高中数学立体几何正交与垂直关系分析

合集下载

高中立体几何垂直技巧

高中立体几何垂直技巧

高中立体几何垂直技巧立体几何是数学中的一个重要分支,研究物体在空间中的形状、大小、位置等问题。

其中,垂直是一个基本概念,它在解决立体几何问题时起着重要的作用。

本文将介绍一些高中立体几何中常用的垂直技巧,帮助读者更好地理解和应用这一概念。

一、垂直的概念在几何中,垂直是指两个线段、两个直线或两个平面相互垂直,即互相成直角的关系。

垂直关系是立体几何中最基本的关系之一,它决定了空间中物体的相对位置和方向。

因此,掌握垂直的概念对于解决立体几何问题至关重要。

二、垂直的性质1. 垂直线段的性质:如果两个线段相互垂直,则它们的乘积等于它们的长度之和的平方减去它们的长度之差的平方。

即若AB⊥CD,则有AB × CD = (AB + CD)(AB - CD)。

2. 垂直直线的性质:如果两条直线相互垂直,则它们的斜率的乘积等于-1。

3. 垂直平面的性质:如果两个平面相互垂直,则它们的法向量互相垂直。

三、垂直的判定方法1. 通过斜率判定垂直:对于已知直线的斜率,如果两条直线的斜率乘积为-1,则它们相互垂直。

2. 通过向量判定垂直:对于已知直线的方向向量,如果两条直线的方向向量互相垂直,则它们相互垂直。

3. 通过点和直线的关系判定垂直:如果一条直线上的两个向量分别与另一条直线上的两个向量的点积为零,则这两条直线相互垂直。

四、垂直的应用技巧1. 垂直平分线的性质:如果一条直线垂直平分另一条线段,那么这条直线一定过这条线段的中点。

2. 垂直平面与直线的关系:如果一条直线与一个平面相交,且与该平面的两个垂直线互相垂直,则该直线垂直于该平面。

3. 垂直平面的性质:如果一个平面与两个相互垂直的直线相交,则该平面与这两条直线互相垂直。

4. 垂直关系的应用:在解决立体几何问题时,可以利用垂直关系简化问题,减少计算量。

通过合理运用垂直的判定方法和性质,可以快速确定物体的位置、方向和大小。

五、垂直技巧的例题例题1:已知三棱锥ABCD的底面ABCD为矩形,AB=3,BC=4,垂直于底面的侧棱BN=5,求三棱锥ABCD的体积。

高中数学立体几何与解析几何

高中数学立体几何与解析几何

高中数学立体几何与解析几何立体几何与解析几何是高中数学中的重要内容,它们研究了几何图形在三维空间中的形态和性质,以及利用坐标系进行几何问题的解析计算。

本文将介绍高中数学中立体几何和解析几何的基本概念和应用。

一、立体几何的基本概念与性质立体几何是研究三维空间中的几何图形的学科。

在立体几何中,我们主要关注的图形包括点、线、面以及各种立体体形(如球、锥、柱、棱锥等)。

下面将介绍几个常见的立体几何概念和性质。

1.1 点、线、面的定义在三维空间中,点是没有大小和形状的,用坐标表示。

线是由两个点确定的直线段,可以延伸到无穷远。

面是由三个或多个点确定的平面,它没有厚度,只有长度和宽度。

1.2 正交投影与投影性质正交投影是指物体在垂直于投影面的直线上的投影。

投影性质包括平行线投影后仍为平行线、线段长度比例保持不变、角度保持不变等。

1.3 空间几何体的性质各种空间几何体如球体、立方体、锥体等都有各自的性质,如体积、表面积、对称性等。

二、解析几何的基本概念与性质解析几何是通过坐标系和代数方法研究几何问题的学科。

它将几何问题转化为代数问题,通过运用代数方法解决几何问题。

下面将介绍几个常见的解析几何概念和性质。

2.1 坐标系及其表示方法在解析几何中,我们通常使用直角坐标系或参数方程来表示几何图形。

直角坐标系是由横轴和纵轴组成的,图形的坐标表示为(x, y)。

参数方程是通过参数t的取值来表示几何图形的坐标。

2.2 点、线、面的解析表示通过坐标表示,我们可以用方程的形式来表示点、线、面的几何性质,将几何问题转化为代数问题。

例如,直线的解析表示为y = kx + b,平面的解析表示为ax + by + cz + d = 0。

2.3 距离、角度的解析计算在解析几何中,我们可以通过坐标计算两点间的距离和线段的长度。

同时,也可以通过坐标计算两条直线的夹角和两个平面的夹角。

三、立体几何与解析几何的应用立体几何和解析几何在实际问题中有着广泛的应用。

浅谈立体几何中的垂直问题

浅谈立体几何中的垂直问题

