七年级数学上册32有理数的乘法与除法《有理数的除法》典型例题素材青岛版!
人教版七年级数学上册练习题 有理数的乘除法

;
3两数相除,同号得
,异号得
,并把绝对值
于 0 的数都得
.
,0 除以任何一个不等
2.- 5 ,2.6,|- 1 |,-(-4),-2.5 的倒数分别为
.
13
7
3.化简下列分数:
(1) 4 ; 12
(2) 36 ; 18
(3)- 24 . 4
拓展提高
1.填空题: (1)-6 的倒数是
,-6 的倒数的倒数是
_,-6 的相反数是
的相反数是
;
2 当两数 3 当两数 4当两数 2.计算:
时,它们的和为 0;
时,它们的积为 0; 时,它们的积为 1.
(1)(+36)÷(-4);
(2)(-2 1 )÷(-1 1 );
3
6
(3)(-90)÷15;
(4)-1÷(+ 3 ). 5
3. 计算下列各题:
(1)(-1 700 000)÷(-16)÷(-25)÷25;
(2)(+125)÷(-3)+(-62)÷3+(+187)÷3.
,-6 的相反数
4. 用简便方法计算:
19
(1)(-81)÷÷{(-1 1 )×(-1 5 )-(-3.9)÷[1- 3 +(-0.7)]}.
11
6
4
5.化简下列分数:
2
(1) ;
6
(2)
3 9 ;
(2)(-1 1 )×3(- 2 )×(-1 1 ).
8
3
3
3.下列结论正确的是( )
A.两数之积为正,这两数同为正; B.两数之
积为负,这两数为异号 C.几个数相乘,积的
人教版初中七年级(上册)数学《有理数的除法》ppt课件

⑴(-27)÷(-9) ⑵(-3.2)÷0.08
怎样计算8÷(-4)呢? 8÷(-4)= 于是 8÷(-4)= 换其他数的除法 进行类似讨论,是否 因为( -2)×(-4)=8 仍有除以a(a ≠0)可以 转化为乘 所以8÷(-4).=-2
1 a
-2
1 8×( )= 4
-2
1 8×( ) 4
1.4.2 有理数的除法
说一说有理数的乘法法则. 1.填左边的空,再根据左边的式子填右边的空。
40 5×8=( ) 6×(-3)=( ) -18 (-4)×(-9)=( ) (-7)×4=( )28 - 0×(-7)=( ) 0
36
8 40÷5=( ) (-18)÷(-3)=( ) 36÷(-9)=( )-4 (-28)÷4=( ) -7 0÷(-7)=( ) 0
做一做, 你一定行!
1、抢答:
(1)(-18)÷6; (4) 0÷(-8). -3 -63)÷(-7); (3)1÷(-9); (2)( 9 1 0 9 a 2、a、b为有理数,若 =0,则( ) D
b
A、b=0且a≠0; C、a=0且b=0;
B、b=0; D、a=0且b≠0 =
3、若a、b互为相反数且a≠b,则
有理数的减法法则 有理数的除法法则
减去一个数,等于加这个 数的相反数.
减数变为相反数作加数
除以一个不等于0的数,等于 乘这个数的倒数.
除数变为倒数作因数
a - b = a + (-b)
减号变加号
a ÷b = a
·
1 (b≠0) b
除号变乘号
例题教学 示范解题
例5 计算:
12 ) ÷( ) 25
有理数的除法法则
七年级数学上册1.4有理数的乘除法1.4.2有理数的除法2

第九页,共十八页。
知识 梳理 (zhī shi)
【剖析】本题是一道加减乘除混合运算,应先算乘除,后算加减.在混合运算中, 应注意运算符号与性质符号的转化(zhuǎnhuà).乘除运算先确定符号,再确定 绝对值.错解中后面的乘法运算中把性质符号丢掉了.
