2019年浙江省中考数学真题分类汇编 专题08 图形的性质之选择题(解析版)
2019年浙江省中考数学真题分类汇编 专题05 函数之选择题(原卷版)

专题05 函数之选择题一.选择题(共10小题)1.(2019•衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.2.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1 B.0 C.3 D.43.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.4.(2019•温州)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()A.y B.y C.y D.y5.(2019•衢州)二次函数y=(x﹣1)2+3图象的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)6.(2019•杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1 B.M=N﹣1或M=N+2C.M=N或M=N+1 D.M=N或M=N﹣17.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.8.(2019•温州)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣29.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位10.(2019•舟山)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④。
专题13 图形的相似(浙江专版)-2019年中考真题数学试题分项汇编(原卷版)

专题13 图形的相似1.(2019·浙江杭州)如图,在△ABC 中,点D ,E 分别在AB 和AC 上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则A .AD ANAN AE =B .BD MNMN CE =C .DN NE BM MC=D .DN NE MC BM=2.(2019·浙江温州)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N ,欧几里得在《几何原本》中利用该图解释了(a +b )(a ﹣b )=a 2﹣b 2,现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为A.2 B.3C.4D.63.(2019·浙江台州)如图,直线l 1∥l 2∥l 3,A ,B ,C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点 D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =4,且23m n =,则m +n 的最大值为__________.4.(2019·浙江绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为12,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.5.(2019·浙江舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.6.(2019·浙江衢州)如图,在Rt△AB C中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求EFDF的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?。
2019年浙江省中考数学真题分类汇编 专题12 图形的变化之填空题(解析版)

专题12图形的变化之填空题参考答案与试题解析一.填空题(共9小题)1.(2019•杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=△90°,A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于2(5+3).【答案】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为△4,D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′△EP∽D′PH,∴,∴,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE2,PH,∴AD=4+21=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)【点睛】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.2.(2019•杭州)在直角三角形ABC中,若2AB=AC,则cosC=或.【答案】解:若∠B=90°,设AB=x,则AC=2x,所以BC x,所以cosC;若∠A=90°,设AB=x,则AC=2x,所以BC x,所以cosC;综上所述,cosC的值为或.故答案为或.【点睛】本题考查了锐角三角函数的定义:熟练掌握锐角三角函数的定义,灵活运用它们进行几何计算.3.(2019•舟山)如图,在△ABC中,若∠A=45°,AC2﹣BC2AB2,则tanC=.【答案】解:如图,过B作BD⊥AC于D,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2﹣BC2=(AD+DC)2﹣(DC2+BD2)=AD2+DC2+2AD•DC﹣DC2﹣BD2(=2AD•DC=2BD•DC,∵AC2﹣BC2AB2,∴2BD•DC2BD2,∴DC BD,∴tanC故答案为..【点睛】本题考查了解直角三角形,等腰直角三角形的判定与性质,勾股定理,锐角三角函数定义,难度适中.证明出AC2﹣BC2=(AD+DC)2﹣(DC2+BD2)=2BD•DC,是解题的关键.4.2019•衢州)如图,人字梯AB,AC的长都为2米,当α=50°时,人字梯顶端离地面的高度AD是 1.5米(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).【答案】解:∵sinα,∴AD=AC•sinα≈2×0.77=1.5,故答案为:1.5【点睛】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.5.(2019•金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是40°.((【答案】解:过A点作AC⊥OC于C,∵∠AOC=50°,∴∠OAC=40°.故此时观察楼顶的仰角度数是40°.故答案为:40°.【点睛】考查了解直角三角形的应用﹣仰角俯角问题,仰角是向上看的视线与水平线的夹角,关键是作出辅助线构造直角三角形求出∠OAC的度数.6.2019•宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离O B约为567米.精确到1米,参考数据: 1.414, 1.732)【答案】解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400200(米).(∵在直角△OBC中,∠COB=60°,OC=200米,∴OB故答案是:567.400567(米)【点睛】考查了解直角三角形的应用﹣方向角的问题.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.7.(2019•湖州)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=α.若AO =85cm,BO=DO=65cm.问:当α=74°时,较长支撑杆的端点A离地面的高度h约为120cm.参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【答案】解:过O作OE⊥BD,过A作AF⊥BD,可得OE∥AF,∵BO=DO,∴OE平分∠BOD,∴∠BOE∠BOD74°=37°,∴∠F AB=∠BOE=37°,在△Rt ABF中,AB=85+65=150cm,∴h=AF=AB•cos∠F AB=150×0.8=120cm,故答案为:120【点睛】此题考查了解直角三角形的应用,弄清题中的数据是解本题的关键.8.(2019•金华)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.(1)如图3,当∠ABE=30°时,BC=90﹣45cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为2256cm2.【答案】解:∵A、D分别在E、F处,门缝忽略不计(即B、C重合)且AB=50cm,CD=40cm.