optimal type-2 fuzzy controller for HVAC systems

合集下载

基于粒子群算法的三电平牵引逆变器优化控制策略的研究

基于粒子群算法的三电平牵引逆变器优化控制策略的研究

基于粒子群算法的三电平牵引逆变器优化控制策略的研究Research on Optimal Control Strategy of Three-level Traction Inverter Based on PSO辽宁铁道职业技术学院侯程(Hou Cheng)摘要:针对三电平牵引逆变器的性能优化问题,本文主要寻求一种新的调制策略和方法,来优化其输岀波形,平衡中点电位,抑制谐波含量,提高输出波形质量,减小其总谐波畸变率,提高逆变器的效率。

CRH2型动车组采用的是二极管箝位式三电平牵引逆变器,其余车型均采用的是两电平逆变器。

因此,从牵引变流器谐波特性入手,以CRH2型动车组的逆变器为研究对象,通过对其输出波形进行傅里叶变换,推导其输出谐波的模型,采用粒子群智能优化算法对模型进行求解,搭建了三电平逆变器牵引系统的仿真模型,利用求得的结果对牵引电机进行控制。

关键词:粒子群算法;三电平逆变器;控制策略Abstract:Aiming at the perform a n ee optimizati o n problem of the three-level traction inverter,this article mainly seeks a new modulation strategy and method to optimize its output waveform,balanee the midpoint potential, suppress the harmonic content,improve the quality of the output waveform,and reduce the total Harmonic distortion rate improves the efficiency of the inverter.The CRH2EMU uses a diode-clamped three-level traction inverter, and the other models use two-level inverters.Therefore,starting from the harmonic characteristics of the traction converter,taking the inverter of the CRH2EMU as the research object,the output waveform is Fourier transformed to derive the output harmonic model,and the particle swarm intelligent optimization algorithm is adopted.The model is solved,a simulation model of the three-level inverter traction system is built,and the obtained results are used to control the traction motor.Key words:Particle swarm optimization;Three-level inverter;Control strategy【中图分类号】TM464【文献标识码】B【文章编号】1561-0330(2021)04-0072-041引言我国早期的电力机车釆用的传动系统为交-直传动型,与交流型不同的是其调压是通过整流器电路来完成的,后来运行之后发现其有很大的缺点。

一种等价于PI的二型模糊控制器设计算法

一种等价于PI的二型模糊控制器设计算法

2021年3月第28卷第3期控制工程Control Engineering of ChinaMar. 2021Vol.28, No.3文章编号:1671-7848(2021)03-0478-10D O I: 10.14107/ki.kzgc.20180641一种等价于P I的二型模糊控制器设计算法施建中,梁绍华(南京工程学院能源与动力工程学院,江苏南京211167)摘要:区间二型模糊集合将次隶属度做了简化,基于KM降阶算法的区间二型糢糊控制器实现起来相对简单。

虽然区间二型糢糊控制器在一定程度上优于传统的一型模糊控制器或者PI控制器等,但区间二型模糊控制器并没有充分利用二型模糊集合的次隶属度信息。

为解决这些问题,研究了普通二型模糊控制器的一般结构,提出了一种等价于P I的二型模糊控制器。

该控制器基于普通二型糢糊集合的a平面表现形式,在次隶属度函数的顶点处,将区间二型模糊集合简化为一型模糊集合。

通过《阶有自平衡对象,无自平衡对象以及2个非线性对象的仿真结果表明,提出的二型模糊控制器能够得到较好的控制效果。

关键词:P I控制器;二型模糊控制器;二型模糊逻辑系统;a平面;降阶中图分类号:TP273 文献标识码:AA Design Algorithm for Type 2 Fuzzy Controller Equivalent to PISHI Jian-zhong,LIANG Shao-hua(School of E n ergy a n d P o w e r Engineering, Nanjing Institute of Technology, Nanjing 211167, China)Abstract: Interval type2 fuzzy sets simplify the secondary membership function,thus the establishment of the interval type2 fuzzy controller based on KM type reduction algorithm is relatively easy.Although the interval type2 fuzzy controller is better than the tradition type 1fuzzy controller or PI controller partly,the secondary membership function of type 2 fuzzy sets is not fully utilized in the interval type 2 fuzzy controller.The structure of the general type 2 fuzzy controller is discussed and a type 2 fuzzy controller equivalent to PI controller is proposed in this article.The controller is based on a plane presentation for general type 2 fuzzy sets,and at the vertex of the secondary membership function,the interval type2 fuzzy sets is simplified to type 1fuzzy sets.The simulation results of a«-order self-balanced plant,a non-self-balance plant and 2 nonlinear plants show that the proposed type2 fuzzy controller can achieve better control effects.Key words: PI controller;Type2 fuzzy controller;Type2 fuzzy logic system;a plane;Type reductioni引言二型模糊集合理论最早由Zadeh提出[1】,二型模 糊集合将传统一型模糊集合的隶属度进行了模糊 化,由首隶属度函数和次隶属度函数构成。

