立体几何中垂直的证明
专题4:立体几何中垂直关系的证明基础练习题

12.证明见解析
【分析】
在等腰三角形PAB中, 是 的中点,可得 ,利用线面垂直的判定定理可证 平面 ,利用线面垂直的性质定理,即可得证.
【详解】
证明:∵ 是 的中点, ,
∴ ,
∵ 底面 ,
∴ ,
又∵ ,即
∴ 平面 ,
∴ ,
∵ 平面 , 平面 ,
∴ 平面 ,
∵ 平面 ,
∴ .
8.证明见解析
【分析】
由平面 ⊥平面 得到 ⊥平面 ,进一步得到 ⊥ ,再结合直径所对圆周角为直角得到 ⊥ , ⊥平面 ,从而得到证明.
【详解】
由题设知,平面 ⊥平面 ,交线为 .
因为 ⊥ , 平面 ,所以 ⊥平面 ,故 ⊥ .
因为 为 上异于 , 的点,且 为直径,所以 ⊥ .
又 = ,所以 ⊥平面 .
∴点O为三角形ABC的垂心,∴BO⊥AC
又因PO⊥AC,所以AC⊥PBO
故PB⊥AC
考点:证明异面直线垂直.
7.见解析
【分析】
由已知中P为正方形ABCD所在平面外一点,PA⊥面ABCD,结合正方形的几何特征,我们易得到BC⊥平面PAB,由线面垂直的性质得到BC⊥AE,结合已知中AE⊥PB,及线面垂直的判定定理,得到AE⊥平面PBC,最后再由线面垂直的判定定理,即可得到AE⊥PC.
【点睛】
此题考查线面垂直的性质和判定的综合应用,利用线面垂直得线线垂直.
5.证明见解析
【分析】
先证直线 平面 ,再证平面 ⊥平面 .
【详解】
证明:∵ 是圆的直径, 是圆上任一点, , ,
平面 , 平面 ,
,又 ,
平面 ,又 平面 ,
平面 ⊥平面 .
【点睛】
空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
立体几何第五讲 垂直的性质和证明学生

(2)平面与平面垂直的判定定理
文字语言
图形语言
符号语言
判定 如果一个平面经过另一个平面的一条 定理 垂线那么这两个平面互相垂直
l⊂β ⇒α⊥β
l⊥α
(3)平面与平面垂直的性质定理 文字语言
性质 定理
如果两个平面垂直,那么在 一个平面内垂直于它们交线 的直线垂直于另一个平面
图形语言
符号语言
α⊥β α∩β=a ⇒l⊥α l⊂β l⊥a
A.4 B.3 C.2 D.1 6.如图,正方体 ABCD-A1B1C1D1 的棱长为 1,过 A 点作平面 A1BD 的垂线,垂足为点 H, 有下列三个结论:
①点 H 是△A1BD 的中心; ②AH 垂直于平面 CB1D1; ③AC1 与 B1C 所成的角是 90°. 其中正确结论的序号是________. 7. 如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN⊥PM, N 为垂足.
6
(1)求证:AN⊥平面 PBM. (2)若 AQ⊥PB,垂足为 Q, 求证 NQ⊥PB.
8. 如图,在直三棱柱 ABC—A1B1C1 中,E、F 分别是 A1B、A1C 的中点,点 D 在 B1C1 上, A1D⊥B1C1. 求证:(1)EF∥平面 ABC;
(2)平面 A1FD⊥平面 BB1C1C.
3 积.
2
[玩转跟踪] 1.(2018·江苏高考)在平行六面体 ABCDA1B1C1D1 中,AA1=AB,AB1⊥B1C1. 求证:(1)AB∥平面 A1B1C; (2)平面 ABB1A1⊥平面 A1BC.
2.(2020·安徽淮北一中模拟)如图,四棱锥 PABCD 的底面是矩形,PA⊥ 平面 ABCD,E,F 分别是 AB,PD 的中点,且 PA=AD. 求证:(1)AF∥平面 PEC; (2)平面 PEC⊥平面 PCD.
立体几何平行垂直的证明

一、平行问题的证明方法
平行问题证明的基本思路:平面平行 线面平行 线线平行.
1.线线平行的证明方法:
①利用平面几何中的定理:三角形(或梯形)的中位线与底边平行;
平行四边形的对边平行;
利用比例、……;
②三线平行公理:平行于同一条直线的两条直线互相平行;
③线面平行的性质定理:如果一条直线平行于一个平面,经过这条直线的平面和这个平面相交,则这条直线和
垂直问题证明的基本思路:面面垂直 线面垂直 线线垂直.