二、运算顺序(shùnxù)错误
例2:计算
错解:原式= 36÷(-2)=-18
有理数加减( jiā jiǎn)混合运算步骤:
1.将减法统一成加法 2.写成省略加号的和的形式 3.运用结合律和运算律进行计算
有理数乘除混合运算步骤:
1.确定结果正负号 2.将所有带分数转换为假分数 3.将除法转换为乘法运算
4.进行乘法运算
2021/12/10
第二页,共十八页。
教学 新知 (jiāo xué)
2021/12/10
第六页,共十八页。
知识 梳理 (zhī shi)
知识点2:用计算器进行( jìnxíng)有理数的运算
(1) 计算器要平稳放置(fàngzhì),以免按键时发生晃动或滑动 (2) 计算开始时,要先按开启键ON;停止使用时,要注意按关闭键OFF (3) 每次运算时,要按一下清零键ON (4) 注意负数的输入方式
D.无法确定
2021/12/10
B.0-2=-2
第十四页,共十八页。
课后作业(zuòyè)
4.下列(xiàliè)运算有错误的是( )
C.8-(-2)=8+2
5.计算( jì suàn):
=-9
D.2-7=(+2)+(-7)
2021/12/10
=179
第十五页,共十八页。
=17
知识(zhī shi)拓展
人教版七年级数学上册课件《有理数的除法》

(8) - 72x(1/9)=__- _8___
除法是已知两个因数的积与其中一个因数,求另一个因数的
运__算__。__除___法__是___乘__法__的___逆__运___算__。_______________________________________
(1)8÷ (-4)=-2 (2)-36÷ 6=-6 (3) -12/25 ÷ (-3/5)=4/5 (4)-72 ÷9=-8
=
0
2)0除以任何非0的数都是___0__。
有理数的除法法则
法则1:除以一个不等于0的数,等于 乘这个数的倒数. 法则2:两数相除,同号得正,异号 得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.
顺口溜 跟我学
乘除运算莫着急; 审清题目是第一. 除法变成乘法后; 积的符号先确立. 计算结果别慌张; 考个一百没问题.
1.4.2有理数的除法
复习提问:
1.有理数的乘法法则是什么? 2.什么样的两个数互为倒数?
前提诊测
有理数的乘法法则
两数相乘,同号得正,异号得负,并 把绝对值相乘。
任何数同0相乘,都得0。
注意
运算过程中应先判断积的符号。
几个不等于0的数相乘,积的符号由负 因数的个数决定。当负因数有奇数个时, 积为负;当负因数有偶数个时,积为正。
(2)原式=-30 ÷(-45)=2/3 (3)原式=0 ÷(-1/75)=0
例4.计算:
(1) 1÷ 6
(3) 1÷1/3
(2) 1÷ (- 6)
(4) 1÷(-1/3)
1除以一个不为零的数的商就是这个数的倒数.
注意倒数与相反数之间的区别与联系:
(1)符号上的区别:互为相反数(除0外)的两个数的符号 相反,而互为倒数的两个数的符号相同;
七年级数学上册代数式和有理数的四则运算(150道题)

初一数学有理数计算题分类及混合运算练习题(100题)有理数加法1、(-9)+(-13)2、(-12)+273、(-28)+(-34) =-22 =15 =-62原则一:所有正数求和,所有负数求和,最后计算两个数的差,取绝对值较大的数的符号。
7、|52+(-31)| =1518、(-52)+|―31| =-151 9、 38+(-22)+(+62)+(-78)=010、(-8)+(-10)+2+(-1) 11、(-32)+0+(+41)+(-61)+(-21) =-17 =-121316、 72+65+(-105)+(-28) 17、(-23)+|-63|+|-37|+(-77) =4 =018、19+(-195)+47 18、(+18)+(-32)+(-16)+(+26) =-129 =-420、(-0.8)+(-1.2)+(-0.6)+(-2.4) 21、(-8)+(-321)+2+(-21)+12=-5 =2 有理数减法7-9 ―7―9 0-(-9) (-25)-(-13) =-2 =-16 =9 =-12(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5) |-32|―(-12)―72―(-5) =-8 =39.5 =-23(+103)―(-74)―(-52)―710 (-516)―3―(-3.2)―7 (+71)―(-72)―73=―7011 =-10 =00.5+(-41)-(-2.75)+21 (+4.3)-(-4)+(-2.3)-(+4)=3.5 =2原则三:结果的形式要与题目中数的形式保持一致。
如确定是分数还是小数,分数必须是带分数或真分数,不得是假分数,过程中无所谓。