∴EF=50+40=90cm∵B到达E时,C恰好到达F,此时两门完全开启,∴B、C两点的路程之比为5:4(1)当∠ABE=30°时,在△Rt ABE中,BE∴B运动的路程为(50﹣25)cm∵B、C两点的路程之比为5:4AB=25cm,'∴此时点 C 运动的路程为(50﹣25) (40﹣20)cm∴BC =(50﹣25故答案为:90﹣45)+(40﹣20;)=(90﹣45)cm(2)当 A 向 M 方向继续滑动 15cm 时,设此时点 A 运动到了点 A'处,点 B 、C 、D 分别运动到了点 B'、C'、D'处,连接 A'D',如图:则此时 AA'=15cm∴A'E =15+25=40cm由勾股定理得:EB'=30cm ,∴B 运动的路程为 50﹣30=20cm∴C 运动的路程为 16cm∴C'F =40﹣16=24cm由勾股定理得:D'F =32cm ,∴ 四 边 形 A'B'C'D' 的 面 积 = 梯 形 A'EFD' 的 面 积 ﹣ △ A'EB' 的 面 积 ﹣ △ D'FC' 的 面 积30×4024×32=2256cm 2.∴四边形 ABCD 的面积为 2256cm 2.故答案为:2256.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.9.(2019•温州)图 1 是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2 所示,两支脚 OC =OD =10 分米,展开角∠COD =60°,晾衣臂 OA =OB =10 分米,晾衣臂支架 HG =FE =6 分米,且 HO =FO =4 分米.当∠AOC =90°时,点 A 离地面的距离 AM 为(5+5 ) 分米;当 OB 从水平状态旋转到 OB (在 CO 延长线上)时,点E 绕点 F 随之旋转至 OB'上的点 E'处,则 B'E'﹣BE 为 4 分米.【答案】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQ M=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP∠COD=30°,(分米),∴QM=OP=OC•cos30°=5∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在△Rt OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在△Rt PKE中,EK∴BE=10﹣2﹣2(8﹣22(分米))(分米),在△Rt OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在△Rt FJE′中,E′J2,∴B′E′=10﹣(22)=12﹣2,∴B′E′﹣BE=4.故答案为5+5,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.。
2019年浙江省杭州市中考数学真题复习试卷附解析

2019年浙江省杭州市中考数学真题复习试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )A .12πcm 2B .15πcm 2C .18πcm 2D .24πcm 22.如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于( )A .7B .6C .5D .43.在函数233y x x =-+,212y x x =-+,221y x x π=-+-,1(53)2y x x =-中,以 x 为自变量的二次函数有( )A .4 个B .3 个C .2 个D .1 4.如图所示,已知AC=AB ,∠1=∠2,E 为AD 上一点,则图中全等三角形有( ) A . 1对 B .2对 C .3对 D .4对5.一副三角板不能拼出的角的度数是(拼接要求:既不重叠又不留空隙)( )A .75°B .105°C .120°D .125° 6.如果237m n -=,那么823m n -+等于( )A .15B .1C .7D .8 二、填空题如图是一个圆柱体,它的左视图是 (填图形的名称即可).8.圆锥的侧面展开图的面积是215πcm ,母线长为5cm ,则圆锥的底面半径长为 cm .9.将进货单价为 70 元的某种商品按零售价 100 元一个售出时,每天能卖出 20 个,若这种商品的零售价在一定范围内每降价1 元,其日销售量就增加1个,为获取最大的利润,则应降价 元.10.菱形的周长是8 cm ,高是1cm ,则菱形各角的度数为 , , , .11.某居民所在区域电的单价为0.53元/度,所付电费y(元)与用电度数x(度)之间的关系 式是y=0.53x ,其中常量是 ,变量是 .12.在平面直角坐标系内有一个平行四边形ABCD ,如果将此平行四边形水平向x 轴正方向移动3个单位,则各点坐标的变化特征是 .13.点A(1-a ,3),B(-3,b)关于y 轴对称,则b a = .14. 如图,要使 a b ,需添加的条件是 (写出一个即可).15.若=,,则b a b b a ==+-+-01222.16.某单位内线电话号码由3个数字组成,每个数字可以是1、2、3中的任一个,•如果不知道某人的内线电话号码,任意拨一个号码能接通的概率是 .17.完成某项工程,甲单独做需 a(h),乙单独做需 b(h),甲、乙两人合作完成这项工程需 h.18.如图,从A 地到B 地走 条路线最近,它根据的是 .19.小明今年x 岁,那么代数式x+3 的意义可以解释为 .20.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为 .818204学生人数(人)(小时)炼时间517 题图三、解答题21.如图,已知直线AB 经过⊙O 上的点C ,并且OA=OB ,CA=CB,那么直线AB 是⊙O 的切线吗?为什么?B C22.在电视台举行的某选秀比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待 定”或“通过”的结论.(1)写出三位评委给出 A 选手的所有可能的结论;(2)对于选手 A ,只有甲、乙两位评委给出相同结论的概率是多少?23.某商场在销售中发现“好好”牌服装平均每天可以销售20件,每件盈利40元.为了迎接“五∙ 一”国际劳动节,商场决定采取适当的降价措施,经市场调查发现:如果每件服装每降价2元,那么平均每天就可以多售出4件,要想平均每天在这种服装上盈利1200元,那么每件服装应降价多少元?如果商场要扩大销售量,尽可能地减少库存,每件服装应降价多少元?24.如图,已知:在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =12AB ,点G 、E 、F 分别为边AB 、BC 、AC 的中点.求证:DF=BE .25.如图所示,□ABCD 中,E ,F 分别是CD ,AB 上的点,且AF=CE .求证:∠BFD=∠BED .26.请验证下列等式是否成立:33332333333333333232434352526262;3131414153536464++++++++====++++++++;;; (1)请你写出一个符合上面规律的一个式子(不能与上面的重复);(2)探索其中的规律,再写出一个类似的等式,并用含m ,n 的等式表示这个规律(m ,n 为整数).27.如图,已知从△ABC 到△DEF 是一个相似变换,OD 与OA 的长度之长为1:3.(1)DE 与AB 的长度之比是多少?(2)已知△ABC 的周长是24cm ,面积是36cm 2,分别求△DEF 的周长和面积.28.两个大小不同的圆可以组成以下五种图形,请找出每个图形的 对称轴,并说说它们的对称轴有什么共同特征?29.解下列方程:(1)156178x x+=-(2)2419 36x xx -+=-(3)10.50.12 0.30.2x x---=30.合并同类项:(1) 1-(2a-1)-(3a+3 ) (2) -(5m+n)-7(m-3n)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.B4.C5.D6.B二、填空题7.矩形8.39.510.30°,l50°,30°,l50°11.0.53;x、y12.横坐标均加上3,纵坐标不变13.-814.如∠1=∠3等15.2,116.117.27ab18.a b②,两点之间线段最短19.小明今年x岁,再过 3 年小明的年龄为(x+3)岁20.17三、解答题21.直线AB是⊙O的切线.理由是:连结0C,∵OA=OB,CA=CB,∴0C⊥AB,∴AB是⊙O的切线.22.(1)评委给出 A选手的所有可能结果如下:由上可知评委给出 A 选手所有可能的结果有8种.(2)对于 A 选手,“只有甲、乙两住评委给出相同的结论”有 2 种,即“通过一通过一待定”、“待定一待定一通过”,所以对于 A 选手“只有甲、乙两位评委给出相同结论”的 概率是1423.设每件服装应降价x 元,则(40-x )(20+x 2×4)=1200,解得x 1=10,x 2=20 为尽可能地减少库存,每件服装应降价20元24.提示:连结FG .25.先证明DE ∥BF ,DE=BF ,四边形DFBE 为平行四边形,则∠BFD=∠BED26.(1)如:333373737474++=++ (2)3333()()m n m n m m n m m n ++=+-+- 27.(1)1:3;(2)8cm ,4cm 228.略.29. (1)x=7 (2)x=3 (3)4723x = 30.(1)51a --;(2)1220m n -+。