1.线线垂直的证明方法:
①利用平面几何中的定理:勾股定理、等腰三角形,三线合一、菱形对角线、直径所对的圆周角是直角、点在
线上的射影。
②线面垂直的定义:如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直;
③三垂线定理或三垂线逆定理:如果平面内的一条直线和斜线的射影垂直,则它和斜线垂直;反之亦成立。
交线行;
④面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;
⑤线面垂直的性质定理:垂直于同一个平面的两条直线平行。
2.线面平行的证明方法:
①线面平行的定义:直线与平面没有公共点;
②线面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;
④如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。
2.线面垂直的证明方法:
①线面垂直的定义:直线与平面内任意直线都垂直;
②线面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面;
③线面垂直的性质定理:两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面;
1.如图,四棱锥 中,四边形 为矩形, 为等腰三角形, ,平面 平面 ,且 . 分别为 和 的中点.
立体几何线面与面面垂直的证明

那么另一条也垂直于这个平 a 的无数条直线”是“ I 丄a B.必要不充分条件线面垂直与面面垂直专题复习【知识点】一.线面垂直(1) 直线与平面垂直的定义:如果直线l 和平面a 的 __________________ 一条直线都垂直,我们就说直线 I 与平面a 垂直,记作 _____________ .重要性质: ____________________________________________________________________________(2) 直线与平面垂直的判定方法:①判定定理:一条直线与一个平面的两条 ___________________ 都垂直,那么这条直线就垂直于这 个平面.用符号表示为:②常用结论:如果两条平行直线中的一条垂直于一个平面, 面.用符号可表示为:(3)直线与平面垂直的性质:① 由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的 ________ 直线.② 性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直(1) 平面与平面垂直的定义:两平面相交,如果它们所成的二面角是 _____________________ ,就说这两个平面互相垂直.(2) 平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条 _____________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为:(3)平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面. 用符号可表示为:【题型总结】 题型一小题:判断正误1. “直线I 垂直于平面 A.充分不必要条件C.充要条件D.既不充分又不必要条件2. 已知如图,六棱锥 P — ABCDE 的底面是正六边形, 下列结论不正确的是( ).A.CD// 平面 PAFB. DF 丄平面 PAFC. CF//平面 PAB 2.设m n, I 是三条不同的直线,,,是三个不同的平面,判断命题正误:理科数学复习专题立体几何①m,m ,则//⑥m n, m// ,则n②m,// ,则m⑦m n,n 1,则m//l③m,m//n,则n⑧, ,则〃④m,n ,则m//n⑨m n,n//I,则m 1⑤m,m n,则n//⑩,//,则题型「二证明线面垂直P归纳:①证明异面直线垂直的常用方法:_________________________________________②找垂线(线线垂直)的方法一:______________________________________________ 2.四棱锥P ABCD中,底面ABCD的边长PD PB 4, BAD 600, E 为PA 中点•1如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB = 60° AB= 2AD, PD 丄底面ABCD .(1)证明:BD丄面PAD (2)证明:PA丄BD;求证:BD 平面PAC ;4的菱形,归纳:找垂线(线线垂直)的方法找垂线(线线垂直)的方法三:3、如图,AB是圆0的直径,C是圆0上不同于A, B的一点,PA 平面ABC , E是PC 的中点,AB 3 , PA AC 1.求证:AE PB•Z归纳:找垂线(线线垂直)的方法四:____________________________________4.如图,在三棱锥P ABC中,PA 底面ABC, BCA 900,AP=AC,点D , E分别为棱PB、PC的中点,且BC〃平面ADE求证:DE丄平面PAC ;归纳:_____________________________________________________________________________________ 题型三面面垂直的证明(关键:找线面垂直)1、如图所示,四边形ABCD是菱形,O是AC与BD 的交点,SA 平面ABCD.求证:平面SAC 平面SBD ;2. (2016理数)如图,在以A,B,C,D,E,F为顶点的五面体中面ABEF 为正方形,AF=2FD, AFD 90:,证明:平面ABEF 平面EFDC ;题型四面面垂直的性质(注意:交线)1、如图所示,平面EAD 平面ABCD , ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点, 求证:EG 平面ABCD ;2、如图,平行四边形ABCD中,CD 1, BCD 600, BD CD,正方形ADEF,且面ADEF 面ABCD •求证:BD 平面ECD ;综合运用如图所示,PA丄矩形ABCD所在平面,M、N分别是AB、PC的中点.(1) 求证:MN //平面PAD.(2) 求证:MN丄CD.⑶若/ PDA = 45 °求证:面BMN丄平面PCD.【练习】1.设M表示平面,a、b表示直线,给出下列四个命题:金a〃b a M a M a//M① b M ②a//b ③b/ M ④b± Ma Mb M a b a b其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.给出以下四个命题:CD如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习

垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。
【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。
立体几何 垂直的证明

直线与平面垂直
判定直线和平面垂直的方法
①定义法:
②利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.