有理数乘法 (-9)×32(-132)×(-0.26) (-2)×31×(-0.5)=-6 =0.04 =3131×(-5)+31×(-13) (-4)×(-10)×0.5×(-3) (-83)×34×(-1.8)=-6 =-60 =0.9(-0.25)×(-74)×4×(-7) (-73)×(-54)×(-127)=-4 =-51(-0.5)-(-341)+6.75-521 (+6.1)―(-4.3)―(-2.1)―5.1=4 =7.4 (-32)―(-143)―(-132)―(+1.75) (-332)―(-243)―(-132)―(-1.75)=1 =2.5-843-597+461-392 -443+61+(-32)―25 =-13127 =-743(-8)×4×(-21)×(-0.75) 4×(-96)×(-0.25)×481=-12 =2(74-181+143)×56 (65―43―97)×36=32—63+12 =30—27—28 =19 =-2525×43-(-25)×21+25×41 (-36)×(94+65-127) =25×(43+21+41) =-16-30+21=25×121 =-25 =3721原则四:巧妙运用运算律(187+43-65+97)×7231×(2143-72)×(-58)×(-165)=28+54-60+56 =31×(1427)×(-58)×(-165)=78 =289有理数除法18÷(-3) (-24)÷6 (-57)÷(-3) (-53)÷52(-42)÷(-6)= -6 =-4 =19 =-23 =7 (+215)÷(-73) (-139)÷9 0.25÷(-81) -36÷(-131)÷(-32)=-95 = -131=-2 =-4021-3÷(31-41) (-2476)÷(-6) 2÷(5-18)×181=-36 =471=-1171131÷(-3)×(-31) -87×(-143)÷(-83) (43-87)÷(-65) =274 =-21 =203(-1)÷(-4)÷74 3÷(-76)×(-97) 0÷[(-341)×(-7)] =167 =1849 =0(29-83+43)÷(-43) -3.5 ×(61-0.5)×73÷21 -172÷(-165)×183×(-7) =-6+21-1 =-27×(-31)×73×2 =-79×116×811×7 =-621 =1 =-427=-643原则五:结果的形式要与题目中数的形式保持一致。
七年级上册数学同步练习题库:有理数的乘除法(填空题:较难)

有理数的乘除法(填空题:较难)1、假设一家旅馆一共有30个房间,分别编以1-30号三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻数字必须使服务员很容易辨认是哪一个房间的钥匙,而使外人不容易猜到,现在有一种编码方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数,那么刻的数是36的钥匙所对应的原来房间应该是___________号.2、按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.3、对于有理数a、b,定义运算“”如下:,试比较大小______ (填“>”“<”或“=”).4、计算:_______.5、①若两具数互为相反数,则这两个数一定是一个正数,一个负数;②一个数的绝对值一定不小于这个数;③如果两个数互为相反数,则它们的商为-1;④一个正数一定大于它的倒数;上述说法正确的是______,6、如图所示的牌子上有两个整数“1 和﹣1”,请你运用有关数学知识,用一句话对这两个整数进行描述(要求不能出现与牌子上相同的数字),请写出两种方案:①______;②______.7、观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:①1×=1-②2×=2-③3×=3-……(1)在下面给出的四个正方形中画出第四个图形,并在右边写出与之对应的等式;_______________ (2)猜想并写出与第几个图形相对应的等式:______________________________。
8、下面是一种利用图形计算正整数乘法的方法,请根据图1~图4四个算图所示的规律,可知图5所表示的算式为.9、如果a•b<0,那么= .10、按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.11、(2011•菏泽)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是.12、(2015秋•高阳县期末)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2016”在射线上.13、(2013•麻城市校级模拟)设a,b,c是从1到9的互不相同的整数,则的最大值为.14、如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为(n≥3).则的值是,当的结果是时,n的值.15、(本题12分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造正方形:再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、…相应长方形的周长如下表所示:仔细观察图形,上表中的x= ,y= .若按此规律继续作长方形,则序号为⑧的长方形周长是.16、观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n都连续出现n次,那么这一组数的第119个数是.17、将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,则第10个“龟图”中的“○”的个数为.18、如图,按此规律,第行最后一个数是2017.19、两个非零有理数的和为零,则这两个数的商是_________.20、已知f(x)=1+,其中f(a)表示当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)·f(2)·f(3)…·f(100)= .21、取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1。
