算术平均值与几何平均值--旧人教版
算术平均值与几何平均值--旧人教版

b
结论1:
若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
结论2:
若a、b∈R+,则
ห้องสมุดไป่ตู้
ab 2
ab (当且仅当a=b时取“=”).
两个正数的算术平均值不小于它们的几何平均值
个这件东西儿,一边蠕动,一边发出“咕 ”的幽声……。陡然间女族长W.娅娜小姐陀螺般地忽悠了一个蹲身膨胀玩弹孔的怪异把戏,,只见她古老的戒指中,飘 然射出八缕林地矿肾猪状的机舱,随着女族长W.娅娜小姐的甩动,林地矿肾猪状的机舱像圆规一样在双臂上绅士地克隆出隐隐光霞……紧接着女族长W.娅娜小姐又 使自己单薄的的暗白色河马形态的船头疾宁长裤晃动出墨灰色的墨镜味,只见她轻灵的嘴唇中,狂傲地流出九串石塔状的仙翅枕头枪,随着女族长W.娅娜小姐的摆动 ,石塔状的仙翅枕头枪像碎玉一样念动咒语:“八腿哎 嗒,琴弓哎 嗒,八腿琴弓哎 嗒……『棕光锅妖毛刷神谱』!!!!”只见女族长W.娅娜小姐的身 影射出一片鹅黄色奇光,这时裂土而出快速出现了四群厉声尖叫的浅绿色光猪,似流光一样直奔暗黄色神光而来……,朝着蘑菇王子阳光天使般的脑袋猛踢过来。紧跟 着女族长W.娅娜小姐也颤耍着咒符像听筒般的怪影一样向蘑菇王子猛踢过来蘑菇王子悠然海蓝色星光牛仔服闪眼间流出骷金阴间色的松汁鹅跳味……行走如飞的闪黑 色梦幻海天靴透出飘嘶天霆声和咻咻声……十分漂亮的葱绿色领结忽亮忽暗穿出嫩哼玛瑙般的跃动!接着耍了一套,窜虾躺椅翻两千五百二十度外加猪哼手杖旋十五周 半的招数,接着又玩了一个,妖体鸟飞凌空翻七百二十度外加呆转十五周的冷峻招式。紧接着扭动有些法力的神奇屁股一吼,露出一副古怪的神色,接着晃动直挺滑润 、略微有些上翘的鼻子,像鹅黄色的银脚荒原鸽般的一扭,咒语的永远不知疲倦和危险的脸突然伸长了九倍,潇洒飘逸的、像勇士一样的海蓝色星光牛仔服也立刻膨胀 了二十倍!最后扭起直挺滑润的鼻子一颤,萧洒地从里面滚出一道流光,他抓住流光傲慢地一旋,一件青虚虚、银晃晃的咒符∈神音蘑菇咒←便显露出来,只见这个这 件怪物儿,一边扭曲,一边发出“咻咻”的猛响……陡然间蘑菇王子陀螺般地整出一个俯卧振颤举气缸的怪异把戏,,只见他神奇的星光肚脐中,变态地跳出八串抖舞 着∈万变飞影森林掌←的盆地珍珠尾豺状的花盆,随着蘑菇王子的摇动,盆地珍珠尾豺状的花盆像活塞一样在双臂上绅士地克隆出隐隐光霞……紧接着蘑菇王子又使自 己如同美玉般的皮肤舞出金红色的笔帽味,只见他结实柔韧的强壮胸膛中,突然弹出七片扭舞着∈万变飞影森林掌←的金针菇状的仙翅枕头壶,随着蘑菇王子的颤动, 金针菇状的仙翅枕头壶像银剑一样念动咒语:“森林吲 唰,小子吲 唰,森林小子吲 唰……∈神音蘑菇咒←!高人!高人!高人!”只见蘑菇王子的身影射 出一片纯蓝
算术平均值与几何平均值--旧人教版

结论3:
若a、b∈R,则 a2 b2 (a b )2(当且仅当a=b时取“=”).
2
2
例2:已知a,b∈R+,且a+b=1,求证:
(1)ab 1 4
(2)a2 b2 1 2
1 (3) a2
1 b2
8
(4)(a 1 )2 (b 1 )2 25
a a2 b2
b
结论1:
若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
结论2:
若a、b∈R+,则 a b ab (当且仅当a=b时取“=”). 2
两个正数的算术平均值不小于它们的几何平均值
1.已知x∈(0,+∞)求证 x 1 2 x
2.下列不等式的证明过程正确的是 (D)
a
b2
例3:已知a>0,b>0,且a+b=1,求证:
a 1 b 1 2
2
2
知识小结:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
(2)若a、b∈R+,则 a b ab (当且仅当a=b时取
“=”).
2
(3)若a、b∈R,则 a2 b2 (a b )2(当且仅当a=b时取“=”).
6.2算术平均值与几何平均值
丽水学院附中高一数学组
问题:
已知a、b∈R,试比较a2+b2与2ab的大小. 结论: a2+b2≥2ab 思考: 在上式中,何时取“=”号? 结论: 当且仅当a=b时,取“=”号.