电动客车电动助力转向回正控制策略

电动客车电动助力转向回正控制策略

电动客车电动助力转向回正控制策略赵万忠;施国标;林逸;孙培坤;刘顺【摘要】以增强电动客车电动助力转向系统(EPS)的回正性能为目标,提出了模糊自整定PID回正控制策略.以转向盘转角传感器和转向盘转速传感器获取的转角和转速信号为控制信号,采用模糊自整定PID方法进行回正控制,输出回正控制电压,使助力电机将转向盘迅速带到中位.综合模糊控制和PID控制的双重优点,设计了模糊PID控制器,根据所设计的模糊规则在线修正PID控制器的参数,使控制器在不同工况下达到较好的控制效果,提高了EPS系统的回正性能.仿真试验和实车试验结果表明:模糊PID控制策略能够有效改善车辆在低速时的回正不足,抑制了车辆在高速时的回正超调现象,使转向盘能够迅速回到中位,保证驾驶员的手感没有受到不良影响.%In order to enhance the returnability of electric power steering(EPS) system of electric bus, the fuzzy PID control algorithm is developed. According to the angle and speed of rotation detected by related sensors, the aligning voltage is controlled as system output by fuzzy PID theory in order to make the steering wheel reset to the mid-position. The fuzzy PID controller for the system is designed, which combines the advantages of fuzzy control and PID control, and can amend the parameters of PID controller on-line. Using the designed algorithm, the returnability of EPS system is improved. The simulation and test show that the control strategy can improve the wheel returnability at low speed and restrain the aligning overshoot at high speed without any adverse effect on driver's steering feeling.【期刊名称】《江苏大学学报(自然科学版)》【年(卷),期】2011(032)001【总页数】4页(P28-31)【关键词】电动客车;电动助力转向;回正控制;模糊PID;策略【作者】赵万忠;施国标;林逸;孙培坤;刘顺【作者单位】南京航空航天大学,能源与动力学院,汀苏,南京,210016;北京理工大学机械与车辆工程学院,北京,100081;北京理工大学机械与车辆工程学院,北京,100081;南京航空航天大学,能源与动力学院,汀苏,南京,210016;南京航空航天大学,能源与动力学院,汀苏,南京,210016【正文语种】中文【中图分类】U461.4汽车高速行驶时,回正力矩较大,转向盘在回正时容易越过中位,出现回正超调;汽车低速行驶时,回正力矩较小,转向盘有可能回不到中位,出现回正不足.因此,为了改善汽车转向系统的回正性能,使汽车在高速和低速转向时均有理想的回正性能,有必要对电动助力转向系统进行回正控制[1].目前,国内外对回正的控制主要应用传统PID控制方法,但这种方法存在参数修改不方便、不能进行自整定等缺点[2-3].由于电动助力转向系统存在非线性、时变性等不确定性因素,使得传统PID控制效果难以达到预期的目标[4-7].针对传统PID控制存在的缺点,本研究提出模糊自整定PID回正控制策略,结合模糊控制和PID控制的双重优点,根据所设计的模糊规则在线修正PID控制器的参数,改善系统的动态效果和稳态精度,提高控制系统的鲁棒性能.1 普通PID回正控制进行回正控制时,需要加装转向盘位置传感器检测转向盘的位置.回正控制算法主要包括2部分:(1)汽车低速行驶时,回正力矩较小,转向盘有可能回不到中位,即出现回正不足.此时,利用回正控制算法可使转向盘能迅速地回到中间位置,保证驾驶员具有良好的回正手感.(2)汽车高速行驶时,回正力矩较大,转向盘在回正时容易越过中位,即出现回正超调.此时,利用主动阻尼控制算法在转向盘在回到中间位置前的适当位置加上阻尼,从而避免摆振.回正控制的作用是用来克服转向系统的阻尼、摩擦,确保转向盘能快速、准确地回到中位,可表示为式中U1为电机回正控制电压;Kp为比例系数;Ki为积分系数;θh为转向盘转角;t为时间.回正控制策略实际上是一个 PI调节器,它对目标转向盘位置(0°)和实际转向盘位置之间的偏差进行比例积分调节,输出控制电压,使助力电机将转向盘带到中位.主动阻尼控制算法为式中U2为电机阻尼控制电压;Kd为阻尼系数.它根据转向盘回正时的角速度产生控制电压,使电机产生阻尼转矩.转向盘转动越快,产生的控制电压越高,阻尼转矩越大;反之,转向盘转动越慢,产生的阻尼转矩越小.因此,通过调节阻尼系数,可以调节转向盘的回正速度.实际应用中,将回正控制和主动阻尼控制复合成综合回正控制策略,即式中Ualign为回正时电机控制电压.通过调节比例系数、积分系数和微分系数,可获得不同效果的回正方式.2 模糊自整定PID回正控制策略本研究提出了模糊自整定PID回正控制策略,以提高系统的回正性能,改善驾驶员手感.设计的模糊自整定PID控制器包括PID控制器、模糊控制器和PWM模块[8].模糊控制器的输入是转向盘转角偏差及其偏差变化率,模糊控制器的输出是比例、微分和积分系数的偏差ΔKp,ΔKi和ΔKd.模糊控制器可以在线对PID控制器的比例、微分、积分3个参数进行调整,以实现动态的优化控制.PID控制器总的比例、微分和积分系数满足下式:式中K′p为初始比例系数;K′i为初始微分系数;K′d为初始积分系数.3 模糊控制器的设计3.1 输入量、输出量的量化转向盘转角的论域为{-60,60}(把{-3π/2, 3π/2}扩大40/π倍,以提高系统的灵敏度),划分为13个等级,E={-6,-5,-4,-3,-2,-1,0,1,2, 3,4,5,6},其量化系数 K1=6/60=0.1.角速度的论域为{-60,60}(把{-3,3}扩大20倍),划分为13个等级,EC={-6,-5,-4,-3,-2,-1,0,1,2, 3,4,5,6},其量化系数K2=6/60=0.1.ΔKp的论域为{-20,20},划分为13个等级,ΔKp={-6,-5, -4,-3,-2,-1,0,1,2,3,4,5,6},其量化系数K3=6/20=0.3.ΔKi的论域为{-10,10},划分为13个等级,ΔKi={-6,-5,-4,-3,-2,-1,0,1, 2,3,4,5,6},其量化系数为K4=6/10=0.6.ΔKd的论域为{-10,10},划分为13个等级,ΔKd={-6, -5,-4,-3,-2,-1,0,1,2,3,4,5,6},其量化系数为K5=6/10=0.6.3.2 定义模糊集和隶属函数设输入、输出变量的语言值均为{负大,负中,负小,0,正小,正中,正大},记为{NB,NM,NS,Z, PS,PM,PB},NB模糊子集和PB模糊子集分别选择Z形隶属函数和S形隶属函数,其他各模糊子集均选择灵敏度强的三角函数.3.3 建立模糊控制规则PID控制中:比例系数的作用是加快系统的响应速度,提高系统的调节精度;积分系数的作用是消除系统的稳态误差;微分系数的作用是改善系统的动态特性,抑制偏差向任何方向的变化.根据上述原则和专家经验,制定的模糊规则见表1-3所示.表1 ΔKp的模糊规则表Tab.1 Fuzzy rule ofΔKpE EC NB NM NS ZO PS PM PB NB PB PB PM PM PS ZO ZO NM PB PB PM PS PS ZO NS NS PM PM PM PS ZO NS NS ZO PM PM PS ZO NS NM NM PS PS PS ZO NS NS NM NM PM PS ZO NS NM NM NM NB PB ZO ZO NM NM NM NB NB表2 ΔK i的模糊规则表Tab.2 Fuzzy rule ofΔK iE EC NB NM NS ZO PS PM PB NB NB NB NM NM NS ZO ZO NM NB NB NM NS NS ZO ZO NS NB NM NS NS ZO PS PS ZO NM NM NS ZO PS PM PM PS NM NS ZO PS PS PM PB PM ZO ZO PS PS PM PB PB PB ZO ZO PS PM PM PB PB表3 ΔKd的模糊规则表Tab.3 Fuzzy ru le ofΔKdE EC NB NM NS ZO PS PM PB NB PS NS NB NB NB NM PS NM PS NS NB NM NM NS ZO NS ZO NS NM NM NS NS ZO ZO ZO NS NS NS NS NS ZO PS ZO ZO ZO ZO ZO ZO ZO PM PB NS PS PS PS PS PB PB PB PM PM PM PS PS PB4 仿真试验模拟方向盘转到180°后释放,对有无回正控制状态下方向盘回正过程进行仿真,仿真过程中车速分别取为10,80 km/h[9].仿真结果如图1和图2所示.图1 低速时转向盘回正情况Fig.1 Returnability at low speed由图1可知,在车速为10 km/h状态下,若无回正控制时,方向盘在短时间内无法回到中位;相比普通PID回正控制,模糊PID回正控制下的转向盘转角响应更快,转向盘能够更好、更快的回到中位.由图2可知,在车速为80 km/h状态下,无回正控制时方向盘会发生严重的回正过头现象,采用回正控制后,回正时间明显缩短,同时几乎无回正超调现象.而且施加模糊PID回正控制比普通PID控制下的转向盘转角响应更快.图2 高速时转向盘回正情况Fig.2 Returnability at high speed综之,加入模糊PID回正控制后的电动助力转向系统在低速和高速状态下都不会发生回正不足或回正超调现象,较好地提高了汽车的回正性能.5 回正性能试验为验证不同车速下的转向回正性能,以BK6120EV型电动客车为试验对象[10],分高、低 2种车速(10,80 km/h)进行了转向回正性试验.试验过程中待侧向加速度达到(4±0.2)m/s2时稳定车速并开始记录,至少记录松手后4 s的横摆角速度响应.图3和图4分别为在车速10,80 km/h下,转向盘左转时得到的回正试验评价曲线,ω为横摆角速度.由图3和图4可知,应用模糊PID回正控制可有效改善系统在低速下的回正不足和高速下的回正超调,提高系统的回正性能.图3 回正试验评价曲线(v=10 km/h)Fig.3 Appraisal curve of returnability at10 km/h图4 回正试验评价曲线(v=80 km/h)Fig.4 Appraisal curve of returnability at80 km/h6 结论(1)以提高系统的回正性能,改善驾驶员手感为目标,结合模糊控制和PID控制的双重优点,提出电动大客车EPS系统模糊自整定PID回正控制策略.(2)模糊自整定PID回正控制策略可根据所设计的模糊规则在线修正 PID控制器参数,提高系统的回正性能.仿真结果表明:加入模糊PID回正控制后的电动助力转向系统在低速和高速状态下都不会发生回正不足或回正超调现象,较好地提高了系统的回正性能.(3)实车试验结果表明:应用模糊PID回正控制可有效保证汽车在不同车速下具有良好的回正性能.参考文献(References)【相关文献】[1] Burton AW.Innovation drivers for electric power-assisted steering[J].IEEE Control Systems Magazine, 2003,23(6):30-39.[2] 高勇,陈龙,袁传义,等.电动助力转向系统回正控制研究[J].农业机械学报,2007,38(5):6-10.Gao Yong,Chen Long,Yuan Chuanyi,et al.Study on return-to-center control of electric power steering system [J].Transactions of the Chinese Society for Agricu ltural Machinery,2007,38(5):6-10.(in Chinese)[3] 林逸,申荣卫,施国标.纯电动客车电动助力转向系统控制器开发 [J].江苏大学学报:自然科学版, 2006,27(4):310-313.Lin Yi,Shen Rongwei,Shi Guobiao.Development of electric control unit in electric power steering system of pure electric power bus[J].Journal of Jiangsu University:Natural Science Edition,2006,27(4):310-313. (in Chinese)[4] 何仁,李强,郭孔辉.LQG理论的电动助力转向系统最优控制[J].农业机械学报,2007,38(2): 17-21. He Ren,LiQiang,Guo Konghui.Study on optimal control for electric power steering system based on LQG theory[J].Transactions of the Chinese Society for Agricultura lMachinery,2007,38(2):17-21.(in Chinese)[5] 赵万忠,施国标,林逸,等.基于混合H 2/H∞控制的电动助力系统转向路感 [J].机械工程学报,2009, 45(4):142-147.Zhao Wanzhong,ShiGuobiao,Lin Yi,etal.Road feeling of electric power steering system based on mixed H 2/H∞control[J].Chinese Journal of MechanicalEngineering,2009,45(4):142-147.(in Chinese)[6] Parmar M,Hung JY.A sensorless optimal control system for an automotive electric power assist steering system[J].IEEE Transactions on Industrial Electronics, 2004,51(2):290-298.[7] Kemmetmu ller W,Muller S,Kugi A.Mathematical modeling and nonlinear controllerdesign for a novel electrohydraulic power-steering system[J].IEEE/ ASME Transactions on Mechatronics,2007,12(1):85 -97.[8] Satake T,Kurishige M,Inoue N,et al.Evaluation of EPS control strategy using driving simulator for EPS[C]∥SAE Technical Paper A:SAE Publication Group,Paper Number:2003-01-0582.[9] 赵万忠.电动助力转向控制策略的关键问题研究[D].北京:北京理工大学机械与车辆工学院, 2008.[10] 申荣卫,林逸,台晓虹,等.电动助力转向系统建模与补偿控制策略[J].农业机械学报,2007,38(7): 5-9.Shen Rongwei,Lin Yi,Tai Xiaohong,et al.Research onmodeling and compensation control strategy of electric power steering system[J].Transactions of the Chinese Society for Agricu ltural Machinery,2007,38(7):5-9.(in Chinese)。