2024-2025人教版七年级数学上册《2.2有理数的乘法与除法》自主学习计算能力达标测评(附答案)
2024-2025学年人教版七年级数学上册《2.2有理数的乘法与除法》自主学习计算能力达标测评(附答案)(共20小题,每小题6分,满分120分)1.计算:(1)(−12)×−(2)83×(−0.25).2.计算:(1)−72÷6;(2)0÷−3(3)−−(4)÷−2.25.3.计算:−50×3−−2.5÷0.1.4.计算−35÷+7−−3×−5.乘除计算:1.25÷(−0.5)÷(−212)×16.计算:−12÷710×−47.计算−×0.125××(−8)8.计算:(1)7354;37+13−÷−9.简便计算−47.65×2611+−37.15×−+10.5×10.用简便方法计算:114×−−1314÷16+3×116.11.下面是涵涵同学的一道题的解题过程:2÷−13×−3=2÷−3+2÷×−3,①=2×−3×−3+2×4×−3,②=18-24,③=6,④(1)涵涵同学开始出现错误的步骤是______;原因是______.(2)请给出正确的解题过程.12.用简便方法计算:(1)5×−9−7×+−12÷−(2)292324×−2413.计算:(1)(−47)÷(−314)÷(−23);(2)(−0.65)÷(−57)÷(−213)÷(+310).14.提升计算:(1)−0.75×−÷−4(2)−16+32−×−48.15.简便计算(1)5.8×25%+0.25×4.2(2)18×25%+14×40+42×0.25(3)40×1−10%×1+10%16.计算:(1)−3÷×0.75÷−7×−6;(2)−×−0.1125×−10;(3)−72×−×−÷−17.巧算.(1)2020÷2020202014+15+×15+16−14+15+16+×1518.计算:(1)−3+40+−32+−8÷−+2−−2.75;(2)−48×0.125+48×1−484−25+−35(3)−×16×−÷−1÷−5×÷23×−36−−1×13÷−13.19.下面是两位同学计算(−112)÷(13−34)的解法.小华的解法:(−112)÷(13−34)=(−112)÷13−(−112)÷34=−14+19=−536.小明的解法:原式的倒数为(13−34)÷(−112)=(13−34)×(−12)=−4+9=5,所以(−112)÷(13−34)=15.(1)请你判断:_______同学的解答正确.(2)请你运用上述两位同学中的正确解法计算:(−78)÷(134−78+712).20.12,16,112,120,130,…是一组有规律的数,我们如何求这些连续数的和呢?【阅读理解】1111111114×5+15×6=1−2+23++4−5+=1−12+12−13+13−14+14−15+15−16=1−16=56根据上面得到的启发完成下面的计算:(1)根据规律,1156是第______个数;(2)请直接写出计算的结果:11×2+12×3+13×4+⋅⋅⋅+12023×2024=______;(3)探究并计算:12×4+14×6+16×8+⋅⋅⋅+12022×2024参考答案1.解:(1)−12×−320(2)83×(−0.25)=83×−=−=−232.解:(1)(−72)÷6=−(72÷6)=−12;(2)0÷−3(3)−−=+×49;(4)÷(−2.25)=−÷=−×−=32.3.解:−50×3−−2.5÷0.1=−150+2.5×10=−150+25=−1254.解:−35÷+7−−3×−=−5−2=−75.解:1.25÷−0.5÷×1=54×−2×−×1=16.解:原式=−75×107×−=9.7.解:−70.125××(−8)=−7××0.125×−8=1×−1=−18.解:(1)75××37÷54=75×−×37×45=−2;(237+13−÷−=−35+18−14+27=−4.9.解:−47.65×2611+−37.15×−+10.5×−7=−47.65+37.15×2811×−=−10.5×2811=−10.5×11=−10.5×11011=−105.10.解:原式=114×−−1314×116+3×116=116×−114−1314+3=116×2=1811.(1)解:涵涵同学开始出现错误的步骤是①,错误的原因是除法没有分配律;故答案为①,除法没有分配律;(2)解:2÷−1+4×−3=2÷41212×−3=2÷×−3=2×12×3=72.12.解:(1)原式=5×−+7×−−12×−=−×5+7−12=0;(2)原式=30×−2424=−720+1=−719.13.解:(1)(−47)÷(−314)÷(−23) =−47×143×32=−4;(2)(−0.65)÷(−57)÷(−213)÷(+310) =−65100×75×37×103=−1.3.14.(1)解:−0.75×−÷−=−×−×−=−12.(2)解:−16+32×−48=−16×−48+32×−48−512×−48 =8−72+20=−44.15.