2020年浙江省中考数学分类汇编专题08 四边形解析版

2020年浙江省中考数学分类汇编专题08 四边形一、单选题(共6题;共12分)1.(2020·台州)下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②2.(2020·衢州)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A. B. C. D.3.(2020·台州)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3B. 7+4C. 8+3D. 8+44.(2020·台州)如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CD5.(2020·温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作BCDE,则∠E 的度数为( )A. 40°B. 50°C. 60°D. 70°6.(2020·湖州)四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变,如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′,若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A. 1B.C.D.二、填空题(共5题;共8分)7.(2020·嘉兴·舟山)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm 。
部编数学八年级上册专题08等边三角形的判定和性质(解析版)含答案

2022-2023学年人教版数学八年级上册压轴题专题精选汇编专题08 等边三角形的判定和性质考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·凉山期末)如图, MNP V 中, 60P Ð=° , MN NP = , MQ PN ⊥ ,垂足为Q ,延长MN 至G ,取 NG NQ = ,若 MNP V 的周长为12,MQ m = ,则 MGQ V 周长是( )A .8+2mB .8+mC .6+2mD .6+m 【答案】C【完整解答】解:∵60P Ð=° , MN NP = ,∴△PMN 是等边三角形,∵MQ PN ⊥ ,∴QN=PQ= 12MN ,∠QMN=30°,∠QNM=60°,∵NG NQ = ,∴∠GQN=∠G=30°,QN=NG= 12MN ,∴∠QMN=∠G=30°,∴QM=QG ,∵MNP V 的周长为12, MQ m = ,∴MN=4,QN=NC=2,QM=QG=m ,∴MGQ V 周长是QM+QG+MN+NG=6+2m.故答案为:C.【思路引导】易得△PMN 是等边三角形,得QN=PQ=12MN ,∠QMN=30°,∠QNM=60°,根据等腰三角形的性质可得∠GQN=∠G=30°,QN=NG=12MN ,推出QM=QG ,根据△MNP 的周长可得MN=4,QN=NC=2,QM=QG=m ,据此求解.2.(2分)(2021八上·铁岭期末)如图,E 是等边ΔABC 中AC 边上的点,12Ð=Ð,BE CD =,则ADE ∆是( )A .等腰三角形B .等边三角形C .不等边三角形D .无法确定【答案】B【完整解答】解:∵△ABC 为等边三角形∴AB=AC ,∠BAE=60°,∵∠1=∠2,BE=CD ,∴△ABE ≌△ACD (SAS ),∴AE=AD ,∠BAE=∠CAD=60°,∴△ADE 是等边三角形.故答案为:B .【思路引导】利用等边三角形的判定与性质即可得出结论。
2019年浙江省中考数学真题分类汇编 专题12 图形的变化之填空题(原卷版)
专题12 图形的变化之填空题一.填空题(共9小题)1.(2019•杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.2.(2019•杭州)在直角三角形ABC中,若2AB=AC,则cos C=.3.(2019•舟山)如图,在△ABC中,若∠A=45°,AC2﹣BC2AB2,则tan C=.4.(2019•衢州)如图,人字梯AB,AC的长都为2米,当α=50°时,人字梯顶端离地面的高度AD是米(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).5.(2019•金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是.6.(2019•宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据: 1.414, 1.732)7.(2019•湖州)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=α.若AO =85cm,BO=DO=65cm.问:当α=74°时,较长支撑杆的端点A离地面的高度h约为cm.(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)8.(2019•金华)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.(1)如图3,当∠ABE=30°时,BC=cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为cm2.9.(2019•温州)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为分米.。
2019年浙江省中考数学真题分类汇编 专题13 图形的变化之解答题(原卷版)
专题13 图形的变化之解答题一.解答题(共9小题)1.(2019•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)2.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.3.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.4.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.5.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB 绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN 上,并说明理由.6.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?7.(2019•台州)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).8.(2019•绍兴)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据: 1.41, 1.73)9.(2019•舟山)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD =140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34, 1.73)。
2022年浙江各地数学中考真题(杭州温州金华)按知识点汇编专题08 解直角三角形与三视图(解析版)