浅谈立体几何中的垂直问题黎武兵湛江市太平中学交流QQ:306582633关键词:立体几何,维数转化,非90度垂直,线线垂直垂直问题在立体几何中占有重要的地位,是历年高考命题的热点.空间中的垂直关系有三种:线线垂直、线面垂直、面面垂直.而线线垂直是最基本、最重要的一种,它在三者转化过程中起着穿针引线、承前启后的作用.因此线线垂直的证明更是解决垂直问题的关键.立体几何是平面几何的升级与综合.例如正方体的侧棱垂直形式就有45度角,90度角、135度角和异面垂直等四种形式.而学生对非90度垂直的理解,不是不透彻就是误解.因此,如何帮助学生透彻理解非90度垂直,便成了立体几何的重中之重.以下的三种可以帮助学生正确理解非90度垂直.一是错误视觉分析.这就要求老师从视觉角度分析和演示线、角、面的变化,教会学生理解视觉的误导性.通过实物演示,让学生明白“横看成岭侧成峰”的道理,从而达到培养学生建立发散思维习惯和锻炼空间想象力的目的.二是维数转化思想.从初中的平面几何到高中的立体几何,即是从二维思想过渡到三维思想,大部分学生的几何思考还停留在二维思想上,这就要求老师正确引导学生掌握用二维思想理解三维思想.让学生理解立体几何中的三维表示长、宽和高,而平面几何中的二维表示长和宽,但长、宽、高并没有确定的界限.例如把正方体的左侧面独立提取出来,它就是一个正方形,原先表示正方体的宽和高,都成了正方形的边长.再例如正方体A1B1C1D1-ABCD中的对角面A1ACC1是一个长方形,其长AC和A1C1分别为正方体上底面和下底面的对角线.在垂直的证明过程中,常常要把立体几何拆分成几个平面图形分别证明,再对证明结果加以综合,从二维回到三维,即可获得证明。

三是知识系统理解.如何让学生正确理解垂直的传递性,便成了老师课堂教学的重点和难点.通过垂直传递性的理解分析,培养学生的逻辑推理能力和空间想像能力.从线线垂直到线面垂直,再到面面垂直,反之一样.这里就要求学生把其中的条件理解并熟记,在求解过程中可以信手拈来,在证明过程中可以一呼即出.在垂直传递过程中,要善于利用逆向思维思考问题.例如,正方体A1B1C1D1-ABCD中,求证:A C⊥BD1.分析:显然,直线AC与BD1没有交点,是异面直线,不能利用平面几何中的勾股定理及高线性质来证明。

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总(一)立体几何中平行问题证明直线和平面平行的方法有:①利用定义采用反证法;②平行判定定理;③利用面面平行,证线面平行。

主要方法是②、③两法在使用判定定理时关键是确定出面内的与面外直线平行的直线.常用具体方法:中位线和相似例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2)面AMN∥面EFBD.证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥21B 1D 1.∴EF ∥21BD. ∴E 、F 、B 、D 对共面.(2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ⊂面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O ,∴四边形PA O Q 为平行四边形. ∴PA ∥O Q.而O Q ⊂平面EFBD ,∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ⊂面AMN , ∴平面AMN ∥平面EFBD.例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=46,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PEC ;证明:如图,设PC 中点为G ,连结FG ,则FG//CD//AE ,且FG=21CD=AE , ∴四边形AEGF 是平行四边形 ∴AF//EG ,又∵AF ⊄平面PEC ,EG ⊂平面PEC , ∴AF//平面PEC例4、 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.证法一:如图(1),作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE.证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ ,∴PEAPQK AQ =.则PQ ∥EK. ∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE.例5、正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。