(1)解:5.8×25%+0.25×4.2 =5.8×0.25+0.25×4.2=5.8+4.2×0.25=10×0.25=2.5;(2)解:18×25%+14×40+42×0.25 =18×0.25+0.25×40+42×0.25 =18+40+42×0.25=100×0.25=25;(3)解:40×1−10%×1+10%=40×0.9×1+0.1=36×1+0.1=36×1+36×0.1=36+3.6=39.6.16.(1)解:−3÷−1×0.75÷−×−6=3×47×34×73×6=18;(2)解:−×−0.1÷125×−10=−110×25×10=−5;(3)解:−72×−×÷−=723××=48×98=54.17.解:(1)2020÷202020202021=2020÷2020×2021+20202021=2020÷2020×20222021=2020×20212020×2022=20212022(214+11511+15+16+1=14+15+×15+−+14+15+×15+=14+15+415+14+15×17−14+15×15+−1715+=14+15+6×17−17+15=314+15+16−14−15−×17=13×17=12118.(1)解:−3+40+−32+−8÷−−−2.75=−3÷32−94=−3÷1=−3÷−=5;(2)解:−48×0.125+48×18+−48×÷16+−25+24+−35=−48+48−48×10×18÷−20=−480×18÷−20=3;(3)解:原式=−÷46−×−36−−13÷−13=2125÷36−1=2125×135=3125.19.(1)解:∵除法没有分配律,∴小华的解法是错误的,小明的解法是正确的;(2)∵(134−78+712)78)=(134−78+712)×−=−74×87+78×87−712×87.=−2+1−23.=−53.∴(−78)÷(134−78+712)=−35.20.(1)解:根据材料提示得,1156=112×13,∴是第12个数,故答案为:12.(2)解:11×2+12×3+13×4+⋅⋅⋅+12023×2024=1−12+12−13+13−14+⋅⋅⋅+12023−12024=1−12024=20232024,故答案为:20232024.(3)解:114×611=12×4+12×+12×6812×−=12×141416+16−18+⋅⋅⋅+12022−=12×=10114048.。
2023-2024学年七年级上数学:有理数的乘除法(精讲教师版)
自学笔记: 1.两数相乘,同号得正,异号得负,并把绝对值相乘. 2.任何数同 0 相乘,都得 0.
第 5页(共 12页)
命题方向: 利用有理数的乘法计算.
名师点拨: 先根据有理数乘法的符号法则判断符号,再把绝对值相乘即可得到结 果.
【精讲 4】计算 2 (3) 的结果是 ( )
A.6
B. 6
8
【精讲 3】 0.2 的倒数是 ( )
A. 1
5
B. 1
5
C.5
D. 5
【分析】本题主要考查倒数的概念,倒数的定义:若两个数的乘积是 1,我们就
称这两个数互为倒数.
【答案】D
【解析】 0.2 1 ,0.2 的倒数是 5 .故选:D.
5
【练习 1】 1 的倒数是 ( )
9
A. 9
B.9
C. 1
2023-2024 学年七年级上数学:第一章
1.4 有理数的乘除法
有理数
1.有理数的乘法 (1)有理数的乘法法则:两个数相乘,同号得正,异号得负,并把绝对 值相乘;任何数与 0 相乘,都得 0; (2)倒数的定义:乘积为 1 的两个数互为倒数. 注意: ①0 没有倒数; ②求假分数或真分数的倒数,只要把这个分数的分子、分母颠倒位置即 可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母
a 4.真分数的倒数是假分数,真分数的倒数大于 1,也大于它本身;
第 3页(共 12页)
假分数的倒数小于或等于 1;带分数的倒数小于 1.
【精讲 1】 3 的倒数为 ( )
A. 3
B. 1
3
C.3
D. 1
3
【分析】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:
人教版七年级上册数学有理数的乘除法 同步练习题
2022-2023学年人教版七年级数学上册《1.4有理数的乘除法》同步练习题(附答案)一.选择题1.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大2.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个3.下列说法:①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数;其中正确的个数是()A.2个B.3个C.4个D.5个4.有理数a,b在数轴上表示如图所示,则下列各式中正确的是()A.ab>0B.a+b<0C.b<a D.|b|>|a|5.已知|x|=6,y2=9,且xy<0,则x+y的值为()A.3或﹣3B.9或3C.15或3D.9或﹣9 6.若,则下列结论正确的是()A.a<0,b<0B.a>0,b>0C.ab>0D.ab≤07.已知三个有理数m,n,p满足m+n=0,n<m,mnp<0,则mn+np一定是()A.负数B.零C.正数D.非负数8.