A simplified type-2 fuzzy logic controller for real-time control

A simplified type-2 fuzzy logic controller for real-time control

0019-0578/2006/$ - see front matter © 2006 ISA—The Instrumentation, Systems, and Automation Society.
504
D. Wu and W. W. Tan / ISA Transactions 45, (2006) 503–516
a
Department of Electrical and Computer Engineering, National University of Singapore, 4, Engineering Drive 3, Singapore 117576, Singapore
͑Received 23 February 2005; accepted 3 November 2005͒
and survey processing ͓13,5͔, word modeling ͓14,15͔, phoneme recognition ͓16͔, plant monitoring and diagnostics ͓17͔, etc. Even though fuzzy control is the most widely used application of fuzzy set theory, a literature search reveals that only a few type-2 FLSs are employed in the field of control. Interval type-2 FLCs were applied to mobile robot control ͓6͔, quality control of sound speakers ͓18͔, connection admission control in ATM networks ͓19͔. A dynamical optimal training algorithm for type-2 fuzzy neural networks ͑T2FNNs͒ has also been proposed ͓20͔. T2FNNs have been used in nonlinear plant control ͓21͔ and truck back up control ͓20͔. The structure of a typical type-2 FLC is shown in Fig. 2. Input signals are the feedback error e ˙ , and the output is the and the change of error e ˙ . Compared with their change of control signal u type-1 counterparts, type-2 FLCs are better suited to eliminate persistent oscillations ͓22–24͔. The most likely explanation for this behavior is a

车辆自适应巡航控制系统的算法研究

车辆自适应巡航控制系统的算法研究

车辆自适应巡航控制系统的算法研究1. 本文概述本文主要研究车辆自适应巡航控制系统(ACC)的算法。

ACC系统是在传统定速巡航控制基础上发展起来的新一代辅助驾驶系统,它能够减轻驾驶者的疲劳,提升驾驶的舒适性,增加交通车辆流量,并降低交通事故的发生。

控制算法是ACC系统控制单元的核心,其选取对于实现理想的控制要求至关重要。

本文将从ACC系统的研究概况入手,探讨ACC系统的间距策略、数学建模和控制算法设计,并通过仿真实验对系统性能进行分析。

通过本文的研究,旨在为车辆工程、控制理论与工程、交通信息工程与控制等领域的专业人员提供参考,促进ACC系统在智能交通中的推广和应用。

2. 自适应巡航控制系统概述自适应巡航控制系统(Adaptive Cruise Control,ACC)是一种先进的驾驶辅助系统,它基于传统的巡航控制系统,并增加了与前方车辆保持合理间距的功能。

ACC系统利用安装在车辆前方的雷达或激光传感器来检测前方道路上的车辆,并根据交通状况自动调整车辆的速度。

当ACC系统检测到前方有速度更慢的车辆时,它会自动降低车辆的速度,以保持与前方车辆的安全距离。

如果前方道路畅通,ACC系统则会逐渐加速,使车辆恢复到设定的巡航速度。

这种自适应的巡航控制功能可以在不驾驶员干预的情况下实现车辆的自主减速或加速,从而提高驾驶的安全性、舒适性和便利性。

ACC系统通过发动机油门控制和适当的制动来实现车速的调整。

它可以根据不同的驾驶场景和交通状况,智能地选择合适的控制策略,以确保车辆在各种情况下都能平稳、安全地行驶。

ACC系统还可以与其他驾驶辅助功能(如车道保持辅助、碰撞预警等)协同工作,为驾驶员提供更加全面的驾驶支持。

3. 安全距离算法研究通过车对车通信功能,获取前车的制动性能参数、车辆状态信息和车辆类型。

这些信息包括前车的标准制动距离、制动协调时间、临界载重系数、行驶车速、载重系数和当前峰值附着系数等。

同时,本车也需要获取自身的制动性能参数和车辆状态信息。

城市单路口交通信号两级模糊优化控制与仿真

城市单路口交通信号两级模糊优化控制与仿真

与 VC + + 的混合编程技术构建交通信号两级模糊 在线优化控制 Paramics 仿真平台,并以典型城市单 交叉口进行实验,采用四种控制策略对案例进行大 量仿真,对提出的两种模型进行效用评价。
1 两级组合模糊控制模型
1. 1 建模理论分析
交通信号两级模糊控制器的性能受限于交通状
态变量的选择和控制器参数的合理设置。路口车辆
第 51 卷
城市交通信号多级模糊控制器综合考虑多维交 通状态影响因素,如排队长度、饱和流量和相位持 续时间等,可较准确地描述路口各相位交通流通行 需求的紧急程度,并通过分级分散处理状态变量可 避免状态变量间相互干扰; 同时,通过优化路口相 位顺序,可提高控制器性能; 仿真结果表明该方法 能有效减少延误、提高路口通过量,优于定时控制 等[1]。但其采 用 的 标 准 四 相 位 结 构 忽 略 了 右 转 等 非关键车流,在交通状况复杂的路口,对交通流的 波动响应不足; 在低饱和的交通状态下,因考虑多 维交通状态影响因素,致使路口交通状态弱化,多 级模糊控制器性能差; 而且,多级模糊控制器的多 参数采用经验知识确定,不具备学习功能[2]。
在两个方面:
1) 相位决策延长时间小,相位频繁切换致使
路口新增车辆通常要排队才能通过。
2) 红灯相位时间短而目标绿灯相位排队车辆
数少,致使新绿灯相位无车浪费绿灯时间现象严
重。
因而,两级模糊控制器状态变量的选取应与路
口交通状态直接关联,状态变量的选择取决于路口
交通状态特征,面向不同的交通状态,模糊控制器
选择相位交通强度作为交通状态变量; 采用基于交
通强 度 的 两 级 模 糊 控 制 ( Two-level Traffic Signal Control,TFTSC) [10]。组合模糊控制的概念模型用

产品方案优选的区间二型模糊VIKOR法

产品方案优选的区间二型模糊VIKOR法林晓华;安相华;贾文华【摘要】As it is difficult to determine exact membership function of the traditional type-1 fuzzy sets,so the product scheme evaluation model was established using VIKOR method extended byinterval type-2 fuzzy set theory.Firstly,the concepts was introduced,and a new ranking method was defined which combine the integration algorithm with the comparative law of interval fuzzy number.Then,VIKOR method was extended based on the above.To ensure accuracy and validity,maintain the ambiguity of evaluation values,defuzzification technology was not used in the whole process of the extended VIKOR algorithm.Product optimal scheme was determined by the ranking of VIKOR composhe index,where the decision weights of "community benefit" and "maximum individual regret" were decided by the decision makers' preferences.Finally,the proposed method was applied to evaluate the alternatives of rail vehicle door product,which proved the feasibility and effectiveness of the method.%由于传统一型模糊集的隶属度难以给出精确值,因此采用区间二型模糊集理论对VIKOR方法进行扩展从而建立产品方案的决策优选模型.首先介绍了区间二型模糊数的概念,并结合积分法和区间模糊数比较法定义了一种排序方法,在此基础上实现传统VIKOR算法的扩展.为保证信息的准确性、有效性,在扩展VIKOR算法的整个过程中都未使用解模糊技术,而始终保持评估值的模糊性.产品最优方案根据VIKOR综合指标的排序来选择,其中“群体效益”和“最大个别遗憾”的决策权重由决策者偏好决定.最后,以轨道车辆门产品的方案评价为例,证明所提方法的可行性和有效性.【期刊名称】《机械设计与制造》【年(卷),期】2017(000)003【总页数】5页(P11-15)【关键词】产品方案评价;区间二型模糊集;VIKOR算法;多属性决策【作者】林晓华;安相华;贾文华【作者单位】南京工程学院机械工程学院,江苏南京211167;大连海洋大学机械与动力工程学院,辽宁大连116023;南京工程学院机械工程学院,江苏南京211167【正文语种】中文【中图分类】TH16;TH122机械产品设计方案的优选,需要通过技术指标、经济指标等评价后才能进行决策。