专题08 解直角三角形与三视图一、单选题1.(2022·台州)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【答案】A【解析】解:从几何体的正面看可得如下图形,故选:A.2.(2022·湖州)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【答案】D【解析】解:观察该几何体发现:从正面看到的应该是三个正方形,上面左边1个,下面2个,故选:D.3.(2022·嘉兴)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【解析】如图所示:它的主视图是:.故选:B.4.(2022·温州)某物体如图所示,它的主视图是()A.B.C.D.【答案】D【解析】解:某物体如图所示,它的主视图是:故选:D.5.(2022·宁波)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【答案】C【解析】根据俯视图的意义可知,从上面看物体所得到的图形,选项C符合题意,故答案选:C.6.(2022·绍兴)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【答案】B【解析】解:由图可得,题目中图形的主视图是,故选:B.7.(2022·丽水)如图是运动会领奖台,它的主视图是( )A .B .C .D .【答案】A【解析】 解:领奖台的主视图是:故选:A .8.(2022·金华)如图,圆柱的底面直径为AB ,高为AC ,一只蚂蚁在C 处,沿圆柱的侧面爬到B 处,现将圆柱侧面沿AC “剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A .B .C .D .【答案】C【解析】解:∵AB 为底面直径,∴将圆柱侧面沿AC “剪开”后, B 点在长方形上面那条边的中间,∵两点之间线段最短,故选: C .9.(2022·金华)一配电房示意图如图所示,它是一个轴对称图形,已知6m BC =,ABC α∠=,则房顶A 离地面EF 的高度为( )A .(43sin )m α+B .(43tan )m α+C .34m sin α⎛⎫+ ⎪⎝⎭D .34m tan a ⎛⎫+ ⎪⎝⎭ 【答案】B【解析】解:过点A 作AD ⊥BC 于D ,如图所示: ∵它是一个轴对称图形,∴132BD DC BC ===m , tan 3AD AD BD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .10.(2022·丽水)如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分EAD ∠交CD 于点F ,FG AD ∥交AE 于点G ,若1cos 4B =,则FG 的长是( ) A .3 B .83C .2153D .52 【答案】B【解析】过点A 作AH 垂直BC 于点H ,延长FG 交AB 于点P ,由题意可知,AB =BC =4,E 是BC 的中点,∴BE =2,又∵1cos 4B =, ∴BH =1,即H 是BE 的中点,∴AB =AE =4,又∵AF 是∠DAE 的角平分线,AD ∥FG ,∴∠F AG =∠AFG ,即AG =FG ,又∵PF ∥AD ,AP ∥DF ,∴PF =AD =4,设FG =x ,则AG =x ,EG =PG =4-x ,∵PF ∥BC ,∴∠AGP =∠AEB =∠B ,∴cos ∠AGP =12PG AG =22xx -=14,解得x =83;故选B .11.(2022·杭州)如图,已知△ABC 内接于半径为1的⊙O ,∠BAC =θ(θ是锐角),则△ABC 的面积的最大值为()A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+【答案】D【解析】解:当△ABC 的高AD 经过圆的圆心时,此时△ABC 的面积最大,如图所示,∵AD ⊥BC ,∴BC =2BD ,∠BOD =∠BAC =θ,在Rt △BOD 中,sin θ= 1BDBDOB =,cos θ=1ODODOB =,∴BD =sin θ,OD =cos θ,∴BC =2BD =2sin θ,AD =AO +OD =1+cos θ,∴S △ABC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ). 故选:D .二、解答题12.(2022·湖州)如图,已知在Rt △ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.【答案】AC =4,sin A =35【解析】解:∵∠C =90°,AB =5,BC =3,∴4AC =.3sin 5BC A AB ==. 13.(2022·台州)如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB 长3m ,求梯子顶部离地竖直高度BC .(结果精确到0.1m ;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【答案】梯子顶部离地竖直高度BC 约为2.9m .【解析】解:在Rt △ABC 中,AB =3,∠ACB =90°,∠BAC =75°,∴BC =AB ⋅sin75°≈3×0.97=2.91≈2.9(m).答:梯子顶部离地竖直高度BC 约为2.9m .14.(2022·嘉兴)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知10cm AD BE ==,5cm CD CE ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(结果精确到0.1cm ,参考数据:sin 200.34︒≈,cos200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)(1)连结DE ,求线段DE 的长.(2)求点A ,B 之间的距离.【答案】(1)3.4cm (2)22.2cm【解析】(1)解:如图2,过点C 作CF DE ⊥于点F ,∵CD CE =,∴DF EF =,CF 平分DCE ∠.∴20DCF ECF ∠=∠=︒,∴sin 2050.34 1.7DF CD ︒=⋅≈⨯=,∴2 3.4cm DE DF ==.(2)解:如图3,连结AB .设纸飞机机尾的横截面的对称轴为直线l ,∵纸飞机机尾的横截面示意图是一个轴对称图形,∴对称轴l 经过点C .∴AB l ⊥,DE l ⊥,∴AB ∥DE .过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H ,∵DG ⊥AB ,HE ⊥AB ,∴∠EDG =∠DGH =∠EHG =90°,∴四边形DGCE 是矩形,∴DE =HG ,∴DG ∥l , EH ∥l , ∴1202GDC CEH DCE ∠=∠=∠=︒, ∵AD CD ⊥,BE ⊥CE ,∴2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,∴cos 20100.949.4,cos 20100.949.4AG AD BH BE =⋅︒≈⨯==⋅︒≈⨯=,∴22.2cm AB BH AG DE =++=.15.(2022·宁波)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB 可伸缩(最长可伸至20m ),且可绕点B 转动,其底部B 离地面的距离BC 为2m ,当云梯顶端A 在建筑物EF 所在直线上时,底部B 到EF 的距离BD 为9m .(1)若∠ABD =53°,求此时云梯AB 的长.(2)如图2,若在建筑物底部E 的正上方19m 处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【答案】(1)15m ;(2)在该消防车不移动位置的前提下,云梯能够伸到险情处;理由见解析【解析】(1)解:在Rt △ABD 中,∠ABD =53°,BD =9m ,∴AB =9cos530.6BD ≈︒=15(m ), ∴此时云梯AB 的长为15m ;(2)解:在该消防车不移动位置的前提下,云梯能伸到险情处,理由:由题意得:DE =BC =2m ,∵AE =19m ,∴AD =AE -DE =19-2=17(m ),在Rt △ABD 中,BD =9m ,∴AB = m ),<20m ,∴在该消防车不移动位置的前提下,云梯能伸到险情处.16.(2022·绍兴)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” )和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC 垂直圭BC ,已知该市冬至正午太阳高度角(即)ABC ∠为37︒,夏至正午太阳高度角(即)ADC ∠为84︒,圭面上冬至线与夏至线之间的距离(即DB 的长)为4米.(1)求∠BAD 的度数.(2)求表AC 的长(最后结果精确到0.1米).(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,tan84°≈192) 【答案】(1)47°;(2)3.3米【解析】(1)解:84ADC ∠=︒,37ABC ∠=︒,47BAD ADC ABC ∴∠=∠-∠=︒,答:BAD ∠的度数是47︒.(2)解:在Rt △ABC 中,tan37AC BC ︒=, ∴tan37AC BC =︒. 同理,在Rt △ADC 中,有tan84AC DC =︒. ∵4BD =, ∴4tan37tan84AC AC BC DC BD -=-==︒︒. ∴424319AC AC -≈, ∴ 3.3AC ≈(米).答:表AC 的长是3.3米.17.(2022·金华)图1是光伏发电场景,其示意图如图2,EF 为吸热塔,在地平线EG 上的点B ,B '处各安装定日镜(介绍见图3).绕各中心点(),A A '旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F 处.已知1m,8m,AB A B EB EB ='==''=,在点A 观测点F 的仰角为45︒.(1)点F 的高度EF 为______m .(2)设,DAB D A B αβ''∠'=∠=,则α与β的数量关系是_______.【答案】 9 7.5αβ-=︒【解析】(1)过点A 作AG ⊥EF ,垂足为G .∵∠ABE =∠BEG =∠EGA =90°,∴四边形ABEG 是矩形,∴EG =AB =1m ,AG =EB =8m ,∵∠AFG =45°,∴FG =AG =EB =8m ,∴EF =FG +EG =9(m ).故答案为:9;(2)7.5αβ-=︒.理由如下:∵∠A 'B 'E =∠B 'EG =∠EG A '=90°,∴四边形A 'B 'EG 是矩形,∴EG =A 'B '=1m ,A 'G =E B '=,∴tan ∠A 'FG =A G FG '= ∴∠A 'FG =60°,∠F A 'G =30°,根据光的反射原理,不妨设∠F AN =2m ,∠F A 'M =2n , ∵ 光线是平行的,∴AN ∥A 'M ,∴∠GAN =∠G A 'M ,∴45°+2m =30°+2n ,解得n -m =7.5°,根据光路图,得90,90DAB m D A B n αβ'∠==-∠==-'', ∴9090m n n m αβ-=--+=-,故7.5αβ-=︒,故答案为:7.5αβ-=︒ .。