在下面五个说法中正确的有()①互为相反数的两个数的绝对值相等②没有最大的整数,最大的负整数是﹣1,最小的正数是1 ③一个数的相反数等于它本身,这个数是0④任何有理数的绝对值都是正数⑤几个有理数相乘,如果负因数有奇数个,则积为负数.A.1个B.2个C.3个D.4个9.若ab≠0,则+的值不可能是()A.2B.0C.﹣2D.110.两个非零有理数的和为零,则它们的商是()A.0B.﹣1C.+1D.不能确定11.已知a,b为有理数,则下列说法正确的个数为()①若a+b>0,,则a>0,b>0.②若a+b>0,,则a>0,b<0且|a|>|b|.③若a+b<0,,则a<0,b<0.④若a+b<0,,则a>0,b<0且|b|>|a|.A.1B.2C.3D.412.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A.180元B.202.5元C.180元或202.5元D.180元或200元二.填空题13.绝对值小于π的所有整数的积是.14.如果x、y都是不为0的有理数,则代数式的值为.15.绝对值小于5的所有非负整数的积是.16.给出下列判断:①若a,b互为相反数,则a+b=0②若a,b互为倒数,则ab=1③若|a|>|b|,则a>b④若|a|=|b|,则a=b⑤若|a|=﹣a,则a<0其中正确结论的个数为个.17.小亮有6张卡片,上面分别写有﹣5,﹣3,﹣1,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为.18.一个数与﹣4的乘积等于,则这个数是.19.已知|x|=4,|y|=6,且xy<0,x+y>0,则x﹣y=.20.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是.21.按如图程序计算,如果输入的数是﹣2,那么输出的数是.22.已知|x|=3,|y|=2,且|xy|=﹣xy,则x+y等于.三.解答题23.简便方法计算:①(﹣﹣)×(﹣27);②﹣6×+4×﹣5×.24.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.25.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.26.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.27.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).28.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机).(1)当小明输入4,7这两个数时,则两次输出的结果依次为,;(2)你认为当输入数等于时(写出一个即可),其输出结果为0;(3)你认为这个“数值转换机”不可能输出数;(4)有一次,小明操作的时候,输出的结果是2,聪明的你判断一下,小明输入的正整数是(用含自然数n的代数式表示).29.建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负.2006年6月29日他办理了6件业务:﹣780元、﹣650元、+1250元、﹣310元、﹣420元、+240元.(1)若他早上领取备用金5000元,那么下班时应交回银行多少元?(2)若每办一件业务,银行发给业务量的0.1%作为奖励,那么这天小张应得奖金多少元?30.小莉同学有7张写着不同数字的卡片,他想从中取出若干张卡片,将卡片上的数字进行有理数的运算.(1)若取出2张卡片,应该抽取哪2张使得数字之积最大,积最大是多少呢?(2)若取出3张卡片,应该抽取哪3张使得数字之积最小,积最小是多少呢?31.某同学把7×(□﹣3)错抄为7×□﹣3,抄错后算得答案为y,若正确答案为x,则x ﹣y=.32.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案一.选择题1.解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.2.解:①两负数相乘,符号变为正号;此选项错误;②异号两数相乘,积取负号;此选项正确;③互为相反数的两数相乘,积不一定为负可能为0,故此选项错误;④两个有理数的积绝对值,等于这两个有理数的绝对值的积,此选项正确.故正确的有2个.故选:B.3.解:①整数和分数统称为有理数是正确的;②绝对值是它本身的数有正数和0,原来的说法是错误的;③两数之和可能小于每个加数,原来的说法是错误的;④如果两个数积为0,那么至少有一个因数为0是正确的;⑤没有最小的有理数,原来的说法是错误的;⑥数轴上表示互为相反数的点位于原点的两侧(0除外),原来的说法是错误的;⑦几个有理数(非0)相乘,如果负因数的个数是奇数,那么积为负数,原来的说法是错误的.故选:A.4.解:由数轴上的位置得:a<0<b,且|a|>|b|,∴ab<0,a+b<0,故选:B.5.解:∵|x|=6,y2=9,∴x=±6,y=±3,又∵xy<0,∴x=6,y=﹣3或x=﹣6,y=3,当x=6,y=﹣3时,x+y=3,当x=﹣6,y=3时,x+y=﹣3,故选:A.6.解:∵,∴,∴ab≤0,故选:D.7.解:∵m+n=0,∴m,n一定互为相反数;又∵n<m,mnp<0,∴n<0,p>0,m>0,∴mn<0,np<0,∴mn+np一定是负数.故选:A.8.