③推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.
例1.如图,在四棱锥P ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD =AC=1,O为AC的中点,PO⊥平面ABCD.
证明:AD⊥平面P AC.
变式练习. 如图,已知BD⊥平面ABC,MC∥BD,AC=BC,N是棱AB的中点.求证:CN⊥平面ABD.
平面与平面垂直的判定方法
①定义法
②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.
例2.如图,四棱锥P ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.求证:平面AEC⊥平面PDB
变式练习.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:
(1)直线EF∥平面ACD;
(2)平面EFC⊥平面BCD.
面面垂直的性质
平面与平面垂直的性质
如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.
例3.如图所示,在四棱锥P ABCD中,平面P AD⊥平面ABCD,AB∥DC,△P AD 是等边三角形,已知BD=2AD=8,AB=2DC=4 5.M是PC上的一点,
证明:BD⊥平面P AD.
变式练习.如图,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,AB=AD,
∠BAD=60°,E,F分别是AP,AD的中点.求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面P AD.。
立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“垂直关系”常见证明方法
(一)直线与直线垂直的证明 1) 利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。
1
全方位课外辅导体系 Comprehensive Tutoring Operation System
2) 看夹角:两条共(异)面直线的夹角为 90°,则两直线互相垂直。
3) 利用直线与平面垂直的性质:
1、掌握直线(平面)与平面平行、垂直的判定及性质定理.. 2、掌握立体几何中垂直与平行的证明方法以及计算问题 课 前 作业完成情况: 检查 与交流 交流与沟通:
第 次课
线面垂直的判定及其性质
●知识要点
1.线面垂直
(1)定义:
教
如果直线 l 与平面 内的任意一条直线都垂直,则直线 l 与平面 互相垂直,记作 l . l -平面 的垂线, -直线 l 的垂面,它们的唯一公共点 P 叫做垂足.
B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面;
3
全方位课外辅导体系 Comprehensive Tutoring Operation System
C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线;
D.若一条直线垂直于一个平面,则垂直于这条直线的另一直线必平行于这个平面.
B
AB CD, AD BC, H为 BCD的垂心。
求证: AH 平面BCD
D H
C
3、如图, PA 平面ABCD,ABCD是矩形,点M , N分别为AB, PC的中点, 求证: MN AB
4
全方位课外辅导体系 Comprehensive Tutoring Operation System 4、如图,在多面体 ABCDE 中,AE⊥面 ABC,BD∥ AE,且 AC=AB=BC=BD=2,AE= 1,F 为 CD 中点. (1)求证:EF⊥面 BCD;
如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。
a
b a
b
b
α
a
4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂
直。
l a b al bl
a b
β b
l
α
a
5) 利用常用结论:
① 如果两条直线互相平行,且其中一条直线垂直于第三条直线,则另一条直线也垂
(2)判定定理:(线线垂直 线面垂直)
一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直.
学
☆ 符号语言:若 l ⊥ m , l ⊥ n , m ∩ n =B, m , n ,则 l ⊥ . (3)性质定理:(线面垂直 线线平行)
垂直于同一个平面的两条直线平行.
2.二面角
过
(1)定义:
5、如图,在底面为平行四边形的四棱锥 P ABCD 中, AB AC, PA 平面ABCD ,且 PA AB,点 E 是 PD 的中点。
⑴求证: AC PB ; ⑵求证: PB∥平面AEC ;
6、 如图,在四棱锥 P-ABCD 中, PA⊥底面 ABCD,AB⊥AD,AC⊥CD, AB=BC,E 是 PC 的中点.
2.已知 a,b, c 表示直线, M 表示平面,则 a // b 的充分条件是( )
A、 a c且b c B、 a // M且b // M C、 a M且b M D、 a,b与c 所成的角相等
3.在长方体 ABCD A'B'C'D' 中,与平面 B'C'CB 垂直的直线有
_______;
全方位课外辅导体系 Comprehensive Tutoring Operation System
7、在四棱锥中,底面 ABCD 是正方形,侧面 VAD 是正三角形,平面 VAD⊥底面 ABCD 证明:AB⊥平面 VAD
V
D A
C B
8、如图所示,在四棱锥 P—ABCD 中,底面 ABCD 是∠ DAB=60°且边长为 a 的菱形,侧面 PAD 为正三角形,其所在平面垂直于底面 ABCD,若 G 为 AD 边的中点,
签字
老师 课后 评价
课堂检测:
课后作业:
教研组长:
教学主任:
学生:
下节课的计划:
学生的状况、接受情况和配合程度:
给家长的建议:
教务老师:
家长:
10
2、如图,棱柱 ABC A1B1C1 的侧面 BCC1B1 是菱形, B1C A1B 证明:平面 AB1C 平面 A1BC1 ;
3、已知:如图,将矩形 ABCD 沿对角线 BD 将 BCD 折起,使点 C 移到点 C1 ,且
C1在平面ABD上的射影O恰好在AB上。
(1)求证:AD BC1
C1
直于第三条直线。
a∥b a c bc
c
a
b
② 如果有一条直线垂直于一个平面,另一条直线平行于此平面,那么这两条直线互
相垂直。
a b ∥
ab
b
a
α
(二)直线与平面垂直的证明 1) 利用某些空间几何体的特性:如长方体侧棱垂直于底面等 2) 看直线与平面所成的角:如果直线与平面所成的角是直角,则这条直线垂直于此平面。 3) 利用直线与平面垂直的判定定理:
5、已知四面体 ABCD中, AB AC, BD CD ,平面 ABC 平面 BCD, E 为棱 BC 的中点。 (1)求证: AE 平面 BCD; (2)求证: AD BC ;
6、S 是△ABC 所在平面外一点,SA⊥平面 ABC,平面 SAB⊥平面 SBC,求证 AB⊥BC.