高中数学立体几何垂直关系

高中数学立体几何垂直关系
(2)设 D 是 A1C1 上的点,且 A1B∥平面 B1CD,
求 A1D:DC1 的值.
[解析] 本题考查立体几何中的线面关系,两平面的垂直 关系线面平行的性质在本题中都有体现.
(1)因为侧面 BCC1B1 是菱形,所以 B1C⊥BC1, 又已知 B1C⊥A1B,且 A1B∩BC1=B, 所以 B1C⊥平面 A1BC1,又 B1C 平面 AB1C 所以平面 AB1C⊥平面 A1BC1 .
(2)设 BC1 交 B1C 于点 E,连接 DE,则 DE 是平面 A1BC1 与平面 B1CD 的交线.
因为 A1B∥平面 B1CD,A1B 平面 A1BC1,平面 A1BC1∩ 平面 B1CD=DE,所以 A1B∥DE.
6.对于四面体 ABCD,给出下列四个命题: ①若 AB=AC,BD=CD,则 BC⊥AD; ②若 AB=CD,AC=BD,则 BC⊥AD; ③若 AB⊥AC,BD⊥CD,则 BC⊥AD; ④若 AB⊥CD,AC⊥BD,则 BC⊥AD. 其中真 命题的序号是 ________.(把 你认为正确 命题的序号 都填上)
位置关系的判定
[例 1] 已知 m、n 是两条不重合的直线,α、β、γ 是三个
两两不重合的平面,给出下列四个命题,其中真命题是( )
①若 m⊥α,m⊥β,则 α∥β ②若 α⊥γ,β⊥γ,则 α∥β
③若 m α,n β,m∥n,则 α∥β ④若 m、n 是异面直线,m α,
m∥β,n β,n∥α,则 α∥β
∴EN 綊 AM.∴四边形 AMNE 为平行四边形.
∴MN∥AE.∵PA⊥平面 ABCD,∴PA⊥AD,又∠PDA=
45°,
∴△PAD 为等腰直角三角形.∴AE⊥PD. 又∵ CD⊥ AD, CD⊥ PA, ∴CD⊥平面 PAD.而 AE 平面 PAD, ∴CD⊥AE.又 CD∩PD= D, ∴AE⊥平面 PCD.∴MN⊥平面 PCD.

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结立体几何是高中数学中一个重要的分支,它研究的是三维空间中的物体形状、大小以及它们之间的相互关系。