电力英语文献---配电网络中较少损耗的实际方法

A realistic approach for reduction of energy losses in low voltage distribution networkabstractThis paper proposes reduction of energy losses in low voltage distribution network using Lab VIEW as simulation tool. It suggests a methodology for balancing load in all three phases by predicting and controlling current unbalance in three phase distribution systems by node reconfiguration solution for typical Indian scenario. A fuzzy logic based load balancing technique along with optimization oriented expert system for implementing the load changing decision is proposed. The input is the total phase current for each of the three phases. The average unbalance per phase is calculated and checked against threshold value. If the average unbalance per phase is below threshold value, the system is balanced. Otherwise, it goes for the fuzzy logic based load balancing. The output from the fuzzy logic based load balancing is the value of load to be changed for each phase. A negative value indicates that the specific phase is less loaded and should receive the load, while a positive value indicates that the specific phase is surplus load and should release that amount of load. The load change configuration is the input to the expert system which suggests optimal shifting of the specific number of load points, i.e., the consumers.1. IntroductionAmong three functional areas of electrical utility namely, generation, transmission and distribution, the distribution sector needs more attention as it is very difficult to standardize due to its complexity. Transmission and distribution losses in India have been consistently on the higher side in the range of 21–23%. Out of these losses, 19% is at distribution level in which 14% is contributed by technical losses. This is due to inadequate investments for system improvement work. To reduce technical losses, the important parameters are inadequate reactive compensation, unbalance of current and voltage drops in the system. There are two main distribution network lines namely, primary distribution lines (33 kV/22 kV/11 kV) and secondary distribution lines (415 V line voltage). Primary distribution lines are feeding HT consumers and are regularized by insisting the consumers to maintain power factor of 0.9 and above and their loads in all three phases is mostly balanced. The energy loss control becomes a critical task in secondary distribution network due to the very complex nature of the network.Distribution Transformer caters to the needs of varying consumers namely Domestic, Commercial, Industrial, Public lighting, Agricultural, etc. Nature of load also varies as single phase load and three phase load. The system is dynamic and ever expanding. It requires fast response to changes in load demand, component failures and supply outages. Successful analysis of load data at the distribution level requiresprocedures different from those typically in use at the transmission system level. Several researchers have proposed methods for node reconfiguration in primary distribution network [1–11]. Two types of switches used in primary distribution systems are normally closed switches (sectionalizing switches) and normally open switches (tie switches). Those two types of switches are designed for both protection and configuration management and by altering the open/ closed status of switches loss reduction and optimization of primary distribution network can be achieved. Siti et al. [12] discussed reconfiguration algorithms in secondary distribution network with load connections done via a switching matrix with triacs and hence costly alternative for developing countries. Much work needs to be done in the secondary distribution network where lack of information is an inherent characteristic. For example in most of the developing countries (India, China, Brazil, etc.) the utilities charge the consumers based on their monthly electric energy consumption. It does not reflect the day behaviour of energy consumption and such data are insufficient for distribution system analysis.Conventionally, to reduce the unbalance current in a feeder the load connections are changed manually after field measurement and software analysis. Although this process can improve the phase current unbalance, this strategy is more time consuming and erroneous. The more scientific process of node reconfiguration of LV network which involves thearrangement of loads or transfer of load from heavily loaded area to the less loaded area is needed. This paper focuses on this objective. In the first stage, the energy meter reading from secondary of Distribution Transformer is downloaded and is applied as input to Lab-VIEW based distribution simulation package to study the effects of daily load patterns of a typical low voltage network (secondary distribution network). The next stage is to develop an intelligent model capable of estimating the load unbalance on a low voltage network in any hour of day and suggesting node reconfiguration to balance the currents in all three phases.Objectives are to:Study the daily load pattern of low voltage network of Distribution Transformer by using Lab VIEW.Study the unbalance of current in all three phases and power factor compensation in individual phases.Develop distribution simulation package.The distribution simulation package contains fuzzy logic based load balancing technique and fuzzy expert system to shift the number of consumers from over loaded phase to under loaded phase.2. Existing systemIn the existing system of distribution network, the energymeters are provided for energy accounting, but there is no means of sensingunbalance currents, voltage unbalance and power factor correction requirement for continuous 24 h in three phases of LT feeder. In other words, instantaneous load curves, voltage curves, energy curves and power factor curves for individual three phases are not available for monitoring, analyzing and controlling the LV network. The individual phase of Distribution Transformer could be monitored only by taking reading whenever required and if there is unequal distribution of load in three phases, the consumer loads are shifted from overloaded phase to under loaded phase of distribution LT feeder by the field staff in charge of the Distribution Transformer. There is no scientific methodology at present.3. Proposed systemIn the proposed system, Lab VIEW is used as software simulation tool [13]. In the existing system of distribution network, the Distribution Transformers are fixed with energy meters in the Secondary of the Distribution Transformer and energy meter readings can be downloaded with Common Meter Reading Instrument (CMRI instrument). The energy meter reading includes VI profile and it can be used for the power measurement.4. Monitoring parametersThe phase voltages and the line currents of all three phases are available every half an hour and the voltage curve and load curve are obtained fromthese values. The active, the reactive and the apparent power are computed from these quantities after the phase angle is determined. The following parameters are plotted:1. Individual phase voltage.2. Individual phase current.3. Individual phase active power.4. Individual phase reactive power.5. Individual phase apparent power.6. Individual phase power factor.With the above concepts, the front panel and block diagram are developed for unbalanced three phase loads by downloading the VI profile from energy meter installed in the Distribution Transformer and simulating the setup using practical values. From the actual values obtained load unbalance is predicted using fuzzy logic and node reconfiguration is suggested using expert system.The Lab VIEW front panel displays the VI profile on a particular date with power and energy measurement as in Table 1. The Lab VIEW reads the VI profile and computes the real power, reactive power, apparent power and energy, kWh.4.1. Prediction of current unbalanceThe maximum current consumption in each phase is IRmax, IYmax, and IBmax. The optimum current (Iopt) is given in the following equation:()3max max max B Y R opt I I I I ++=The difference between opt I and m ax R I is then determined. Similarly thedifference between opt I and max Y I , opt I and max B I is computed. If thedifference is positive then that phase is considered as overloaded and if the difference is negative then that phase is considered to be under loaded. If the difference is within the threshold value, then that load is perfectly balanced.To balance the current in three phases, if the difference between opt I and m ax R I is less than threshold value then that phase is left as such.Otherwise, if the difference is greater than threshold value, some of the consumers are suggested reconfiguration from overloaded phase to under loaded phase using expert system.5. Fuzzy based load balancingA fuzzy logic based load balancing technique is proposed along with combinatorial optimization oriented expert system for implementing the load changing decision. The flowchart of the proposed system is shown in Fig. 1. Here the input is the total phase current for each of the three phases. Typical loads on low voltage networks are stochastic by nature. However it has been ensured that there is similarity in stochastic nature throughout the day as seen from load graph of Distribution Transformer as shown in Fig. 6. It has been verified that if R phase is overloaded followed by Y phase and thenB phase the same load pattern continuesthroughout the day.The average unbalance per phase is calculated as (IRmax _ Iopt) for R phase, (IYmax _ Iopt) for Y phase and (IBmax _ Iopt) for B phase and is checked against a threshold value (allowed unbalance current) of 10 A. If the average unbalance per phase is below 10 A, it can be assumed that the system is more or less balanced and discard any further load balancing. Otherwise, it goes for the fuzzy logic based load balancing. The output from the fuzzy logic based load-balancing step is the load change values for each phase.This load change configuration is the input to the expert system, which tries to optimally suggest shifting of specific number of load points. However, sometimes the expert system may not be able to execute the exact amount of load change as directed by the fuzzy step. This is because the actual load points for any phase might not result in a combination which sums up to the exact change value indicated by the fuzzy controller however optimization is achieved because of balancing attempted during peak hours of the day of the load graph.5.1. Fuzzy controller: input and outputTo design the fuzzy controller, at first the input and output variables are to be designed. For the load balancing purpose, the inputs selected are ‘phase current’ i.e., the individual phase current for each of the three phases and optimum current required and the output as ‘change’, i.e., thechange of load (positive or negative) to be made for each phase. For the input variable, Table 2 and Fig. 2 show the fuzzy nomenclature and the triangular fuzzy membership functions. And for the output variable, Table 3 shows the fuzzy nomenclature and Fig. 3 the corresponding triangular fuzzy membership functions.The IF-THEN fuzzy rule set governing the input and output variable is described in Table 4.5.2. Fuzzy expert systemA fuzzy expert system is an expert system that uses a collection of fuzzy membership functions and rules, instead of Boolean logic, to reason out data. The rules in a fuzzy expert system are usually of a form similar to the following:If x is low and y is high then z = mediumwhere x and y are input variables (names for known data values), z is an output variable (a name for a data value to be computed), low is a membership function (fuzzy subset) defined on x, high is a membership function defined on y, and medium is a membership function defined on z .The antecedent (the rule’s premise) describes to what degree the rule applies, while the conclusion (the rule’s consequent) assigns a membership function to each of one or more output variables. Most tools for working with fuzzy expert systems allow more than one conclusion per rule. The set of rules in a fuzzy expert system is known as the rulebase or knowledge base.The load change configuration is the input to the expert system which tries to optimally shift the specific number of load points. The following are the objectives of the expert system:_ Minimum switching._ Minimum losses._ Satisfying the voltage and current constraints.Fg. 4 shows the block diagram of the expert system. The inputs to the expert system are the value added or subtracted to that particular phase from the fuzzy controller and the current consumption of the individual consumers on that particular phase. The expert system should display which of the consumers are to be shifted from the overloaded phase to under loaded phase and also displays the message NO CHANGE if that phase is balanced.6. Simulation resultsTable 1 shows the display of output of Lab-VIEW based power and energy measurement [14]. It asks for the Distribution Transformer secondary reading, date, tolerance value (threshold value), and fuzzy conditioner of three phases for load balancing. It then displays the date, time, voltage, current, power factor, real power, reactive power, apparent power.Fig. 5 shows the line voltage curve for R, Y and B phases. It alsoindicates the voltage drop during peak hours of the day. The current curve for R, Y and B phases is shown in Fig. 6. It indicates the current unbalance in the existing supply network. The load graph from typical Distribution Transformer for entire day indicates interesting similarity in load patterns of consumers. Hence load balancing attempted during peak load band yielded fruitful result for the entire day.Fig. 7 displays the results of fuzzy logic based load balancing technique. Fuzzy toolkit in Lab VIEW is used for simulation. Mamdani fuzzy inference technique is applied and centroid based defuzzication technique is employed in the load balancing system. The output from the fuzzy controller is the value that is to be subtracted or added to a particular phase. The positive value indicates that the specific phase is overloaded and it should release the amount of load. The negative value indicates that the specific phase is under loaded and it should receive the amount of load. The value less than 10 A indicate that phase is perfectly loaded. Fig. 8 show the expert system output for all three phases. It gives the Service connection number (SC No.) and current consumption of individual consumer. The output of the fuzzy controller is applied as the input to the expert system. If the output of the fuzzy controller is a positive value then the expert system should inform which of the consumers are to be shifted from that phase.From Fig. 8, the R phase is overloaded, so the expert system informs thatthe SC No.’s 56 and 23 should be shifted. The output of the fuzzy controller for the Y phase is less than threshold value 10 A so that phase is perfectly loaded. The output of the fuzzy controller for B phase is a negative value; hence it receives the load from R-phase. There is no shifting of consumer in Y phase and B phase therefore the entries are indicated by zero values. There is no switching arrangement in secondary low voltage distribution network in Indian scenario and hence shifting to be done manually.The suggested approach has been tested practically on 70 nodes (70 consumers) low voltage distribution network and results are as shown in Fig. 9 (before balancing) and Fig. 10 (after balancing). Single phase customers physically reconfigured from overloaded phase into under loaded phase and then test results studied. Unbalancing has been observed for 10 days and then balancing attempted. Balanced network was studied and then results obtained. There is a percentage reduction in Energy loss from 9.695% to 8.82% though there is increase in cumulative kWh from 1058.95 to 1065.9. This Distribution Transformer belongs to urban area of a typical Indian city and has 41 single phase consumers and 29 three-phase consumers and three-phase consumers have balanced loads. In rural areas where number of single phase consumers are predominant and scattered around lengthy distribution lines this balancing technique will be much more beneficial than the tested study indicates.This research is significant to the Indian scenario considering the fact that there are 180,763 Distribution Transformers (www.tneb.in) and 2,07,00,000 consumers and length of secondary distribution network 5,17,604 km in one state, Tamil Nadu alone, 1% saving in energy loss per transformer per day will save few crores of rupees for a month to electrical utility.7. ConclusionIn this paper, the complete online monitoring of low voltage distribution network is done by using Lab VIEW and the fuzzy logic based load balancing technique is presented. With the results obtained from Lab VIEW, currents in individual phases are predicted and unbalance pattern is studied without actually measuring instantaneous values from consumer premise.A fuzzy logic based load balancing is implemented to balance the current in three phases and expert system to reconfigure some of the consumers from over loaded phase to under loaded phase. The input to the fuzzy controller is the individual phase current. The output of the fuzzy controller is the load change value, negative value for load receiving and positive value for load releasing. Expert system performs the optimal interchanging of the load points between the releasing and receiving phases.The proposed phase balancing system using fuzzy logic and expertsystem is effective for reducing the phase unbalance in the low voltage secondary distribution network. The energy losses are reduced and efficiency of the distribution network is improved and has been practically studied in typical Distribution Transformer of electrical utility.图一图2图3 图4图5图6图7图8图9图10。