解:互为相反数的两个数的绝对值相等,故①正确,没有最大的整数,最大的负整数是﹣1,最小的正数也没有,故②错误,一个数的相反数等于它本身,这个数是0,故③正确,任何有理数的绝对值都是非负数,故④错误,几个不为零的有理数相乘,如果负因数有奇数个,则积为负数,故⑤错误,故选:B.9.解:①当a、b同号时,原式=1+1=2;或原式=﹣1﹣1=﹣2;②当a、b异号时,原式=﹣1+1=0.则+的值不可能的是1.故选:D.10.解:∵两个非零有理数的和为零,∴这两个数是一对相反数,∴它们符号不同,绝对值相等,∴它们的商是﹣1.故选:B.11.解:①若a+b>0,,则a>0,b>0,故①结论正确;②若a+b>0,,则a>0,b<0且|a|>|b|或a<0,b>0且|a|<|b|,故②结论错误;③若a+b<0,,则a<0,b<0,故③结论正确;④a+b<0,,则a>0,b<0且|b|>|a|或a<0,b>0且|b|<|a|,故斯结论错误.故正确的有2个.故选:B.12.解:∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选:C.二.填空题13.解:绝对值小于π的所有整数的积是(﹣3)×(﹣2)×(﹣1)×0×1×2×3=0.故答案为:0.14.解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的值是1或﹣3.故答案为:1或﹣3.15.解:绝对值小于5的所有非负整数为:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,积为0.故答案为:0.16.解:①若a,b互为相反数,则a+b=0,是正确的;②若a,b互为倒数,则ab=1,是正确的;③若|a|>|b|,当a=﹣4,b=1也成立,所以a不一定大于b,是错误的;④若|a|=|b|,则a=b或a=﹣b,是错误的,⑤若|a|=﹣a,则a≤0,是错误的,所以有2个正确的结论;故答案为:2.17.解:从6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为﹣5×4×6=﹣120.故答案为:﹣120.18.解:÷(﹣4)=﹣.故这个数是﹣.故答案为:﹣.19.解:∵|x|=4,|y|=6,∴x=±4,y=±6,又∵xy<0,x+y>0,∴x=﹣4,y=6,∴x﹣y=﹣4﹣6=﹣10,故答案为:﹣10.20.解:倒数是它本身的数是±1;相反数是它本身的数是0;绝对值是它本身的数是非负数,故答案为:1或﹣1,0,非负数.21.解:﹣2×(﹣3)=6,6×(﹣3)=﹣18,﹣18×(﹣3)=54,54×(﹣3)=﹣162,故答案为:﹣162.22.解:∵|x|=3,|y|=2,且|xy|=﹣xy,∴x<0或y<0,当x<0时,x=﹣3,y=2,x+y=﹣1,当y<0时,x=3,y=﹣2,x+y=1.故答案为:1或﹣1.三.解答题23.解:①原式==﹣6+9+2=5.②原式=×(﹣6+4﹣5)=(﹣7)=﹣3.24.解:根据题意得:[﹣++(﹣)2×(﹣6)]÷(﹣)=[﹣++×(﹣6)]×(﹣42)=﹣21+14﹣30+112=75,则原式=.25.解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.26.解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.27.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.28.解:(1)若输入的数字为4时,4>2,得到4+(﹣5)=﹣1,﹣1<2,得到相反数为1,倒数为1,输出结果为1;若输入数字为7时,7>2,得到7+(﹣5)=2,得到相反数为﹣2,绝对值为2,输出结果为2;(2)根据题意得:输入数字为0(5、10、15…5的倍数均可),结果为0;(3)这个“数值转换机”不可能输出负数;(4)归纳总结得:小明输入的正整数是5n+2.故答案为:1,2;0;负;5n+2.29.解:(1)5000﹣780﹣650+1250﹣310﹣420+240=4330(元);他下班时应交回银行4330元;(2)(780+650+1250+310+420+240)×0.1%=3.65(元),这天他应得奖金为3.65元.30.解:(1)取出﹣6和﹣4,积最大为(﹣6)×(﹣4)=24;(2)取出﹣6,3,5,积最小为(﹣6)×3×5=﹣90.31.解:根据题意得,7×(□﹣3)=x①,7×□﹣3=y②,①﹣②得,x﹣y=7×(□﹣3)﹣7×□+3=7×□﹣21﹣7×□+3=﹣18.故答案为:﹣18.32.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。
七年级(上)第二章 有理数 第12课时 有理数的乘法与除法(1)(附答案)