〖当且仅当〗是〖充要条件〗的同义词
人教版高中数学必修第二册6.2算术平均数与几何平均数教案

第三教时教材:算术平均数与几何平均数目的:要求学生掌握算术平均数与几何平均数的意义,并掌握“平均不等式”及其推导过程。
过程:一、定理:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”) 证明:222)(2b a ab b a -=-+⇒⎭⎬⎫>-≠=-=0)(0)(22b a b a b a b a 时,当时,当ab b a 222≥+ 1.指出定理适用范围:R b a ∈,2.强调取“=”的条件b a =二、定理:如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 证明:∵ab b a 2)()(22≥+ ∴ab b a 2≥+即:ab b a ≥+2 当且仅当b a =时 ab b a =+2注意:1.这个定理适用的范围:+∈R a2.语言表述:两个正数的算术平均数不小于它们的几何平均数。
三、推广:定理:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”)证明:∵abc ab b a c b a abc c b a 333)(32233333---++=-++)(3])())[((22c b a ab c c b a b a c b a ++-++-+++=]32)[(222ab c bc ac b ab a c b a -+--++++=))((222ca bc ab c b a c b a ---++++=])()())[((21222a c c b b a c b a -+-+-++= ∵+∈R c b a ,, ∴上式≥0 从而abc c b a 3333≥++指出:这里+∈R c b a ,, ∵0<++c b a 就不能保证推论:如果+∈R c b a ,,,那么33abc cb a ≥++(当且仅当c b a ==时取“=”)证明:3333333333)()()(c b a c b a ⋅⋅≥++⇒33abc c b a ≥++⇒33abc cb a ≥++四、关于“平均数”的概念1.如果++∈>∈N n n R a a a n 且1,,,,21 则:n a a a n+++ 21叫做这n 个正数的算术平均数n n a a a 21叫做这n 个正数的几何平均数2.点题:算术平均数与几何平均数3.基本不等式: n a a a n+++ 21≥n n a a a 21n i R a N n i ≤≤∈∈+1,,*这个结论最终可用数学归纳法,二项式定理证明(这里从略)语言表述:n 个正数的算术平均数不小于它们的几何平均数。
算术平均值与几何平均值--旧人教版(201912)

2
2
例2:已知a,b∈R+,且a+b=1,求证:
(1)ab 1 4ຫໍສະໝຸດ (2)a2 b2 1 22
2
的大小.
P<Q<R
结论1:
若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
结论2:
若a、b∈R+,则 a b ab(当且仅当a=b时取“=”). 2
两个正数的算术平均值不小于它们的几何平均值
结论3:
若a、b∈R,则 a2 b2 (a b )2(当且仅当a=b时取“=”).
a a2 b2
b
结论1:
若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
结论2:
若a、b∈R+,则 a b ab (当且仅当a=b时取“=”). 2
两个正数的算术平均值不小于它们的几何平均值
算术平均值与几何平均值
;细胞株 细胞库 细胞 https:/// 细胞株 细胞库 细胞
(C)若x是负实数,则x 4 2 x 4 4.
x
x
(D)若a,b R, 且ab 0,则 b a [( b ) ( a )]
ab
ab
2 ( b ) ( a ) 2 ab
例1:已知a>b>1,试比较
P lga lgb,Q lga lgb , R lg a b
6.2算术平均值与几何平均值
丽水学院附中高一数学组
问题:
已知a、b∈R,试比较a2+b2与2ab的大小. 结论: a2+b2≥2ab 思考: 在上式中,何时取“=”号? 结论: 当且仅当a=b时,取“=”号.
算术平均值与几何平均值--旧人教版

2
2
的大小.
P<Q<R
结论1:
若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
结论2:
若a、b∈R+,则 a b ab(当且仅当a=b时取“=”). 2
两个正数的算术平均值不小于它们的几何平均值
结论3:
若a、b∈R,则 a2 b2 (a b )2(当且仅当a=b时取“=”).