新型模糊PID控制及在HVAC系统的应用

新型模糊PID控制及在HV AC系统的应用第26卷第11期2009年11月控制理论与应用ControlTheory&Applications文章编号:1000—8152(2009)11—1277—05新型模糊PID控制及在HV AC系统的应用吕红丽,段培永,崔玉珍,贾磊z(1.山东建筑大学信息与电气工程学院,山东济南250101;2.山东大学控制科学与工程学院,山东济南250061)摘要:为了推广模糊控制器在非线性系统中的应用,提出一种利用PID控制器的参数优化和调节模糊控制器的新糊控制器设计算法,然后利用改进的变论域思想进一步优化模糊控制器设计参数.将其应用于暖通空调(HV AC)系统的节能控制中并与常规PID控制器相比较,仿真和实验结果表明这种模糊控制器具有超调量小,跟踪迅速,鲁棒性强等优越的控制性能.关键词:模糊控制;PID控制;结构分析;变论域;暖通空调系统中图分类号:TP273文献标识码:A NovelfuzzyPIDcontrolandapplicationtoHV ACsystemsLOHong.1i,DUANPei—yong,CUIYu.zhen,JIALei(rmationandElectricalEngineeringCollege,ShandongJianzhuUniversity,JinanSha ndong250101,China;2.SchoolofControlScienceandEngineering,ShandongUniversity,JinanShandong250061,China)Abstract:Inordertoextendtheapplicationoffuzzycontrollertononlinearsystems,anewfuzz ycontrolstrategytrollerandthelineargainoftheconventionalPIDcontrollerisderivedbasedonthegtructurean alysisoffuzzycontroller~—tuninginthePIDcontroller~Furthermore,theimprovedvariableuniversemethodisemployedtooptimizetheparametertuni ngofthefuzzycontrolleron—savingcontrolinheating,ventilating,andair—conditioning(HV AC)thatthisfuzzycontrolleriseffectiveandthealgorithmprovideslessovershoot,shortersetting timeandbetterrobustness,etc.Keywords:fuzzycontrol;PIDcontrol;structureanalysis;variableuniverse;HV ACsystems 1引言(Introduction)自1974年Mamdani将模糊控制首次应用到蒸汽机车的控制以来[1],基于Zadeh提出的模糊逻辑技术发展起来的模糊控制已经被成功应用到各种过程作经验而无需建立系统的精确数学模型,但模糊控制器仍无法在现实工业过程中大范围的进行推广和应用,主要原因之一是现场操作人员难以理解和掌前工业过程中大部分控制问题所面临的是高度非线性,时变,含有扰动等不确定性因素的复杂非线性规PID控制器仍然被广泛应用,但是由于实际被控过程的复杂性往往很难获得满意的控制效果[4].尽管收稿日期:2008-01一lO;收修改稿日期:2009—02--03 基金项目:山东省自然科学基金资助项目(Z2006G07); 很多先进的控制技术已经被用来调节和改进PID控制器的设计【516],但是这些并不能改变PID控制器本行逆向思维,尝试探索模糊控制器与PID控制器的一种新型的组合设计形式,利用成熟的PID控制器增益因子对模糊控制器的参数进行设计和调节,提出了一种基于PID控制器增益因子的模糊控制器新型设计方法.这样既充分利用PID控制器的成熟技术,同时又发挥了模糊控制器的全局非线性优势,提高控制系统的鲁棒性,还使得模糊控制技术便于普通技术人员的学习和掌握.'2模糊控制器的结构和参数设计(Structure andparametersdesignoffuzzycontroller)考虑一个通常的闭环反馈控制系统,其中r,u和控制理论与应用第26卷先经过分析和比较确定采用输入变量均为e,Ae,输出变量分别为直接输出饥和增量输出Au的2维模糊控制器的并联组合,即采用模糊PD控制器uPD:F1(e,△e),和模糊PI控制器△PI=(e,△e).模糊控制器的参数可通过设计参数和调节参数两部分进定,同时所有变量均采用基本论域为f-1,11,并且把在卜1,1】上完成设计参数的模糊控制器称为通用模正规化因子即可完成整个模糊控制器的设计过程.2.1通用模糊控制器的设计(Designofnominal fuzzycontrollers)考虑模糊PD控制器(e,Ae),在任意给定的采样时刻n,e(n),△e)作为控制器的输入变量,u(礼)作为控制器的输出,模糊控制器结构参数具体设计如下:e,△e(礼)首先通过正规化因子Ge】,GAe】进行正规化变换转换到基本论域上,u(n)的正规化因子为Gu,即e*=,Gei.e(n),△e=G△?△e(竹)j(1)(佗)=Gu.这里i=1,2且e,Ae,,Au∈『-1,11.两个输入变量e,Ae的隶属函数如图1所示,每一个变量存在两个模糊集合,分别记作JF)e,Ne,PAe,NAe,输出变量的模糊集合乱采用模糊单点集,本文考虑e,Ae,u∈『一1,1】,并且采用线性模糊规则,模糊and运算选用算术积product;模糊or运算选用有界和算子sum;模糊蕴涵运算选择取小算子min;解模糊算法选择加权平均法.N(£)P/\一一l01e图1输入变量e的隶属函数Fig.1Themembershipfunctionofinpute{2.2通用模糊控制器的结构分析(Sructureanaly—sisofnominalfuzzycontrollers1为了基于PID控制器参数设计模糊控制器,首先必须通过模糊控制器的结构分析获得两者之间的解析关系,继续考虑模糊PD控制器(e,Ae),在采样时刻礼,e(礼),△e(礼)进入模糊控制系统,经过模糊推理过程,解模糊以及反正规化变换得到局部输出结果:u1=Gu?札木=Gu(e+Ae,)/2=Gu(Cel?e(n)+GAel?△e(礼))/2.(2)对于平行结构的增量模糊控制器F2(e,Ae),选择与F1相同设计参数的通用模糊控制器,只是其输出变量是Au,,正规化因子为Ge2,GAe2,GAu,经过结构分析得到其局部模糊控制器输出为Au2=GAu?Au=GAu(eAe)/2=GAu(Ge2?e(n)+GAe2?Ae(n))/2.(3)系(AnalyticalrelationbetweenfuzzyandPID controllers)基于以上的模糊控制器的结构解析分析考虑常规PID控制器与模糊控制器的参数之间的解析关系并选取Gel=Ge2=Ge,GAe1=GAe2=GAe.(4)于是全局模糊控制器的输出为fuyn)=l+∑Au2=(Ge.e(n)+G△e.Ae(n))+(Ge.e(叩)+GAe.△e(叩)):言[(Gu?Ge+GAu?GAe)?e(n)+Gu?GAe?Ae(n)+GAu?Ge?∑e(叩)】.(5)为了与常规PID控制器相对应,选择Kp:=G(a△Uu'.+2△u'G△/6于是"lZfuzzy(n)=Kp?e(n)+KI∑e(i)+?△e(n).(7)模糊控制律(7)在n采样时刻形式上完全成为一种常规PID控制器,但是随着时间的变化,,/co3个增益系数也随之不断变化,实现了一组特殊PID控常规PID控制器的增益系数,,KD是已知常数,并与所设计的模糊控制器在n采样时刻对应相等,把第11期吕红丽等:新型模糊PID控制及在HV AC系统的应用1279 fGAe=(Kp-t-,//郦一4‰)?Ge/2硒,《Gu=4KDKI/(Kp土,//郦-4KIKD)Ge,(8)IGAu=/Ge.可见模糊控制器和常规PID控制器之间存在着精确的解析关系,于是模糊控制器与常规PID控制器可以通过以上的解析关系式来设计模糊控制器的正规化因子.3基于PID控制参数的模糊控制器新型设计(Noveldesignoffuzzycontrollersbased—onPIDparameters)器(Noveldesignoffuzzycontrollersbased—on conventionalPIDparameters)首先设计出系统的常规PID控制器,获得其比的初始正规化因子Ge0保持不变,于是初步确定误步分析调节PID控制器的增益系数来间接调节模糊增加时,输出响应加速,而稳态误差也会降低,但是当太大时会引起震荡或者不稳定.此时,根据解析关系(8),对应的GAe的值随着增加而增加,Gu随着增加而减小,代替了简单的比例因子的单一变化.同理,当PID控制器中的积分因子增加时,GAe随着积分因子增加而减小,而Gu和GAu的增加反应了两个局部并行模糊控制器各自规则输出的变化;当PID控制器中的微分因子KD增加时, 降低稳态误差同时加速系统响应,GAe随着微分因子KD增加而减小,Gu增加而GAu保持不变.