2019年浙江省中考数学真题汇编专题05 图形的变化
专题05图形的变化参考答案与试题解析一.选择题(共15小题)1.(2019•台州)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1B.3:2C.:1D.:2【答案】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF DK,∴(角平分线的性质定理,可以用面积法证明),∴,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,故选:A.【点睛】本题考查图形的拼剪,正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2.(2019•湖州)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.2B.C.D.【答案】解:如图,经过P、Q的直线则把它剪成了面积相等的两部分,由图形可知△AMC≌△FPE≌△BPD,∴AM=PB,∴PM=AB,∵PM,∴AB,故选:D.【点睛】本题考查了图形的剪拼,中心对称的性质,勾股定理的应用,熟练掌握中心对称的性质是解题的关键.3.(2019•杭州)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3【答案】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.(2019•金华)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.1C.D.【答案】解:连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形EFGH的面积正方形ABCD的面积,∴正方形EFGH的边长GF∴HF GF∴MF=PH a∴a故选:A.【点睛】本题主要考查了剪纸问题、正方形的性质以及折叠的性质,由剪纸的过程得到图形中边的关系是解题关键.5.(2019•舟山)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【答案】解:∵点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),故选:A.【点睛】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答.6.(2019•温州)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.【答案】解:如图,连接ALGL,PF.由题意:SAMLD=S阴=a2﹣b2,PH,矩形∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴,∴,整理得a=3b,∴,故选:C.【点睛】本题源于欧几里得《几何原本》中对(a+b)(a﹣b)=a2﹣b2的探究记载.图形简单,结合了教材中平方差证明的图形进行编制.巧妙之处在于构造的三角形一边与矩形的一边等长,解题的关键是利用相似三角形的性质求出a与b的关系,进而解决问题.7.(2019•杭州)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.B.C.D.【答案】解:∵DN∥BM,∴△ADN∽△ABM,∴,∵NE∥MC,∴△ANE∽△AMC,∴,∴.故选:C.【点睛】本题考查了相似三角形的判定与性质:三在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活运用相似三角形的性质表示线段之间的关系.8.(2019•温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米【答案】解:作AD⊥BC于点D,则BD0.3,∵cosα,∴cosα,解得,AB米,故选:B.【点睛】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.9.(2019•杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x【答案】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.【点睛】本题考查解直角三角形的应用﹣坡度坡角问题、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.(2019•绍兴)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.11.(2019•舟山)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【答案】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.【点睛】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.12.(2019•台州)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球【答案】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.【点睛】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.13.(2019•温州)某露天舞台如图所示,它的俯视图是()A.B.C.D.【答案】解:它的俯视图是:故选:B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.14.(2019•宁波)如图,下列关于物体的主视图画法正确的是()A.B.C.D.【答案】解:物体的主视图画法正确的是:.故选:C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.15.(2019•衢州)如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二.填空题(共9小题)1.(2019•杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于2(5+3).【答案】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴,∴,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE2,PH,∴AD=4+21=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)【点睛】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.2.(2019•杭州)在直角三角形ABC中,若2AB=AC,则cos C=或.【答案】解:若∠B=90°,设AB=x,则AC=2x,所以BC x,所以cos C;若∠A=90°,设AB=x,则AC=2x,所以BC x,所以cos C;综上所述,cos C的值为或.故答案为或.【点睛】本题考查了锐角三角函数的定义:熟练掌握锐角三角函数的定义,灵活运用它们进行几何计算.3.(2019•舟山)如图,在△ABC中,若∠A=45°,AC2﹣BC2AB2,则tan C=.【答案】解:如图,过B作BD⊥AC于D,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2﹣BC2=(AD+DC)2﹣(DC2+BD2)=AD2+DC2+2AD•DC﹣DC2﹣BD2=2AD•DC=2BD•DC,∵AC2﹣BC2AB2,∴2BD•DC2BD2,∴DC BD,∴tan C.故答案为.