a a2 b2
b
结论1:
若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
结论2:
若a、b∈R+,则 a b ab (当且仅当a=b时取“=”). 2
两个正数的算术平均值不小于它们的几何平均值
; 39都市网 / 39都市网
;
算术平均值与几何平均值
把自已的理想告诉同伴时,立刻招来同伴们的嘲笑:“瞧瞧,什么叫心比天高,这就是啊!”“真是异想天开!”┅┅这块石头不去理会同伴们的闲言碎语,仍然怀抱理想等时机。有一天,一个叫庄子的人路过这里,它知道这个人有非凡的智慧,就把自已的梦想告诉了他,庄子说:“我可以帮助你 实现,但你必须先长成一座大山,这可是要吃不少苦的。”石头说:“我不怕。”于是,石头拼命地吸取天地灵气,承接雨露惠泽,不知经过多少年,受了多少风雨的洗礼,它终于长成了一座大山。于是,庄子招来大鹏以翅膀击山,一时间天摇地动,一声巨响后,山炸开了,无数块石头飞向天空, 就在飞的一刹那,石头会心地笑了。但是不久,它从空中摔了下来,仍旧变成了当初的模样,落在原来的地方。庄子问:“你后悔吗?”“不,我不后悔,我长成过一座山,而且体会过飞翔的快乐!”石头说。 石头的理想最终实现了,它靠的是 “异想天开”产生的力量。请以“异想天开的力量” 为话题,联系社会生活实际,写一篇文章。
人教版高中数学必修第二册算术平均数与几何平均数2

算术平均数与几何平均数教学目标进一步掌握均值不等式定理;会应用此定理求某些函数的最值;能够解决一些简单的实际问题.教学重点均值不等式定理的应用教学难点解题中的转化技巧教学方法启发式教具准备幻灯片教学过程Ⅰ.复习回顾师:上一节,我们一起学习了两个正数的算术平均数与几何平均数的定理,首先我们来回顾一下定理内容及其适用条件.生:〔回答略〕师:利用这一定理,可以证明一些不等式,也可求解某些函数的最值,这一节,我们来继续这方面的训练.Ⅱ.讲授新课例2 a,b,c,d 都是正数,求证:abcd bd ac cd ab 4))((≥++分析:此题要求学生注意与均值不等式定理的“形〞上发生联系,从而正确运用,同时加强对均值不等式定理的条件的认识.证明:由a,b,c,d 都是正数,得.4))((.02,02abcd bd ac cd ab bd ac bd ac cd ab cd ab ≥++∴⋅≥+⋅≥+即abcd bd ac cd ab 4))((≥++例3 某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m ,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.解:设水池底面一边的长度为xm ,水池的总造价为l 元,根据题意,得)1600(720240000x x l ++=29760040272024000016002720240000=⨯⨯+=⋅⨯+≥xx 当.2976000,40,1600有最小值时即l x x x == 因此,当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元.评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件. 师:为了进一步熟悉均值不等式定理在证明不等式与求函数最值中的应用,我们来进行课堂练习.Ⅲ.课堂练习要求:学生板演,老师讲评.课堂小结师:通过本节学习,要求大家进一步掌握利用均值不等式定理证明不等式及求函数的最值,并认识到它在实际问题中的应用.课后作业。
几何平均值与算术平均值

几何平均值与算术平均值平均值是统计学中常用的概念,用于描述一组数据的集中趋势。
在实际应用中,常见的平均值有算术平均值和几何平均值。
本文将探讨几何平均值与算术平均值的定义、计算方法以及它们在不同场景下的应用。
一、几何平均值的定义与计算方法几何平均值是一组正数的平方根的乘积。
假设有n个正数x1, x2, ..., xn,它们的几何平均值为G。
根据定义,几何平均值G可以通过以下公式计算:G = (x1 * x2 * ... * xn)^(1/n)以一个简单的例子来说明几何平均值的计算方法。
假设有一组数据:2, 4, 8, 16。
我们可以通过计算它们的几何平均值来了解这组数据的集中趋势。
G = (2 * 4 * 8 * 16)^(1/4) = 4在这个例子中,这组数据的几何平均值为4。
这意味着这组数据的平均增长率为4倍,从一个数字到下一个数字的增长率都是相同的。
二、算术平均值的定义与计算方法算术平均值是一组数据的总和除以数据的个数。
假设有n个数据x1, x2, ..., xn,它们的算术平均值为A。
根据定义,算术平均值A可以通过以下公式计算:A = (x1 + x2 + ... + xn) / n继续以前面的例子来说明算术平均值的计算方法。
假设有一组数据:2, 4, 8, 16。
我们可以通过计算它们的算术平均值来了解这组数据的集中趋势。
A = (2 + 4 + 8 + 16) / 4 = 30 / 4 = 7.5在这个例子中,这组数据的算术平均值为7.5。
这意味着这组数据的平均值为7.5,每个数据与平均值的偏差大小不一。
三、几何平均值与算术平均值的比较几何平均值与算术平均值都是常用的平均值指标,它们各有特点和应用场景。
1. 数据特点:几何平均值适用于有相乘关系的数据,如增长率、比率等。
算术平均值适用于一般性的数据。
2. 数据偏差:几何平均值对数据的偏差比较敏感,偏离平均值较大的数据对几何平均值的影响较大。