数优化(Parameteroptimizationoffuzzycon—trollersbased-onimprovedvariableuniverse)模糊控制器的积分环节有时候在平衡点附近会产生一些细微的连续震荡,消除震荡的一种改进论域本质是改变变量的正规化因子,因此如果通用模糊控制器的论域保持不变,那么通过增加模糊控制器输入变量的正规化因子的取值同样达到了缩小论域的目的,从而优化了模糊控制器的规则.将以上设计得到的模糊控制器正规化因子分别记作GAe.,Gu0,GAu.,当误差变得很小时继续缩小论域来优化控制性能,于是适当的放大输出误差正规化因子Ge,对模糊控制器参数在平衡点附近进行细微的调节,完成模糊控制系统的参数在线优化,实现在误差较小时的高精度模糊控制,从而进一步提高模糊控制系统性能.4仿真结果(Simulationresults)为了验证模糊控制器新型设计算法的有效性,过程G(s)=_0.3e-O.8~.(9)首先设计出常规PID控制器:u(n)=一1.875?e(礼)一2.08?∑e(v)+0.09Ae(n).然后选取适合于被控对象的参数和算法设计出通用模糊控制器,采用第3节的设计选定初始正规化误差因子Ge0=l,模糊控制器的调节参数为△u=2.08.最后将以上设计的模糊控制器作用于系统f9),基于变论域思想在线调节模糊控制器的各个正规化制器分别作用于控制系统(9),可以看到它们的控制输出响应几乎是相同的,如图2所示,这说明针对被控对象保持不变的系统,设计的模糊控制器具有常规PID控制器同样的控制性能.,FC一…PID一图22O406080100tlS被控过程(9)的系统响应曲线Controlresponseofprocess(9)5模糊控制在暖通空调中的应用研究(ApplyfuzzycontrollersintoHV ACsys一针对暖通空调系统的空气处理机组设计控制器,个物理回路,强迫对流的热交换过程非常复杂,很得PID控制器的参数和实现模糊控制器设计,把经过热交换后进入房间之前的空气温度,回风机的干球温度.作为空调处理机组的输出变量,而冷冻水的1280控制理论与应用第26卷流速h是可操作变量,假设进入蒸发器的冷冻水温度hi是常数,水流速是根据空调房间的冷冻.=.厂(.h,,i,hwi),(10)其中,表示系统的非线性时变函数,在稳定状态下以及很小的区间上可采用下面的模型进行较准确的估计:0(s)Kchwe一…,—TFtchw(8)一'儿J这里:h,h,Lh分别是冷冻水的过程增益,时间常数,时间滞后,它们是随着空气和水的控制器设计的有效性.考虑方程(11)所描述的热交换过程,在不同的操作区域内进行高,中,低3种不器,得到增益系数,KI,KD分别为1.1,1.22和0.09,基于这3个参数设计出相应的模糊控制器,然后分别作用于对3种工况下的系统,得到图4的PID控制和模糊控制结果.室夕一一图3空气处理机组的结构图.--FC...设定值一nnn'一一低中高一0l00200300400500600t|S-i.低.'中图4模糊控制与PID控制的输出响应仿真结果表明,最初根据PID控制器参数设计的模糊控制器对第1种工况的控制效果很理想,但是当模型发生变化时,PID控制器和模糊控制器的参数都保持不变的情况下,PID控制器很难适应模型变化, 系统震荡强烈,第3种工况时系统几乎无法稳定,而过仿真试验的验证后将该新型模糊控制设计方法应用到HV AC实验室系统的空气处理机组的温度控制是固定不变的,测量信号包括水和空气的流速,空气和水的温度,而且冷负荷的变化是通过空气和水的实验结果.图中表明与常规PID控制器相比,模糊控制器跟踪迅速,超调时间短,稳定性好,具有较强的鲁棒性.t}S图5模糊控制器与PID控制器的实验结果6结语(Conclusion)为了更好的研究非线性系统的复杂控制问题,推广模糊控制器的应用,使模糊控制器的设计更加简单实用,本文提出一种利用PID控制器的增益因子仅尝试着将模糊控制器的结构分析这一理论研究成果推广到模糊控制器的应用领域,而且充分利用了常规PID控制器的成熟经验.仿真和实验结果表明,这种模糊控制器的新型设计具有良好的控制性能.参考文献(References):…namicplant[J].InstitutionofElectricalEngineers,1974,121(12): 1585——1588.systemsanddecisionprocesses[J].IEEETransactionsonSystems, ManandCybernetic,1973,3(1):28—44.应用,2008,25(4):780—782.05O5O5O5O50的""第11期吕红丽等:新型模糊PID控制及在HV AC系统的应用1281 nonlinearsystems[J].ControlTheory&Applications,2008,25(4): 780—782.)制.控制理论与应用,2008,25(3):468—474.—ternbasedonsupportvectormachines[J].ControlTheory&Applica—tions,2008,25(4):468—474.)[5】BIQ,CAIWJ,WANGQG,eta1.Advancedcontrollerauto?tuning anditsapplicationinHV ACsystems[J].ControlEngineeringPrac—tice,2000,8(3):633—644.—PIDcontrollerwithoptimalfuzzyreasoning[J].IEEETransactionsonSystems,ManandCybernetics,controller[J].Automatica,2000,361:3):673—684.[8】HEM,CAIWJ.Multiplefuzzymodel-basedtemperaturepredic. livecontrolforHV ACsystems[J].InformationScience,2005,169(1): 155—174.作者简介:吕红丽(1978__1,女,博士,讲师,主要研究方向为模糊控制等非线性系统的智能控制理论及应用,E.mail:hllv@ ;段培永(1968__】,男,博士生导师,主要研究方向为智能控制理论与技术,建筑与园区智能化系统等;崔玉珍(1973—),女,硕士,讲师,主要研究方向为通信协同,系统仿真:贾磊(1959一),男,博士生导师,主要研究方向为预测控制,模糊控制,鲁棒控制等现代控制理论及应用.(上接第12763)7结论(Conclusions)本文利用鲁棒可变时域模型预测控制和混合整数线性规划,成功解决了航天器近距离相对运动的鲁棒控制问题.所建立的控制器适应性好,鲁棒性强,便于工程实现,为航天器近距离相对运动的精确控制提供了一种可行的选择.参考文献(References):ⅢD出fpredictivecontrol[D].Cambridge,MA,USA:MassachusettsInstituteofTechnology,2005.【2】曹喜滨,贺东雷.编队构形保持模型预测控制方法研究[J】.宇航学报,2008,29(41:1276—1283.approachforsatelliteformationflying[J].JournalofAstronautics,bits[q//A/AAGuidance,Navigation,andControlConferenceand Exhibit.Montreal,Canada:AIAA,2001:1—11.【4】TILLERSONM,INALHANG,HOWJECoordinationandcon- trolofdistributedspacecraftsystemsusingconvexoptimizationtech—niques[J].InternationalJournalofRobustandNonlinearControl, 2002,12(2):207—242.【5]SCHOUWENAARSSafetrajectoryplanningofautonomousvehi- cles[D].Cambridge,MA,USA:MassachusettsInstituteofTechnol—ogy,2006.【6]KERRIGANEC.Robustconstraintsatisfaction."invariantsetsand predictivecontrol[D].Cambridge,UK:UniversityofCambridge,2O00.modelpredictivecontrol[C】//MAilGuidance,Navigation,andCon—trolConferenceandExhibit.Austin,Texas,USA:AIAA,2003:1—9.—verswithguaranteedcompletiontimeandrobustfeasibility[C】//Pro- ceedingsoftheAmericanControlConference.Denver,Colorado, USA:IEEE,2003:4034—4040.作者简介:朱彦伟(1981—,,男,讲师,博士,主要研究方向为航天器动力学,制导与控制,E—mail:z9812030@hotmail ;杨乐平(1964__),男,教授,博士生导师,国家863-709重大项目专家组专家,主要研究方向为空间任务规划,电磁交会对接等,E. mail:ylp—.1964@163 .。