【点睛】本题考查了解直角三角形,等腰直角三角形的判定与性质,勾股定理,锐角三角函数定义,难度适中.证明出AC2﹣BC2=(AD+DC)2﹣(DC2+BD2)=2BD•DC,是解题的关键.4.(2019•衢州)如图,人字梯AB,AC的长都为2米,当α=50°时,人字梯顶端离地面的高度AD是 1.5米(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).【答案】解:∵sinα,∴AD=AC•sinα≈2×0.77=1.5,故答案为:1.5【点睛】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.5.(2019•金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是40°.【答案】解:过A点作AC⊥OC于C,∵∠AOC=50°,∴∠OAC=40°.故此时观察楼顶的仰角度数是40°.故答案为:40°.【点睛】考查了解直角三角形的应用﹣仰角俯角问题,仰角是向上看的视线与水平线的夹角,关键是作出辅助线构造直角三角形求出∠OAC的度数.6.(2019•宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为567米.(精确到1米,参考数据: 1.414, 1.732)【答案】解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB400567(米)故答案是:567.【点睛】考查了解直角三角形的应用﹣方向角的问题.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.7.(2019•湖州)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=α.若AO=85cm,BO=DO=65cm.问:当α=74°时,较长支撑杆的端点A离地面的高度h约为120cm.(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【答案】解:过O作OE⊥BD,过A作AF⊥BD,可得OE∥AF,∵BO=DO,∴OE平分∠BOD,∴∠BOE∠BOD74°=37°,∴∠FAB=∠BOE=37°,在Rt△ABF中,AB=85+65=150cm,∴h=AF=AB•cos∠FAB=150×0.8=120cm,故答案为:120【点睛】此题考查了解直角三角形的应用,弄清题中的数据是解本题的关键.8.(2019•金华)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F 处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.(1)如图3,当∠ABE=30°时,BC=90﹣45cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为2256cm2.【答案】解:∵A、D分别在E、F处,门缝忽略不计(即B、C重合)且AB=50cm,CD=40cm.∴EF=50+40=90cm∵B到达E时,C恰好到达F,此时两门完全开启,∴B、C两点的路程之比为5:4(1)当∠ABE=30°时,在Rt△ABE中,BE AB=25cm,∴B运动的路程为(50﹣25)cm∵B、C两点的路程之比为5:4∴此时点C运动的路程为(50﹣25)(40﹣20)cm∴BC=(50﹣25)+(40﹣20)=(90﹣45)cm故答案为:90﹣45;(2)当A向M方向继续滑动15cm时,设此时点A运动到了点A'处,点B、C、D分别运动到了点B'、C'、D'处,连接A'D',如图:则此时AA'=15cm∴A'E=15+25=40cm由勾股定理得:EB'=30cm,∴B运动的路程为50﹣30=20cm∴C运动的路程为16cm∴C'F=40﹣16=24cm由勾股定理得:D'F=32cm,∴四边形A'B'C'D'的面积=梯形A'EFD'的面积﹣△A'EB'的面积﹣△D'FC'的面积30×4024×32=2256cm2.∴四边形ABCD的面积为2256cm2.故答案为:2256.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.9.(2019•温州)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为(5+5)分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为4分米.【答案】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP∠COD=30°,∴QM=OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt△PKE中,EK2(分米)∴BE=10﹣2﹣2(8﹣2)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt△FJE′中,E′J2,∴B′E′=10﹣(22)=12﹣2,∴B′E′﹣BE=4.故答案为5+5,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三.解答题(共9小题)1.(2019•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.【点睛】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.2.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【答案】解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD130,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.【点睛】本题属于四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.3.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.【答案】(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC BD=14,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DDBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∴BF=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∴AG=GF,∴DG BF.②解:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC =x.∵AD=6BD,∴BD AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12﹣x,∵FH∥AC,∴,∴,整理得:x2﹣12x+28=0,解得x=6±2.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF(12﹣x),OG BF(12﹣x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴,∴,整理得:x2﹣36x+268=0,解得x=18﹣2或18+2(舍弃),如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC于H,EK⊥CG于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=90°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG∥BF,∴∠AOG=∠ABF=90°,∴OG⊥AB,∵OG垂直平分线段AB,∵CA=CB,∴O,G,C共线,由△DTE≌△EHF,可得EH=DT=BT=2,ET=FH=12﹣x,BF(12﹣x),OG BF(12﹣x),CK=EK x,GK=7(12﹣x)x,由△OGD∽△KEG,可得,∴,解得x=2,,综上所述,满足条件的EC的值为6±2或18﹣2或2.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.4.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.【答案】解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN a,a≤EF a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴3,∴2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE m,∴HC=PH+PC=13m,∴tan∠HCE,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴2,∴,综上所述,a:b的值为或.