高中数学 6.2算术平均数与几何平均数(第一课时) 大纲人教版必修

6.2 算术平均数与几何平均数●课时安排2 课时●从容说课本小节内容包括两个正数的算术平均数与几何平均数的定理及其证明,此定理在解决数学问题和实际问题中的应用等.本小节教学时间约需2课时.1.在公式a 2+b 2≥2ab 以及算术平均数与几何平均数的定理的教学中,要让学生注意以下两点:〔1〕a 2+b 2≥2ab 和ab b a ≥+2成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.例如(-1)2+(-4)2≥2×(-1)×(-4)成立,而)4()1(2)4()1(-⨯-≥-+-不成立. 〔2〕这两个公式都是带有等号的不等式,因此对其中的“当且仅当……时取‘=’号〞这句话的含义要搞清楚.教学时,要提醒学生从以下两个方面来理解这句话的含义:当a=b 时取等号,其含义就是a=b ⇒ab b a ≥+2; 仅当a=b 时取等号,其含义就是ab b a ≥+2⇒a=b. 综合起来,其含义就是:a=b 是ab b a ≥+2的充要条件. 2.两个正数的算术平均数与几何平均数定理可以进一步引申出定理“n 个〔n 是大于1的整数〕正数的算术平均数不小于它们的几何平均数〞〔见课本P 24“小结与复习〞前的“阅读材料〞〕.ab b a ≥+2的几何意义是“半径不小于半弦〞〔见课本P 9图6-2中的几何意义及其说明〕.当用公式a 2+b 2≥2ab ,ab b a ≥+2证明不等式时,应该使学生认识到,它们本身也是根据不等式的意义、性质或用比较法〔将在下一小节学习〕证出的.因此,凡是用它们可以获证的不等式,一般也可以直接根据不等式的意义、性质或用比较法证明.3.利用正数的算术平均数与几何平均数之间的关系,我们可以求某些非二次函数的最大值、最小值.例如课本第3页上的引例,题中的函数x+x1600不是二次函数,要求它在定义域〔0,+∞〕内的最小值,仅用学生过去学过的二次函数的知识是无法解决的,现在从x 与x1600的积为常数〔即它们的几何平均数为常数〕这一点出发,问题很容易解决了. 在利用算术平均数与几何平均数的关系求某些函数的最大值、最小值时,应该使学生注意以下两点:〔1〕函数式中,各项〔必要时,还要考虑常数项〕必须都是正数.例如对于函数式x+x 1,当x<0时,不能错误地认为关系式x+x 1≥2成立,并由此得出x+x 1的最小值是2.事实上,当x<0时,x+x1的最大值是-2,这是因为 x<0⇒-x>0,-x1>0 ⇒-(x+x 1)=(-x)+(-x1)≥2, ⇒x+x1≤-2. 可以看出,最大值是-2,它在x=-1时取得.〔2〕函数式中,含变数的各项的和或积必须是常数,并且只有当各项相等时,才能利用算术平均数与几何平均数的关系求某些函数的最大值或最小值.以上两点都是学生容易疏忽的地方,必须予以注意.4.课本在P 10例2之后解决了本章引例中的问题.在应用两个正数的算术平均数与几何平均数的定理解决这类实际问题时,要让学生注意:〔1〕先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; 〔2〕建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;〔3〕在定义域内,求出函数的最大值或最小值;〔4〕正确写出答案.5.两个正数的算术平均数不小于它们的几何平均数〔假设a ,b 是正数,那么ab b a ≥+2,当且仅当a=b 时取等号〕,这个定理可简称为均值定理.它具体表现在: 〔1〕均值定理的功能在于“和与积〞的互化.假设所证不等式可变形成一边为和,另一边为积的形式,那么可以考虑使用均值定理.构造运用均值定理解题的常用技巧是拆添项或配凑因式.〔2〕“和定积最大,积定和最小〞,即和为定理,那么可求其积的最大值;反过来,假设积为定值,那么可求其和的最小值.应用此结论须注意如下三点:①各项或各因式均正;②和或积为定值;③各项或各因式能取得相等的值.必要时须作适当的变形,以满足上述前提.总之,用均值定理求函数的最大值或最小值是高中数学的一个重点,也是近几年高考的一个热点,三个必要条件——即一正〔各项的值为正〕二定〔各项的和或积为定值〕三相等〔取等号的条件〕更是相关考题瞄准的焦点.在具体的题目中,“正数〞条件往往从题设中获得解决,“相等〞条件也易验证确定,而要获得“定值〞条件却常常被设计为一个难点,它需要一定的灵活性和变形技巧.因此,“定值〞条件决定着均值不等式应用的可行性,这是解决问题成败的关键.均值定理是不等式的一个重要的变形依据,是每年高考中不可缺少的解题工具,常应用于证明不等式、判断不等式是否成立、求函数的值域或最值、求字母的取值范围、求解实际问题等,它所能解决的题型遍布高考试卷的选择、填空及解答题.●课 题§6.2.1 算术平均数与几何平均数〔一〕●教学目标(一)教学知识点1.重要不等式:假设a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=〞号).2.算术平均数,几何平均数及它们的关系.(二)能力训练要求1.学会推导并掌握两个正数的算术平均数不小于它们的几何平均数这个重要定理.2.理解这个定理的几何意义,并掌握定理中的不等号“≥〞取等号的条件是:当且仅当这两个数相等.3.强化训练探究性学习.(三)德育渗透目标通过掌握公式的结构特点,运用公式的适当变形,提高学生分析问题和解决问题的能力,培养学生的创新精神,进一步加强学生的实践能力.