本文将对高中数学中的立体几何知识点进行总结,帮助同学们梳理和复习相关内容。

一、点、线、面的关系1. 点:点是空间中最基本的概念,没有大小和形状,只有位置坐标。

2. 线:两个点确定一条线段,线段有长度,可以延伸成直线。

3. 面:三个或三个以上的点确定一个面,面有面积,可以延伸成平面。

二、多面体1. 三棱锥:底面为三角形,侧面为三角形的四面体。

2. 四棱锥:底面为四边形,侧面为三角形的五面体。

3. 五棱锥:底面为五边形,侧面为三角形的六面体。

4. 正棱锥:底面为正多边形,侧面为等边三角形的多面体。

5. 正方体:六个面都是正方形的多面体。

6. 正四面体:四个面都是正三角形的多面体。

7. 正六面体:六个面都是正方形的多面体。

三、平面图形与立体图形1. 投影:图形在投影面上的图象。

2. 平行投影:平行于投影面的投影方式,不改变图形的形状和面积。

3. 斜投影:不平行于投影面的投影方式,改变图形的形状和面积。

4. 立体图形的展开图:将立体图形展开成平面图,便于计算和分析。

5. 空间几何体的视图:主视图、俯视图和侧视图,用来描述一个立体图形。

四、平行与垂直1. 平行关系:两条直线在同一个平面上,且永远不相交。

2. 垂直关系:两条直线在同一个平面上,且相交成直角。

五、角与平面的关系1. 角:由两条射线共同确定的图形,可以是平面角或空间角。

2. 平面角:两个相交的平面所夹的角,范围为0到180度。

3. 相对角:两个相交直线上相对的两个角。

六、面积与体积1. 面积:平面图形所占的面积,常见的有三角形、四边形、圆形的计算公式。

2. 体积:三维物体所占的空间大小,常见的有长方体、正方体、棱柱、棱锥、球体的计算公式。

七、相交与相切1. 相交:两个或多个图形交叠在一起。

2. 相切:两个或多个图形只有一个点是共同的。

高中数学的归纳立体几何的基本概念与性质总结

高中数学的归纳立体几何的基本概念与性质总结

高中数学的归纳立体几何的基本概念与性质总结在高中数学学习中,立体几何是一个重要的部分。

归纳立体几何是通过对形状的观察和分析,总结出其基本概念与性质,并运用它们解决相关问题。

本文将对高中数学的归纳立体几何的基本概念与性质进行总结。

一、点、直线、面、体立体几何的基础概念包括点、直线、面和体。

点是几何中最基本的元素,它没有大小和形状,只有位置。

直线是无限延伸的点的集合,具有长度和方向。

面是由无限多个点组成的平坦表面,没有厚度。

体由无限多个面组成,有长度、宽度和高度。

二、多面体与特殊多面体多面体是由平面多边形构成的立体图形。

常见的多面体有四面体、六面体、八面体等。

这些特殊多面体有一些独特的性质,如四面体的顶点数、边数和面数的关系满足欧拉公式。

三、平行关系与平行截割在立体几何中,平行关系是很重要的性质。

当两个面之间的任意直线都与第三个面平行时,我们称这两个面是平行的。

平行关系可以应用于平行截割问题中,通过截割平面和被截割体之间的关系,求解相关问题。

四、相交关系与角相交关系是指两个或多个立体之间的交叉或重叠关系。

在相交关系中,角是一个重要的概念。

角是由两条射线共享一个公共端点而形成的,可以用来描述平面的倾斜程度。

角可以进一步分为锐角、直角、钝角等不同类型。

五、正交关系与垂直正交关系是指两条直线或两个面之间的垂直关系。

当两条直线或两个面之间的夹角为90度时,我们称它们是垂直的。

垂直关系在求解立体几何问题中具有重要作用,可以帮助我们确定未知量或推导结论。

六、对称关系与对称性质对称关系是指图形在特定参考点或参考轴上的镜像重合关系。

当一个图形经过镜像变换后与自身完全重合时,该图形具有对称性质。

对称关系可以帮助我们研究图形的特征,解决与对称性质相关的问题。

七、等腰关系与等腰性质等腰关系是指一个图形中两个或多个边的长度相等的关系。

等腰关系常常出现在与等腰性质相关的问题中。

等腰三角形、等腰梯形等图形具有一些特殊性质,如对称性、角度关系等。

高中数学必修2立体几何专题线面垂直典型例题的判定与性质

高中数学必修2立体几何专题线面垂直典型例题的判定与性质

线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学立体几何正交与垂直关系分析
在高中数学的立体几何中,正交与垂直是两个非常重要的概念。

它们在几何图形的性质、计算问题中起着至关重要的作用。

本文将通过具体的题目举例,分析正交与垂直的概念、性质以及应用,帮助高中学生和他们的父母更好地理解和掌握这些知识点。

一、正交的概念和性质
正交是指两条直线、两个平面或者一条直线和一个平面相互垂直的关系。

在几何图形中,正交的性质十分重要,常常用于求解问题。

例如,考虑以下题目:
已知直线l1:x-2y+z=0和直线l2:2x+y-3z=0,求证直线l1与直线l2正交。

解析:要证明直线l1与直线l2正交,需要证明直线l1的法向量与直线l2的方向向量的点积为零。

首先,求出直线l1的法向量和直线l2的方向向量:直线l1的法向量为(1,-2,1);
直线l2的方向向量为(2,1,-3)。

然后,计算两个向量的点积:
(1,-2,1)·(2,1,-3) = 2-2-3 = -3
由于点积结果为-3,不等于零,所以直线l1与直线l2不正交。

通过这个例子可以看出,正交的性质可以通过向量的点积来判断。

如果两个向量的点积为零,则它们正交;如果不为零,则它们不正交。

二、垂直的概念和性质
垂直是指两条直线、两个平面或者一条直线和一个平面相互成直角的关系。

垂直在立体几何中也是一个非常重要的概念,常常用于计算问题。

例如,考虑以下题目:
已知平面α:2x-y+z=1和平面β:x+2y-3z=4,求证平面α与平面β垂直。

解析:要证明平面α与平面β垂直,需要证明平面α的法向量与平面β的法向量的点积为零。

首先,求出平面α和平面β的法向量:
平面α的法向量为(2,-1,1);
平面β的法向量为(1,2,-3)。

然后,计算两个向量的点积:
(2,-1,1)·(1,2,-3) = 2-2-3 = -3
由于点积结果为-3,不等于零,所以平面α与平面β不垂直。

通过这个例子可以看出,垂直的性质也可以通过向量的点积来判断。

如果两个向量的点积为零,则它们垂直;如果不为零,则它们不垂直。

三、正交与垂直的应用
正交与垂直的概念和性质在立体几何的应用中非常广泛。

在求解问题时,我们常常需要利用正交与垂直的关系来简化计算或者得到更加准确的结果。

例如,考虑以下题目:
已知直线l1:x-2y+z=0和平面α:2x-y+z=1,求证直线l1与平面α正交。

解析:要证明直线l1与平面α正交,需要证明直线l1的方向向量与平面α的法向量的点积为零。

首先,求出直线l1的方向向量和平面α的法向量:直线l1的方向向量为(1,-2,1);
平面α的法向量为(2,-1,1)。

然后,计算两个向量的点积:
(1,-2,1)·(2,-1,1) = 2+2+1 = 5
由于点积结果不为零,所以直线l1与平面α不正交。

通过这个例子可以看出,正交与垂直的关系可以帮助我们判断两个几何对象之间的关系,从而更好地解决问题。

综上所述,正交与垂直是高中数学立体几何中非常重要的概念。

通过具体的题目举例,我们可以更好地理解和掌握正交与垂直的定义、性质以及应用。

在解题过程中,我们要善于利用正交与垂直的关系,从而简化计算、得到准确的结果。

希望本文对高中学生和他们的父母在学习和教学中有所帮助。

相关文档
最新文档