【点睛】本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB 绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN 上,并说明理由.【答案】解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴即∴a1∴AP=FD1,∴AF=AD﹣DF=3∴(2)在CD上截取DH=AF∵AF=DH,∠PAF=∠D=90°,AP=FD,∴△PAF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP1∵点E是AB中点,∴BE=AE=1=EM∴PE=PA+AE∵EC2=BE2+BC2=1+4=5,∴EC∴EC=PE,CM1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH1,CF=CF ∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP1由旋转的性质可得AQ=AQ'1,AB=AB'=2,Q'B'=QB1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y x﹣2设点B'(x,x﹣2)∴AB'2∴x∴点B'(,)∵点Q'(1,0)∴B'Q'1∴点B旋转后的对应点B'不落在线段BN上.【点睛】本题是相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,一次函数的性质,灵活运用这些性质进行推理证明是本题的关键.6.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?【答案】解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC∠BAC=30°,在Rt△ADC中,DC=AC•tan30°=62.(2)由题意易知:BC=6,BD=4,∵DE∥AC,∴∠FDM=∠GAM,∵AM=DM,∠DMF=∠AMG,∴△DFM≌△AGM(ASA),∴DF=AG,∵DE∥AC,∴,∴.(3)∵∠CPG=60°,过C,P,G作外接圆,圆心为Q,∴△CQG是顶角为120°的等腰三角形.①当⊙Q与DE相切时,如图3﹣1中,作QH⊥AC于H,交DE于P.连接QC,QG.菁优网设⊙Q的半径为r.则QH r,r r=2,∴r,∴CG4,AG=2,由△DFM∽△AGM,可得,∴DM AD.②当⊙Q经过点E时,如图3﹣2中,延长CQ交AB于K,设CQ=r.∵QC=QG,∠CQG=120°,∴∠KCA=30°,∵∠CAB=60°,∴∠AKC=90°,在Rt△EQK中,QK=3r,EQ=r,EK=1,∴12+(3r)2=r2,解得r,∴CG,由△DFM∽△AGM,可得DM.③当⊙Q经过点D时,如图3﹣3中,此时点M,点G与点A重合,可得DM=AD=4.观察图象可知:当DM或DM≤4时,满足条件的点P只有一个.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.7.(2019•台州)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【答案】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.(2019•绍兴)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据: 1.41, 1.73)【答案】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DF=OD+OE=OD+AB=205≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10105)(cm),∴下降高度:DE﹣DF=205﹣10105=1010 3.2(cm).【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.(2019•舟山)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD =140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34, 1.73)【答案】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CP×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×cos50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.【点睛】此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题08 图形的性质之选择题参考答案与试题解析一.选择题(共27小题)1.(2019•湖州)已知∠α=60°32′,则∠α的余角是()A.29°28′B.29°68′C.119°28′D.119°68′【答案】解:∵∠α=60°32′,∠α的余角是为:90°﹣60°32′=29°28′,故选:A.【点睛】本题考查的是余角和补角,如果两个角的和等于90°,就说这两个角互为余角.如果两个角的和等于180°,就说这两个角互为补角.2.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【答案】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.3.(2019•金华)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处【答案】解:由图可得,目标A在南偏东75°方向5km处,故选:D.【点睛】此题主要考查了方向角,正确理解方向角的意义是解题关键.4.(2019•宁波)能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为()A.m=﹣1 B.m=0 C.m=4 D.m=5【答案】解:当m=5时,方程变形为x2﹣4x+m=5=0,因为△=(﹣4)2﹣4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.(2019•台州)已知某函数的图象C与函数y的图象关于直线y=2对称.下列命题:①图象C与函数y的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A (x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④【答案】解:∵函数y的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y的图象交于点;∴①正确;点(,﹣2)关于y=2对称的点为点(,6),∵(,6)在函数y上,∴点(,﹣2)在图象C上;∴②正确;∵y中y≠0,x≠0,取y上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4;∴③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y上,∴4﹣y1,4﹣y2,∵x1>x2>0或0>x1>x2,∴4﹣y1<4﹣y2,∴y1>y2;∴④不正确;故选:A.【点睛】本题考查反比例函数图象及性质;熟练掌握函数关于直线后对称时,对应点关于直线对称是解题的关键.6.(2019•台州)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11【答案】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.【点睛】此题主要考查三角形的三边关系,要掌握并熟记三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.7.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.8【答案】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.【点睛】本题考查了三角形三边关系定理,能根据定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.8.(2019•绍兴)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°【答案】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.【点睛】本题考查的是三角形内角和定理、对顶角的性质,掌握三角形内角和等于180°是解题的关键.9.