渗透数学思想方法,激励学生去取得成功.●教学重点1.重要不等式:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=〞号).2.如果a、b是正数,那么2ba+为a、b的算术平均数,ab是a、b的几何平均数,且有“两个正数的算术平均数不小于它们的几何平均数〞.即定理:如果a、b是正数,那么2ba+≥ab (当且仅当a=b时取“=〞号).3.上面两个公式都带有等号的不等式,其中的“当且仅当〞…时取“=〞号的含义是:当a=b时取等号,即a=b⇒2ba+=ab;仅当a=b时取等号,即2ba+=ab⇒a=b.综合起来,就是a=b是2ba+=ab的充要条件.●教学难点1.a2+b2≥2ab和2ba+≥ab成立的条件不相同,前者只要求a、b都是实数,而后者要求a、b都是正数.2.这两个公式还可以变形用来解决有关问题.ab≤222ba+,ab≤〔2ba+〕2●教学方法1.启发式教学法2.激励——探索——讨论——发现.●教具准备幻灯片两张第一张:记作§6.2.1 A1.●教学过程Ⅰ.课题导入不等式在生产实践和相关的学科中应用非常广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点.我们有必要重新回顾“差值〞比较法,不等式的基本性质,以便在今后学习中得到巩固和灵活运用.(一)打出幻灯片§6.2.1 A ,请同学们回答:[师]“差值〞比较法解决问题的一般步骤是什么?主要解决哪些问题?通过师生积极对话,简要作一下概括,打出幻灯片§6.2.1 A ,使学生明确:“差值〞比较法的三个重要方面.即①依据是:a >b ⇔a -b >0;a =b ⇔a -b =0;a <b ⇔a -b <0;②一般步骤是:作差→变形→判断差值符号→得出结论;③主要用途:两个实数大小的比较;不等式性质的证明;证明不等式及解不等式.(二)不等式性质的巩固及应用(投影片§6.2.1 B)课堂上,充分发挥师生的双边活动,共同复习不等式的基本性质,共同归纳,打出投影片§6.2.1 B ,使学生掌握以下不等式的基本性质:(1)反对称性a >b ⇔b <a ;(2)传递性a >b ,b >c ⇒a >c ;〔3〕可加性a >b ⇒a +c >b +c ;(4)可积性a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;(5)加法法那么a >b ,c >d ⇒a +c >b +d ;(6)乘法法那么a >b >0,c >d >0⇒ac >bd ;〔7〕乘方法那么a >b >0⇒a n >b n 〔n ∈N 〕;(8)开方法那么a >b >0⇒n n b a >〔n ∈N ).为更好地巩固不等式的性质,在教师引导下让学生做如下练习:a 、b 为正实数,m 、n ∈N *且m >n ,求证:a m +b m ≥a m -n b n +a n b m -n .[师]此题考查同学们正确地理解和运用不等式的性质.在运用不等式的性质时,多观察,多思考,考虑问题一定要全面细致.请同学们自己完成此题证明过程.[生]〔a m +b m 〕-〔a m -n b n +a n b m -n 〕=〔a m -a m -n b n 〕+〔b m -a n b m -n 〕=a m -n 〔a n -b n 〕+b m -n 〔b n -a n 〕=〔a m -n -b m -n 〕〔a n -b n 〕∵m >n >1,a >0,b >0∴当a >b >0时,那么a m -n >b m -n ,a n >b n∴〔a m -n -b m -n 〕〔a n -b n 〕>0当a =b >0时,那么〔a m -n -b m -n 〕〔a n -b n 〕=0当b >a >0时,那么b m -n >a m -n ,b n >a n∴〔a m -n -b m -n 〕〔a n -b n 〕>0综上所述,当a 、b 为正实数,m 、n ∈N *且m >n 时,(a m -n -b m -n )(a n -b n )≥0即a m +b m ≥a m -n b n +a n b m -n .下面,我们利用不等式的性质,研究推导以下重要的不等式.Ⅱ.讲授新课重要不等式:如果a ,b ∈R ,那么a 2+b 2≥2ab 〔当且仅当a =b 时取“=〞号).[师]请同学们利用我们已学过不等式性质的基础上,来证明这个重要不等式.[生]a 2+b 2-2ab =a 2-2ab +b 2=〔a -b 〕2∵a ,b ∈R∴当a =b 时,a -b =0 即a 2+b 2=2ab当a ≠b 时,a -b ≠0∴〔a -b 〕2>0 即a 2+b 2>2ab综上所述:假设a ,b ∈R ,那么a 2+b 2≥2ab 〔当且仅当a =b 时取“=〞号).[师生共析]很明显,在此不等式中:a =b ⇔a 2+b 2=2ab .即当a =b 时取等号,其含义是a =b ⇒a 2+b 2=2ab ;仅当a =b 时取等号,其含义是a2+b 2=2ab ⇒a =b .定理 如果a ,b 是正数,那么ab b a ≥+2〔当且仅当a =b 时取“=〞号). [师]本定理既可运用不等式性质完成证明,又可运用上述重要不等式:“假设a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=〞号)〞为依据完成证明.(把同学们分成两组,分别从两种思路中完成证题过程).