AB ,AC ,BC 三边的距离相等,且P 在△ABC 所在平面的射影O 在△ABC 内,则O 到AB ,AC ,BC 三边的距离也相等,即点O 为△ABC 的内切圆的圆心,即△ABC 的内心.故选A .3.(2018·福建泉州)如图,在下列四个正方体ABCD ­A 1B 1C 1D 1中,E ,F ,G 均为所在棱的中点,过E ,F ,G 作正方体的截面,则在各个正方体中,直线BD 1与平面EFG 不垂直的是 ( )ABC D解:如图,在正方体ABCD­A1B1C1D1中,E,F,G,M,N,Q均为所在棱的中点,图形EFMNQG是一个平面图形,直线BD1与平面EFMNQG垂直,而选项A,B,C中的平面EFG与这个平面重合,D中EF∥BB1,而BB1与BD1不垂直,即BD1与平面EFG不垂直.故选D.4.(2017沈阳市第一中学月考)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当α⊥β时,由面面垂直的性质定理知b⊥α,则b⊥a.所以“α⊥β”是“a⊥b”的充分条件.而当a⊂α,且a∥m时,因为b⊥m,所以b⊥a,而此时平面α与平面β不一定垂直.所以“α⊥β”不是“a⊥b”的必要条件.故选A.5.(2018·广东模拟)如图所示是一个几何体的平面展开图,其中ABCD为正方形,E,F分别为所在棱P A,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P A D.其中正确结论的个数是()A.1 B.2 C.3 D.4解:画出该几何体的直观图,如图所示,①因为E,F分别是P A,PD的中点,所以EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线,故①不正确;②直线BE与直线AF满足异面直线的定义,故②正确;③由E,F分别是P A,PD的中点,可知EF∥AD,所以EF∥BC,因为EF⊄平面PBC,BC⊂平面PBC,所以直线EF∥平面PBC,故③正确;④无法判定平面BCE⊥平面P AD,故④不正确.故选B.6.(2017瓦房店市高级中学月考)如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:①SG⊥平面EFG;②SD⊥平面EFG;③GF⊥平面SEF;④EF⊥平面GSD;⑤GD⊥平面SEF.正确的是()A.①和③B.②和⑤C.①和④D.②和④解:因为正方形中折叠前后都有SG⊥GE,SG ⊥GF,所以SG⊥平面EFG.①正确,②错误.因为SG⊥GF,SG⊥GD,所以GF并不垂直于SF,GD并不垂直于SD,即③⑤错误.因为EF⊥GD,EF⊥SG,GD∩SG=G,所以EF⊥面GS D.④正确.故选C.7.在正方体ABCD­A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)解:根据两平面平行的性质定理可得BFD′E为平行四边形,①正确;若四边形BFD′E是正方形,则BE⊥ED′,又A′D′⊥EB,A′D′∩ED′=D′,所以BE⊥面ADD′A′,与已知矛盾,②错;易知四边形BFD′E在底面ABCD内的投影是正方形ABCD,③正确;当E,F分别为棱AA′,CC′的中点时,EF ∥AC,又AC⊥平面BB′D,所以EF⊥面BB′D,④正确.故填①③④.8.(教材改编)如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A­BCD,则在三棱锥A­BCD中:①平面ADC⊥平面ABC;②平面ADC⊥平面ABD;③平面ADC⊥平面BD C.其中正确的是____________.(写出所有正确结论的编号)解:在四边形ABCD中,由已知可得BD⊥C D.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以平面ACD⊥平面ABD,所以CD⊥A B.又AD⊥AB,AD ∩CD=D,所以AB⊥平面ADC,从而平面ABC⊥平面AD C.故填①②.9.(2017钟祥市实验中学月考)如图,在四棱锥P­ABCD中,底面是边长为a的正方形,侧棱PD=a,P A=PC=2a.求证:(1)PD ⊥平面ABCD ;(2)平面P AC ⊥平面PB D .