S
C A
B 7
与直线 AA' 垂直的平面有
.
4.在正方体 ABCD A'B'C'D' 中,求直线 A'B和平面 A'B'C'D' 所成的角.
P
题型一、线面垂直的判定与性质
1、已知:如图,P 是棱形 ABCD 所在平面外一点,
且 PA=PC 求证: AC 平面PBD
A B
D C
A
2 、 已 知 , 如 图 , 四 面 体 A-BCD 中 ,
2、如图所示,直三棱柱 ABC—A1B1C1 中,B1C1=A1C1,AC1⊥A1B,M、N 分别是 A1B1、AB 的中点.
(1)求证:C1M⊥平面 A1ABB1; (2)求证:A1B⊥AM; (3)求证:平面 AMC1∥ 平面 NB1C;
9
全方位课外辅导体系 Comprehensive Tutoring Operation System 3、如图,在四棱锥 P ABCD中,平面 PAD⊥平面 ABCD, AB=AD,∠BAD=60°,E、F 分别是 AP、AD 的中点 求证:(1)直线 EF‖平面 PCD; (2)平面 BEF⊥平面 PAD
2) 看二面角:两个平面相交,如果它们所成的二面角是直二面角(即平面角是直角的二面角),
就说这连个平面互相垂直。 3) 利用平面与平面垂直的判定定理
一个平面过另一个平面的垂线,则这两个平面垂直。
a
a
a
基础练习
1.下列命题是真命题的是
()
A.若一条直线垂直于平面内的两条直线,则这条直线垂直于这个平面;
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
2
全方位课外辅导体系 Comprehensive Tutoring Operation System
a
b
ab
Alຫໍສະໝຸດ l a l blb
Aa
4) 利用平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
l a
a
a l
l
5) 利用常用结论:
6) 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。
a∥b
ab
b a
7) 两个平面平行,一直线垂直于其中一个平
面,则该直线也垂直 ∥
于另一个平面。
a
a
a
(三)平面与平面垂直的证明
1) 利用某些空间几何体的特性:如长方体侧面垂直于底面等
(1)求证:CD⊥AE;(2)求证:PD⊥面 ABE.
∠ABC=60°,PA=
5
全方位课外辅导体系 Comprehensive Tutoring Operation System 题型二、面面垂直的判定与性质 1、如图 AB 是圆 O 的直径,PA 垂直于圆 O 所在的平面,C 是圆周上不同于 A、B 的任意一 点,求证:平面 PAC 垂直平面 PBC。
(1)求证:BG⊥平面 PAD; (2)求证:AD⊥PB; (3)若 E 为 BC 边的中点,能否在棱 PC 上找到一点 F,使平面 DEF⊥平面 ABCD,并证
明你的结论.
8
全方位课外辅导体系 Comprehensive Tutoring Operation System 题型三、平行与垂直的综合题 1、已知PA 矩形ABCD所在的平面,M,N分别是AB,PC的中点。 (1)求证:MN CD (2)若PDA=45。,求证:MN 平面PCD.
全方位课外辅导体系 Comprehensive Tutoring Operation System
全方位教学辅导教案
学生
教学 内容 重点 难点 教学 目标
性 别 男 年 级 高一 总课时: 立体几何中垂直的证明
小时
重点:掌握直线(平面)与平面垂直以及垂直的判定及性质定理. 难点:领悟线(面)面平行和垂直的“转化”的基本思想
(第16题图)
4.如图 5 所示,在四棱锥 P-ABCD 中,AB 平面 PAD,AB CD,PD=AD,E 是 PB 的中点,F 是 DC 上的点且 DF= 1 AB,PH 为 PAD 中 AD 边上的高.