[生甲]∵a ,b 为正数 ∴a >0,b >0∴a =〔a 〕2,b =〔b 〕2∴2)(2222b a ab b a ab b a -=-+=-+ 当a =b 即a =b 时,2)(2b a -=0,有ab b a =+2. 当a ≠b 即a ≠b 时,2)(2b a ->0,有ab b a >+2 综上所述,当a 、b 为正数时,有ab b a ≥+2(当且仅当a =b 时取“=〞号). [生乙]∵a ,b 是正数 ∴〔a 〕2+〔b 〕2≥2a ·b ∴a +b ≥2ab显然,当且仅当a =b 时,ab b a =+2即ab b a ≥+2. 评述:1.如果把2b a +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以表达为:两个正数的等差中项不小于它们的等比中项.2.在数学中,我们称2b a +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可表达为:两个正数的算术平均数不小于它们的几何平均数. 下面,我们给出定理:“如果a 、b 是正数,那么ab b a ≥+2〔当且仅当a =b 时取“=〞号〕〞的一种几何解释(如下图)以a +b 长的线段为直径作圆,在直径AB 上取点C ,使AC =a ,CB =b .过点C 作垂直于直径AB 的弦DD ′,连接AD 、DB ,易证Rt △ACD ∽Rt △DCB ,那么CD 2=CA ·CB即CD =ab .这个圆的半径为2b a +,显然,它大于或等于CD ,即ab b a ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立.[例题]:〔a +b 〕〔x +y 〕>2〔ay +bx 〕,求证:2≥--+--yx b a b a y x . [师]此题结论中,注意yx b a b a y x ----与互为倒数,它们的积为1,可利用公式a +b ≥2ab ,但要注意条件a 、b 为正数.故此题应从条件出发,经过变形,说明y x b a b a y x ----与为正数开始证题.(在教师引导,学生积极参与下完成证题过程)[生]∵〔a +b 〕〔x +y 〕>2〔ay +bx 〕∴ax +ay +bx +by >2ay +2bx∴ax -ay +by -bx >0∴〔ax -bx 〕-〔ay -by 〕>0∴〔a -b 〕〔x -y 〕>0即a -b 与x -y 同号∴yx b a b a y x ----与均为正数∴yx b a b a y x y x b a b a y x --⋅--≥--+--2=2(当且仅当y x b a b a y x --=--时取“=〞号) ∴yx b a b a y x --+--≥2. [师生共析]我们在运用重要不等式a 2+b 2≥2ab 时,只要求a 、b 为实数就可以了.而运用定理:“ab b a ≥+2〞时,必须使a 、b 满足同为正数.此题通过对条件变形(恰当地因式分解),从讨论因式乘积的符号来判断y x b a b a y x ----与是正还是负,是我们今后解题中常用的方法.Ⅲ.课堂练习1.a 、b 、c 都是正数,求证“〔a +b 〕〔b +c 〕〔c +a 〕≥8abc 分析:对于此类题目,选择定理:ab b a ≥+2〔a >0,b >0〕灵活变形,可求得结果.答案:∵a ,b ,c 都是正数∴a +b ≥2ab >0 b +c ≥2bc >0c +a ≥2ac >0∴〔a +b 〕〔b +c 〕〔c +a 〕≥2ab ·2bc ·2ac =8abc即〔a +b 〕〔b +c 〕〔c +a 〕≥8abc .2.x 、y 都是正数,求证: (1)yx x y +≥2; (2)〔x +y 〕〔x 2+y 2〕〔x 3+y 3〕≥8x 3y 3. 分析:在运用定理:ab b a ≥+2时,注意条件a 、b 均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.答案:∵x ,y 都是正数 ∴yx >0,x y >0,x 2>0,y 2>0,x 3>0,y 3>0 (1)xy y x x y y x ⋅≥+2=2即x y y x +≥2.(2)x +y ≥2xy >0x 2+y 2≥222y x >0x 3+y 3≥233y x >0∴〔x +y 〕〔x 2+y 2〕〔x 3+y 3〕≥2xy ·222y x ·233y x =8x 3y 3 即〔x +y 〕〔x 2+y 2〕〔x 3+y 3〕≥8x 3y 3.3.求证:〔2b a +〕2≤222b a +. 分析:利用完全平方公式,结合重要不等式:a 2+b 2≥2ab ,恰当变形,是证明此题的关键.答案:∵a 2+b 2≥2ab∴2〔a 2+b 2〕≥a 2+b 2+2ab =〔a +b 〕2∴2〔a 2+b 2〕≥〔a +b 〕2不等式两边同除以4,得 222b a +≥〔2b a +〕2 即〔2b a +〕2≤222b a +. (探究性学习——点击高考)本部分的设计坚持从“算术平均数与几何平均数〞这一聚焦性的问题出发,通过对给定题目题设条件的不断变化,创设新的问题情境,引导学生自主思考、自主探究、自主创新,充分发挥学生的主体性,充分激发学生探究问题的动机和兴趣,在探究过程中系统地掌握知识、开发智力、培养能力和挖掘潜能.以便适应将来高考中以数学思想方法考查考生的数学素养、聪明程度、素质和潜能.