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.42【答案】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD AB•DH BC•CD6×49×4=30,故选:B.【点睛】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.10.(2019•宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【答案】解:设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选:C.【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.11.(2019•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C 点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°【答案】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.【点睛】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.12.(2019•宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【答案】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的长=a﹣(c﹣b),宽=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.13.(2019•衢州)一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dm B.5dm C.4dm D.3dm【答案】解:连接OA,OD,∵点A,B,C在⊙O上,CD垂直平分AB于点D.AB=8dm,DC=2dm,∴AD=4dm,设圆形标志牌的半径为r,可得:r2=42+(r﹣2)2,解得:r=5,故选:B.【点睛】此题考查勾股定理,关键是利用垂径定理解答.14.(2019•绍兴)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()A.πB.πC.2πD.2π【答案】解:连接OB,OC.∵∠A=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为π,故选:A.【点睛】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(2019•金华)如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是()A.∠BDC=∠αB.BC=m•tanαC.AO D.BD【答案】解:A、∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意;B、在Rt△ABC中,tanα,即BC=m•tanα,故本选项不符合题意;C、在Rt△ABC中,AC,即AO,故本选项符合题意;D、∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD,故本选项不符合题意;故选:C.【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.16.(2019•湖州)如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°【答案】解:∵五边形ABCDE为正五边形,∴∠ABC=∠C108°,∵CD=CB,∴∠CBD36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n﹣2)×180°是解题的关键.17.(2019•宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm【答案】解:设AB=xcm,则DE=(6﹣x)cm,根据题意,得π(6﹣x),解得x=4.故选:B.【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18.(2019•舟山)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC延长线于点P,则P A的长为()A.2 B.C.D.【答案】解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵过点A作⊙O的切线交OC的延长线于点P,∴∠OAP=90°,∵OA=OC=1,∴AP=OA tan60°=1,故选:B.【点睛】本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径.19.(2019•杭州)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2 B.3 C.4 D.5【答案】解:连接OA、OB、OP,∵P A,PB分别切圆O于A,B两点,∴OA⊥P A,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=P A=3,故选:B.【点睛】本题考查了切线长定理,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.20.(2019•台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A.2B.3 C.4 D.4【答案】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO BAC=30°,∴∠AOC=90°,∴OC AC=4,∵OE⊥AC,∴OE OC=2,∴⊙O的半径为2,故选:A.【点睛】本题考查了切线的性质,等边三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.21.(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B.C.D.【答案】解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积1.故选:D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.22.(2019•温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π【答案】解:该扇形的弧长3π.故选:C.【点睛】本题考查了弧长的计算:弧长公式:l(弧长为l,圆心角度数为n,圆的半径为R).23.(2019•湖州)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】解:这个圆锥的侧面积2π×5×13=65π(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.24.(2019•台州)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.【答案】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a∴CM∴tanα=tan∠DMC故选:D.【点睛】本题考查了矩形的性质,菱形的判定,勾股定理,全等三角形的判定和性质,求CM的长是本题的关键.25.(2019•衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.2【答案】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度2.故选:C.【点睛】本题考查了正多边形和圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.熟练掌握正六边形的性质.26.(2019•绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【答案】解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF.故选:A.【点睛】本题考查了勾股定理的应用、长方体的体积、梯形的面积的计算方法;熟练掌握勾股定理,由长方体容器内水的体积得出方程是解决问题的关键.27.(2019•绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E 从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变【答案】解:连接DE,∵,,∴矩形ECFG与正方形ABCD的面积相等.故选:D.【点睛】此题考查了正方形的性质、矩形的性质,连接DE由面积关系进行转化是解题的关键.。