第12课时有理数的乘法与除法(1)预学目标1.通过数据的变化感受负数在乘法运算中的意义.2.通过课本中的“想一想”,尝试归纳有理数乘法运算的方法.3.熟记有理数乘法法则,初步了解法则的应用.知识梳理1.有理数乘法法则(1)两数相乘,同号得_______,异号得_______,并把_______相乘.说明:①类似于有理数的加法运算,首先应确定_______.②法则中确定符号的方法是针对“两数相乘”的结果而言的.③“同号”是指两个因数同为_______或_______.④“异号”指两个因数一个是_______,另一个是_______.(2)任何数与0相乘都等于_______.2.有理数乘法法则的推广(1)几个不为0的有理数相乘,积的符号可以由_______的个数决定,当它的个数为奇数时,积的符号为________,当它的个数为偶数时,积的符号为_______.(2)几个数相乘,有一个因数为0,积为_______.例题精讲例(1)计算:(-10)×13×0.1×6.(2)你能直接写出下列各式的结果吗?(-10)×13×0.1×6=_______;(-10)×(-13)×(-0.1)×6=_______;(-10)×(-13)×(-0.1)×(-6)=_______.(3)试一试:-1×1×1×1×1=_______;-1×(-1)×1×1×1=_______;-1×(-1)×(-1)×1×1=_______;-1×(-1)×(-1)×(-1)×1=________;-1×(-1)×(-1)×(-1)×(一1)=________.提示:几个因数的乘积是有理数,在确定乘积时应考虑两个方面:(1)符号;(2)绝对值.解答:(1)原式=-10×13×0.1×6=-2.(2) -2;-2;2.(3) -1;1;-1;1;-1.点评:一般地,几个不为0的有理数相乘,首先确定积的符号,可以由负因数的个数决定,当它的个数为奇数时,积的符号为负,当它的个数为偶数时,积的符号为正,然后把所有因数的绝对值相乘.热身练习1.计算2×(-12)的结果是( )A .-1B .1C .-2D .22.五个有理数相乘,积的符号为负,则负因数的个数是 ( )A .1个B .3个C .5个D .1个或3个或5个3.如果ab <0,那么下列判断正确的是 ( )A .a <0,b <0B .a >0,b >0C .a ≥0,6≤0D .a <0,b >0或a >0,b <04.一个有理数和它的相反数的积 ( )A .符号必为正B .符号必为负C .一定不大于0D .一定不小于05.计算:(1)(-6)×(+8); (2)(-0. 36)×29⎛⎫- ⎪⎝⎭; (3)212234⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭;(4)228805⎛⎫-⨯ ⎪⎝⎭; (5)1328214437⎛⎫⎛⎫⎛⎫⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(6)(-5)×(-8)×0×(-10)×(-15); (7)()11130.12233343⎛⎫⎛⎫-⨯-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭;(8)1211252343⎛⎫⎛⎫+⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭; (9)(-3)×(-4)×(-5)+(-5)×(-7);(10)(-0.1)×(-1)×(-100)-0.01×(+1000) .参考答案1.A 2.D 3.D 4.C 5.(1) -48 (2) 0.08 (3)6 (4)0 (5) -3 (6)0 (7)-30 (8)-4 (9)-25 (10)-20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有理数的除法》典型例题
例1 计算:(1))3(12; (2))611(312
分析:(1)题应选用除法法则(二);
(2)题应先把带分数化成假分数,然后运用除法法则(一)进行计算.
解:(1))3(12
312
(除法法则(二))
4
(2))611(312
)67(37 (将带分数化成假分数)
)76(37
(除法法则(一))
2
(乘法法则)
说明:要注意负数的倒数仍是负数.
例2 计算:
(1)(-25.6)÷(-0.064); (2)1411713.
分析:根据两个数相除确定符号的方法,我们先确定商的符号,再把绝对值相除.
解:(1)(-25.6)÷(-0.064)
=+(25.6÷0.064)
=400;
(2)1411713
)1411713(
)1114722(
4
说明:(1)小学学过的一个数除以一个分数的方法在这里仍然适用,即除以一个数等于
乘以这个数的倒数;
(2)在小学除法可以转化为乘法进行,这里依然可以进行.这里和小学不同就在
于确定商的符号;
(3)在除法中零是不能做除数的.
例3 计算:
(1))511()312(313; (2))15(94412)81(.
分析:(1)是连除法运算,我们可以按从左到右的顺序依次进行计算,也可以把除法
变为乘法来做.(2)是乘除混合运算,但做法和(1)类似.
解:
(1)方法一
)511()312(313
)511()312313(
)511()73310(
)56(710
657
10
21
4
1
方法二:
)511()312(313
)56()37(310
)65()73(310
214165733
10
(2))15(94412)81(
)151(944981
)151(949481
.1511
说明:(1)在连除和乘除混合运算中,如果含有分数一般将其变为乘法运算比较方便;
(2)在除法和乘除混合运算中,不满足结合律和交换律;(3)连除运算和乘除混合运算也
可以像几个有理数相乘一样先确定符号,确定符号的方法和几个数相乘确定符号的方法基本
相同.