〔注:为节省时间,本部分可借助多媒体课件完成〕题目:某校办工厂有毁坏的房屋一幢,留有一面14 m 的旧墙,现准备利用这面墙的一段为面墙,建造平面图形为矩形且面积为126 m 2的厂房〔不管墙高〕,工程造价是:〔1〕修1 m 旧墙费用是造1 m 新墙费用的25%;〔2〕拆去1 m 旧墙用所得材料来建1 m 新墙的费用是建1 m 新墙费用的50%;问如何利用旧墙才能使建墙费用最低?[师]看上面的问题,同学们如何解决?〔学生探索——讨论——分析——归纳〕[生]从题设条件中抽象出数量关系,建立解题的目标函数〔即建立数学模型〕,然后用二元均值不等式求得最小值.[师]同学们分析得很好!哪位同学能勇敢地在黑板上写出解答过程呢?〔问题激励,语言激励,生解答,师欣赏〕[生甲]设保留旧墙x(m),即拆去旧墙14-x(m)修新墙.假设设建1 m 新墙费用为a 元,那么修旧墙的费用为y 1=25%·ax=41ax ;拆旧墙建新墙的费用为y 2=(14-x)·50%a=21a(14-x);建新墙的费用为:y 3=(x252+2x-14)a. 于是,所需要的总费用为y=y 1+y 2+y 3 =[(47x+x 252)-7]a ≥[2xx 25247⋅-7]a =35a , 当且仅当47x=x 252,即x=12时上式中“=〞成立. 故保留12 m 旧墙时总费用为最低.[师]很好!我们学习公式的目的是应用它能解决问题.此题中我们巧用了“a+b ≥2ab (a>0,b>0)〞达到解题目的.请同学们想一想:“a+b ≥2ab (a>0,b>0)〞还有些什么变形形式呢?[生乙]针对二元均值不等式,还有如下变形值得我们学习:a+b ≥2ab (a>0,b>0);ab ≤2b a +(a>0,b>0); ab ≤(2b a +)2(a>0,b>0); a 2+b 2≥2ab(a,b ∈R ); ab ≤222b a +(a,b ∈R ). 〔以上公式变形对比记忆,区别异同〕.ab b a +≥2(a>0,b>0). [师]棒极了!上述不等式及其变形,在解答最值型实际应用题中有着十分广泛的应用.同学们能编几道运用上述不等式及其变形求解实际应用题的例子吗?[生〔齐〕]能,我们自己编![师]好!我相信同学们一定会做得很出色![问题再次激励同学们去积极探索、发现、讨论、归纳,师巡视、欣赏,在启发、激励下帮助个别学生解决问题.经同学们积极探索、讨论后,把具有代表性的问题〔学生的创新思维进一步得到升华〕摘录下来供大家在交流中得到解决][生丙]我编的题目如下:某种商品分两次提价,有三种提价方案.方案甲:第一次提价p%,第二次提价q%〔其中p>0,q>0〕;方案乙:第一次提价q%,第二次提价p%;方案丙:第一次提价2q p +%,第二次提价2q p +%,试比较三种提价方案中,哪一种提价多,哪一种提价少,并请A 小组同学说明理由.〔经全班同学积极探究,A 小组同学信心百倍,做出解答〕.[生〔A 小组〕]设某种商品提价前的价格为a ,那么两次提价后的价格分别为:方案甲:a(1+p%)(1+q%);方案乙:a(1+q%)(1+p%);方案丙:a(1+2q p +%)2. 当p=q 时,三种方案提价一样多;当p ≠q 时,由二元均值不等式,得 (1+p%)(1+q%)<(1+2q p +%)2. 所以,方案丙提价多,甲、乙提价一样多,都比丙小.[生〔B 小组〕]我们组编的题目是:某单位投资3200元建一仓库〔长方体状〕,高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,第m 长造价为40元,两侧墙砌砖,每m 长造价为45元,顶部每m 2造价为20元,试求:〔1〕仓库底面积S 的最大允许值是多少?〔2〕为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 我们B 组同学邀请E 同学回答.[生E]设铁栅长为x m ,一堵砖墙长为y m ,那么有S=xy.由题意可知:40x+2×45y+20xy=3200,∴3200=40x+90y+20xy.应用二元均值不等式,得3200≥2y x 9040⋅+20xy=120xy +20xy =120S +20S ,∴S+6S ≤160.即(S +16)(S -10)≤0, ∵S +16>0, ∴S -10≤0,从而S ≤100.因而S 的最大允许值是100 m 2,取得此最大值的条件是40x=90y ,而xy=100,由此解得x=15,即铁栅的长应是15 m.[师]同学们回答得非常好!从你们举的例子来看,注重了数学的现实性与时代性〔积极培养同学们学数学、用数学的思想意识〕,关注社会,从平时生活做起,加强实践能力培养,建立数学模型,进而解决实际生活问题〔这种数学思想方法的探究,正是近年来高考中的热点话题〕.〔同学们创设的其他问题,可作为课后作业再次激励学生去探索〕..专业. Ⅳ.课时小结本节课,我们学习了重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数〔2b a +〕,几何平均数〔ab 〕及它们的关系〔2b a +≥ab 〕.它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab ≤222b a +,ab ≤〔2b a +〕2. Ⅴ.课后作业(一)课本P 11习题6.2 2、3.(二)1.预习内容:课本P 10~11例1,例2.2.预习提纲:通过预习例1、例2,使学生明确基本不等式:a 2+b 2≥2ab ;2b a +≥ab 〔a >0,b >0〕的应用主要表达在两个方面:其一,是用于证明不等式.其二,是用于求一些函数的最值:设x 、y 都是正数,(1)假设xy =P 是一个定值,当且仅当“x =y 〞时,x +y 有最小值2P ;〔2〕假设x +y =S 是一个定值,当且仅当“x =y 〞时,xy 有最大值41S 2. ●板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:已知a>b>1,试比较