证明:(1)因为PD =a ,DC =a ,PC =2a , 所以PC 2=PD 2+DC 2,所以PD ⊥D C . 同理可证PD ⊥AD ,又AD ∩DC =D , 所以PD ⊥平面ABC D . (2)由(1)知PD ⊥平面ABCD ,所以PD ⊥AC ,而四边形ABCD 是正方形, 所以AC ⊥BD ,又BD ∩PD =D ,所以AC ⊥平面PD B .同时AC ⊂平面P AC , 所以平面P AC ⊥平面PB D .10.(2018·河北石家庄联考)如图,四棱锥P ­ABCD 的底面ABCD 是边长为2的菱形, ∠BAD =60°.PB =PD =2,P A =6.(1)证明:PC ⊥BD ;(2)若E 为P A 上一点,记三棱锥P ­BCE 的体积和四棱锥P ­ABCD 的体积分别为V 1和V 2,当V 1∶V 2=1∶8时,求EPAE的值.解:(1)证明:连接AC 交BD 于点O ,连接PO . 因为四边形ABCD 是菱形,所以BD ⊥AC ,且O 为BD 的中点,因为PB =PD ,所以PO ⊥BD ,又AC ∩PO =O ,所以BD ⊥平面P AC ,又 PC ⊂平面P AC ,所以BD ⊥P C .(2)因为AB =PB =2,AD =PD =2,BD =BD ,所以△ABD ≌△PBD ,所以AO =PO =3,因为P A =6,所以P A 2=OA 2+OP 2,所以PO ⊥A C .又PO ⊥BD ,AC ∩BD =O ,所以PO ⊥平面ABC D .过点E 作EF ∥PO ,交AC 于点F ,所以EF ,PO 分别是三棱锥E ­ABC 和四棱锥P ­ABCD 的高.又V 1=V P ­ABC -V E ­ABC =13S △ABC ·(PO -EF ),V 2=13S 菱形ABCD ·PO ,由V 1V 2=18,得S △ABC ·(PO -EF )S 菱形ABCD ·PO =18,即4(PO -EF )=PO ,所以PO EF =43.因为EF ∥PO ,所以△AEF ∽△APO , 所以PO EF =AP AE =AE +EP AE =43,所以EP AE =13.11.(2018·北京西城一模)如图1,在△ABC 中,D ,E 分别为AB ,AC 的中点,O 为DE 的中点,AB =AC =25,BC =4.将△ADE 沿DE 折起到△A 1DE 的位置,使得平面A 1DE ⊥平面BCED ,F 为A 1C 的中点,如图2所示.(1)求证:EF ∥平面A 1BD ;(2)求证:平面A 1OB ⊥平面A 1OC ;(3)在线段OC 上是否存在点G ,使得OC ⊥平面EFG ?请说明理由.解:(1)证明:如图,取线段A 1B 的中点H ,连接HD ,HF .因为在△ABC 中,D ,E 分别为AB ,AC 的中点,所以DE ∥BC ,且DE =12B C .因为H ,F 分别为A 1B ,A 1C 的中点,所以HF ∥BC ,且HF =12BC ,所以HF ∥DE ,且HF =DE .所以四边形DEFH 为平行四边形,所以EF ∥H D .因为EF ⊄平面A 1BD ,HD ⊂平面A 1BD ,所以EF ∥平面A 1B D .(2)证明:因为在△ABC 中,AB =AC ,D ,E 分别为AB ,AC 的中点,所以AD =AE ,所以A 1D =A 1E ,又O 为DE 的中点,所以A 1O ⊥DE . 因为平面A 1DE ⊥平面BCED ,且平面A 1DE ∩平面BCED =DE ,A 1O ⊂平面A 1DE , 所以A 1O ⊥平面BCED ,所以CO ⊥A 1O . 又易求得OB =OC =22,所以OB 2+OC 2=BC 2,所以CO ⊥BO , 又A 1O ∩BO =O ,A 1O ⊂平面A 1OB ,BO ⊂平面A 1OB ,所以CO ⊥平面A 1OB ,又CO ⊂平面A 1OC ,所以平面A 1OB ⊥平面A 1O C .(3)在线段OC 上不存在点G ,使得OC ⊥平面EFG .理由如下:假设在线段OC 上存在点G ,使得OC ⊥平面EFG ,连接GE ,GF ,则必有OC ⊥GF ,OC ⊥GE .在Rt △A 1OC 中,由F 为A 1C 的中点,得G 为OC 的中点.在△EOC 中,因为OC ⊥GE ,所以EO =EC ,这显然与EO =1,EC =5矛盾. 所以在线段OC 上不存在点G ,使得OC ⊥平面。

相关文档
最新文档