泊松方程和拉普拉斯方程

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泊松方程和拉普拉斯方程

势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。

简史

1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和

即P点的势函数,势函数对空间坐标的偏导数正比于在P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:

,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为

,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数V在电学理论中的应用,并指出导体表面为等热面。

静电场的泊松方程和拉普拉斯方程

若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:

式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。在各分区的公共界面上,V满足边值关系,

式中i,j指分界面两边的不同分区,σ为界面上的自由电荷密度,n表示边界面上的内法线方向。

边界条件和解的唯一性

为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄

利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。

边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。

除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。

静磁场的泊松方程和拉普拉斯方程

在SI制中,静磁场满足的方程为

式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:。

在各向同性、线性、均匀的磁媒质中,传导电流密度j 0的区域里,磁矢势满足的方程为

选用库仑规范,墷•r)=0,则得磁矢势r)满足泊松方程,

式中纯数μr 为媒质的相对磁导率,真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程∇2Α=0。

静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。

参考书目

郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。

J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)

拉普拉斯方程

拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家皮埃尔-西蒙·拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学、热力学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质

基本概述

拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。该公式成为拉普拉斯方程

定义

三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z

二阶可微的实函数φ:。这组方程常常又写为

或者;其中,div表示矢量场的散度(结果是一个标场),grad表示标量场的梯度(结果是一个矢量场)。这方程又可写为;其中,Δ称为拉普拉斯算子。拉普拉斯方程的解称为调和函数。如果等号右边是一个给定的函数f(x, y, z),即,则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型微分方

程。偏微分算子或(可以在任意维空间中定义这样的算子)称为拉普拉斯算子。边界条件

拉普拉斯方程的狄利克雷问题可归结为求解在区域内定义的函数φ,使得在的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。

拉普拉斯方程的诺伊曼边界条件不直接给出区域边界处的温度函数φ本身,而是φ沿的边界法向的导数。从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。

拉普拉斯方程的解称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数的任意线性组合同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将各种通解线性组合起来,以满足所有边界条件。

二维拉普拉斯方程

两个自变量的拉普拉斯方程具有以下形式:。

解析函数

解析函数的实部和虚部均满足拉普拉斯方程。换言之,若z = x + iy,并且

,那么f(z)是解析函数的充要条件是u(x,y),v(x,y)可微,且满足下列柯西-黎曼方程:。上述方程继续求导就得到

相关文档
最新文档