lga lgb ab P lga lgb , Q , R lg 2 2
的大小. P<Q<R
结论1:
若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
结论2:
若a、b∈R+,则
ab ab(当且仅当a=b时取“=”). 2
两个正数的算术平均值不小于它们的几何平均值
算术平均值与几何平均值
纪念钞回收 纪念钞回收 字大街中心,有一个有六间门面房外加三间库房的木匠铺。在门面房里,一侧摆放着一些做工精细的衣箱、衣橱、桌椅等木制 家具;另一侧,摆放着耕地用的犁、播种用的耧等农具。门面房的中间足够宽敞,木匠师傅们在这里施展得开诸如锯、刨、凿、 上漆等所有的木工活计。在三间库房里,分类存放着各种材质的木料。需要打制家具和农具的人们,可以根据自家的需要从中 挑选木料,当然,同等体积的木料,由于材质不同,价格也不一。在小镇上亦有不少零散的,也可以称得上是“木匠”师傅的 手艺人。乡民们要想打造一些日常使用的简单家具和农具,甚至盖新房什么的,往往更愿意请这些木匠帮忙。其原因大概有二。 首先,这些零散的木匠都是一些街坊邻里,彼此非常熟悉,做活儿的时候,他们会精心地为主家着想,充分地利用主家的木材, 就连那些斜头巴脑的边角料也不会浪费掉;其次,主家只要在木匠师傅做工期间,给他们做上一些好饭菜加以热情款待就行了, 至于工钱嘛,是可以随意给的,或者是私下协商着适当给一点就行了。总之,请他们来制作各种简单的木工活儿,比请木匠铺 的师傅们制作要合算得多。但不管怎么说,这个木匠铺子里的那几位师傅的手艺,是任何零散木匠们都比不上的。所以无论是 小镇上的,还是小镇周围村庄里的人家,倘若想打制一套娶媳妇用的精制衣柜、嫁闺女用的漂亮梳妆台,或者是一架尺寸要求 严格、制作难度很大的耧车时,就必须得请木匠铺的师傅们来做了。因此间,尽管有庞大的“散兵游勇”散布在乡民中间,但 木匠铺的生意却总是红红火火的。至于十字大街中心位置的几家饭铺、饼铺、日杂商店、耿家客栈,以及东街上的张家肉铺、 西街上的董家油坊、南街上的几家织布作坊倒也没有多少特别之处。可是小镇西边的那条四季流淌的小河,却是绝对不能不提 的。这是因为,她不但是乡镇人们最大的骄傲,而且还串联起了镇上的几大美景呢。在这条四季不断流淌的小河上,修建有大 小三座桥。其中最大的、也最像模像样的是用上好青石砌成的拱形大桥。该大桥直通小镇的西大街,据说建成已经上百年了, 至今仍然完好无损。这座拱形大桥的桥面相当宽阔,两挂四套大马车对过也绰绰有余。另外的两座则都是规模小得多的木架便 桥,只能通过一挂大马车。两座小桥分别位于拱形大桥的南、北两侧,与大桥之间的距离也就是一里左右的样子。这条小河流 出乡镇后逐渐往东南方向拐了个小小的弯,然后才一直往南流淌而去,而那座南便桥实际上就搭建在那个拐弯的地方。如果盛 夏时节下暴雨,偶尔会将便桥冲毁。一旦发生这样的事情,乡民们就在洪水过后,再重新搭建便桥。此外,有人还会在河面较 宽、河水较浅的地方,不远不近地一溜儿摆
a 2 b2
a
b
结论1:
若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
结论2:
若a、b∈R+,则
ab ab (当且仅当a=b时取“=”). 2
两个正数的算术平均值不小于它们的几何平均值
1 1.已知x∈(0,+∞)求证 x 2 x
2.下列不等式的证明过程正确的是
(D)
b a b a ( A)若a, b R, 则 2 2. a b a b
(B)若x, y是正实数 , 则lgx lgy 2 lgx lgy .
4 4 (C)若x是负 实数 , 则x 2 x 4. x x
b a b a ( D)若a, b R , 且ab 0, 则 [( ) ( )] a b a b b a 2 ( ) ( ) 2 a b
2 2
例3:已知a>0,b>0,且a+b=1,求证:
1 1 a b 2 2 2
知识小结:
(1)若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”). (2)若a、b∈R+,则 “=”).
ab ab (当且仅当a=b时取 2
a2 b2 ab 2 ( ) (当且仅当a=b时取“=”). (3)若a、b∈R,则 2 2
6.2算术平均值与几何平均值
丽水学院附中高一数学组
ห้องสมุดไป่ตู้
问题:
已知a、b∈R,试比较a2+b2与2ab的大小. 结论: a2+b2≥2ab
思考:
在上式中,何时取“=”号?
结论: 当且仅当a=b时,取“=”号. 〖当且仅当〗是〖充要条件〗的同义词
结论1:
若a、b∈R,则a2+b2≥2ab(当且仅当a=b时取“=”).
高级中学课本《代数》第二册(上)
人民教育出版社
结论3:
a2 b2 ab 2 ( ) (当且仅当a=b时取“=”). 若a、b∈R,则 2 2
例2:已知a,b∈R+,且a+b=1,求证:
1 (1)ab 4 1 ( 2)a b 2 1 1 ( 3) 2 2 8 a b 1 2 1 2 25 (4)(a ) (b ) a b 2