大学物理仿真实验室申报书

1.基本情况
2.建设内容
单摆测量重力加速度凯特摆测重力加速度
声速的测量拉伸法测金属丝的杨氏模量
电效应和普朗克常量的测定
双臂电桥测低电阻示波器实验
偏振光的观察与研究迈克耳孙干涉仪
3虚拟仿真实验的教学平台(平台功能、信息化设备、网络与信息安全等)平台功能
我校在引进中国科技大学开发的《大学物理仿真实验》基础上,架构建成虚拟仿真物理实验室。

目前我校的大学物理虚拟仿真实验室已初具规模,拥有专门的虚拟实验室及性能良好的IBM(XSERIES_3500)服务器一台,包括力、
物理实验仿真平台开始实验信息化设备
a)IBM(XSERIES_3500)服务器一台
b)大学物理仿真实验平台软件一套
c)联想电脑(启天M4360)110台
d)交换机(H3C 1224R) 4台
e)投影机(松下PT-UX35C)2
3.资源共享
4.条件保障
5.学校和主管部门意见。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mohammad Hassan Khooban,Davood Nazari Maryam Abadi,Alireza Alfi,Mehdi Siahi Optimal Type-2Fuzzy Controller For HV AC SystemsDOI UDK IFAC 10.7305/automatika.2014.01.219681.515.8.017-53:[697+644]2.2;5.5.1.5Original scientific paperIn this paper a novel Optimal Type-2Fuzzy Proportional-Integral-Derivative Controller(OT2FPIDC)is designed for controlling the air supply pressure of Heating,Ventilation and Air-Conditioning(HV AC)system.The param-eters of input and output membership functions,and PID controller coefficients are optimized simultaneously by random inertia weight Particle Swarm Optimization(RNW-PSO).Simulation results show the superiority of the proposed controller than similar non-optimal fuzzy controller.Key words:HV AC systems,Optimal Type-2Fuzzy Proportional-Integral-Derivative controller(OT2FPIDC), Random inertia weight particle swarm optimization(RNW-PSO)Optimalni neizraziti reglutor tipa2za sustave za grijanje,ventilaciju i klimatizaciju.U radu je pred-ložena nova upravljaˇc ka shema optimalnog neizrazitog PID regulatora tipa2za upravljanje sustavima za grijajne, ventilaciju i klimatizaciju.Predložena je shema zasnovana na neizrazitom regulatoru(FLC)uˇc estalo korištenom za upravljajne nelinearnim procesima.Kako bi se premostio problem neizrazitih regulatora,neodstatak metode dizajnirajna,parametri ulazno-izlaznih funkcija pripadanja,kao i parametri PID regulatora se optimiraju metodom rojaˇc estica sa sluˇc ajnim parametrima inercije(RNW-PSO).Simulacijski rezultati pokazuju izvedivost predloženog pristupa.Kljuˇc ne rijeˇc i:HV AC sustavi,neizrazitog PID regulatora tipa2za upravljanje sustavima(OT2FPIDC),algoritam rojaˇc estica sa sluˇc ajnim parametrima inercije(RNW-PSO)1INTRODUCTIONHeating,Ventilation and Air-Conditioning(HV AC) mechanisms are needed for setting environmental vari-ables including,temperature,moisture,and pressure.As with other industrial usages,most of the processes asso-ciated with HV AC are controlled by PID controllers.The prevalent PID controllers are extensively applied because of their easy calculations,easy application,appropriate ro-bustness,high dependability,stabilizing and zero persis-tent state error.However HV AC mechanism is a non-linear and time variant mechanism.It is hard to access favorable tracking control efficiency,because tuning and self-adapting adjustment of parameters automatically are a perennial issue of PID controller.During the recent decades various methods for identifying PID controller pa-rameters have been presented.In some techniques the open loop response information of system is used,for instance Cohen-Coon reaction curve procedure[1].In recent years,researchers have extensively used the fuzzy logic for modeling,identification,and control of highly nonlinear dynamic systems[2,3].In[4-8],different combination of control methods are suggested to improve the efficiency of fuzzy PI or PID controllers.Adjustment process of PID controller coefficients can take a long time, and can be hard and costly work[8,9].Usually a proficient gainer attempts to control the process by adjusting the co-efficients of controller according to error and change rate of error in order to achieve the optimal response.In this paper the optimal adjustment is obtained by random iner-tia weight Particle Swarm Optimization(RNW-PSO).In the HV AC mechanism the supply air pressure is tuned by changing the speed of a supply air fan.The rela-tionship between fan speed and pressure of air source can be expressed by a delayed second order transfer function as is described by Bi and Cai[11].Since in various operat-ing conditions both fans and dampers show non-linear be-haviour from themselves,even a well-regulated controller is unable to meet design requirements due to the existing uncertainties in parameters of system.Motivated by the aforementioned researches,the purpose of this paper is to present a novel Optimal Type-2Fuzzy Proportional Integral Derivative Controller (OT2FPIDC)for regulating the air supply pressure ofOnline ISSN1848-3380,Print ISSN0005-1144ATKAFF55(1),69–78(2014)Fig.1.An IT2FLSHeating,Ventilation and Air-Conditioning(HV AC)sys-tem.The parameters of input and output membership func-tions,and PID controller coefficients are optimized simul-taneously by random inertia weight Particle Swarm Opti-mization(RNW-PSO).Simulation results indicate that the proposed controller has faster response,smaller overshoot and higher accuracy than Proportional Integral Deriva-tive PID,Adaptive Neuro Fuzzy(ANF),and Self-Tuning Fuzzy PI Controlle(STFPIC)under normal condition and under existing uncertainties in parameters of model.2TYPE-2FUZZY SETS AND SYSTEMSType-2fuzzy sets and systems generalize(type-1) fuzzy sets and systems so that more uncertainty can be handled.From the very beginning of fuzzy sets,criticism was made about the fact that the membership function of a type-1fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy,since that word has the connotation of lots of uncertainty.2.1Interval Type2Fuzzy Sets(IT2FSs)In spite of having a name which carries the concept of uncertainty,studies has demonstrated that there are restric-tions in the ability of T1FSs to model and minimize the effect of uncertainties[12-15].This is because a T1FS isfixed this means that its membership degrees are crisp tely,type-2FSs[16],specified by MFs that are themselves fuzzy,have been attracting interests.Inter-val type-2(IT2)FSs[14],a special case of type-2FSs,are currently the most widely used for their reduced computa-tional cost.2.2Interval Type-2Fuzzy Logic System(IT2FLS)Fig.1indicates the schematic diagram of an IT2FLS. It is similar to its T1equivalent,the main difference being that at least one of the FSs in the rule base is an IT2FS. Hence,the outputs of the inference engine are IT2FSs, and a type-reducer is required to convert them into a T1FS before defuzzification can be performed.Actually the calculations in an IT2FLS can be con-siderably simplified.Consider the rulebase of an IT2FLS consisting of N rules,supposing the following form:R n:IF x1is˜X n1...and x1is˜X n1.T HENy is Y n,n=1,2,...,N, where˜X n i(i=1,...,I)are IT2FSs,and Yn=[y n,y n] is an interval,which can be understood as the centroid[13, 16]of a consequent IT2FS,or the simplest TSK model, for its simplicity.In many applications we use y n=y n, i.e.,each rule consequent is a crisp number.Suppose the input vector is x =(x 1,x 2,...,x I).Typical calculations in an IT2FLS include the following steps:1.Calculate the membership of x i on each X n i,[µX n i(x i),µX n i(x i)],i=1,2,...,I,n=1,2,...,N.(1)2.Calculate thefiring interval of the n th rule,F n(x):F n(x )=[µX n1(x 1)×...×µX n1(x 1),µ¯X n1(x 1)×...×µ¯X n1(x 1)]≡[f n,¯f n],n=1,...,N(2)3.Apply type-reduction to combine F n(x )and the re-lated rule consequents.There are many such meth-ods.The most commonly used one is the center-of-sets type-reducer[13]:Y cos(x )= f n∈F n(x )y n∈Y nN n=1f n y nN n f n=[y l,y r](3)It has been demonstrated that[14,18,19]:y l=mink∈[1,N−1]kn=1¯f n y n+ N n=k+1f n y nk n=1¯f n+ N n=k+1f n = L n=1¯f n y n+ N n=L+1f n y nL n=1¯f n+ N n=L+1f ny l=maxk∈[1,N−1]kn=1¯f n y n+ N n=k+1f n y nk n=1¯f n+ N n=k+1f n(4) = R n=1¯f n y n+ N n=R+1f n y nn=1¯f n+ n=R+1f(5) ,where the switch points L and R are specified byy L≤y l≤y L+1(6)¯y R ≤y r ≤¯y R +1(7)and y n and y n have been sorted in ascending order,re-spectively.y l and y r can be calculated using the Karnik-Mendel (KM)algorithms [14].KM Algorithm for Computing y l [20]:1.Sort y n (n =1,2,...,N )in increasing order and call the sorted y n by the same name,but now y 1=y 2···=y N .Match the weights F n (x )with their respective y n and renumber them so that their index corresponds to the renumbered y n .2.Initialize f n by setting f n=f n +¯fn 2n =1,2,...,N(8)and then computey =Nn =1f n ynN n fn(9)3.Find switch point k (1k N –1)such thaty k≤y ≤yK +1(10)4.Setf n ={¯f n,n ≤k f n ,n k(11)And calculatey=Nn =1f n y nn fn(12)5.Check if y =y .If yes,stop and set y r =y and L =k .If no,go to Step6.6.Set y =y and go to Step 3.KM Algorithm for Computing y r [20]:1.Sort y n (n =1,2,...,N )in increasing order and call the sorted y n by the same name,but now y 1=y2...y N .Match the weights F n (x )with their re-spective y n and renumber them so that their index cor-responds to the renumbered y n .2.Initialize f n by settingf n=f n +¯fn 2n =1,2,...,Nand then calculatey =Nn =1f n ¯yn N n fn(13)3.Find switch point k (1k N –1)such that¯y k ≤y ≤¯y K +1(14)4.Setf n ={f n ,n ≤k¯f n ,n k(15)and calculatey=Nn =1f n ¯yn N n fn(16)5.Check if y =y .If yes,stop and set y r =y and R =k .If no,go to Step 6.6.Set y =y and go to Step 3.The main idea of the KM algorithm is to find the switch points for yl and yr pute the defuzzified output as:y =y l +y r2(17)3PARTICLE SW ARM OPTIMIZATIONThe PSO algorithm is a partly new population-based heuristic optimization method which is based on a metaphor of social interaction,specifically bird flocking.The main benefits of PSO are:1)The cost function’s gra-dient is not needed,2)PSO is more compatible and robust compared with other classical optimization techniques,3)PSO guarantees the convergence to the optimum solution,and 4)In comparison with GA,PSO lasts fewer time for each function evaluation as it does not apply many of GA operators such as mutation,crossover and selection opera-tor.In PSO,any nominee solution is named “Particle”.Each particle in the swarm demonstrates a nominee so-lution to the optimization problem,and if the solution is composed of a series of variables,the particle can be a vec-tor of variables.In PSO,each particle is flown through the multidimensional search space,regulating its position in search space based on their momentum and both personal and global histories.Then the particle uses the best posi-tion faced by itself and that of its neighborhood to position itself toward an optimal solution.The appropriateness of each particle can be assessed based on the cost function of optimization problem.At each repetition,the speed of every particle will be computed as follows:v i (t +1)=ωv i (t )+c 1r q (P id −x i (t ))+c 2r 2(P gd −x i (t )),(18)where x i(t)is the present position of the particle,p id is one of thefinest solutions this particle has achieved and p gd is one of thefinest solutions all the particles have achieved. After computing the speed,the new position of each parti-cle will be computed as followsx i(t+1)=x i(t)+v i(t+1).(19) The PSO algorithm is replicated using Eqs.18and19 which are updated at each repetition,up to pre-defined number of generations is achieved.3.1Random inertia weight PSOAlthough Standard PSO(SPSO)includes some signif-icant improvements by providing high rate of convergence in particular problems,it does demonstrate some deficien-cies.It is shown that SPSO has a weak capability to look for afine particle due to the lack of speed control mecha-nism.Most of the procedures are tried to ameliorate the ef-ficiency of SPSO by changeable inertia weight.The inertia weight is essential for the efficiency of PSO,which equili-brates global exploration and local exploitation capabilities of the swarm.A large inertia weight simplifies exploration, but it prolongs the convergence of particle.Unlike,a small inertia weight leads to rapid convergence,but it sometimes results local optimum.Therefore different inertia weight conformity algorithms have been recommended in the lit-eratures[21].In2003Zhang[22]studied the effect of ran-dom inertia weight in PSO(RNW-PSO),reporting empir-ical results that show its superior efficiency to LDW-PSO [23].Eberhart and Shi[24]have recommended a random inertia weight factor for tracking dynamic systems.The new version of PSO namely RNW-PSO can be obtained by changing Eq.((18))as belowv i(t+1)=r0v i(t)+c1r1(P id−x i(t))+c2r2(P gd−x i(t)),(20) where r0is a uniformly distributed random number inside the interval[0,1],and other parameters are same as be-fore.The RNW can overcome two bugs of LDW.First, decreasing the affiliation of inertial weight on the maxi-mum repetition that is hardly predicted before tests.Sec-ond,abstaining from the lacks of local search capability in the beginning of run and global search capability at the end of run.Before starting the optimization procedure,a performance benchmark should befirst presented.3.2Empirical StudiesIn order to examine the effect of inertia weight on the PSO efficiency,three non-linear benchmark functions pre-sented in literature[25,26]were used because they are fa-mous problems.Thefirst function is the Rosenbrok func-tion:Table1.V max and X max values used for testsFunction X max V maxf1100100f21010f3600600f1(x)=ni=1(100(x i+1−x2i)2+(x i−1)2),(21)where x=[x1,x2,...,x n]is an n-dimensional real-valued vector.The second is the generalized Rastrigrin function: f2(x)=ni=1(x2i−10cos(2πx i)+10).(22) The third is the generalized Griewank function:f3(x)=14000ni=1x2i−n i=1cos(x i√i)+1.(23)Three various amounts dimensions were tested:10,20 and30.The maximum numbers of repetition were set as 1000,1500and2000in accordance with the dimentions 10,20and30,respectively.For evaluation the scalabil-ity of PSO algorithm,three population sizes20,40and80 were used for each function according to various dimen-sions.Acceleration constants took the values c1=c2=2. Constriction factor C=1.To perform comparison,all the V max and X max were assigned by same parameter set-tings as in literature[26]and mentioned in Table1.500 trial runs were taken for each case4THE PROPOSED CONTROL METHOD General scheme of proposed controller is shown in Fig.2.The two inputs of the controller are the error e and the change rate of error˙e,respectively and the output of controller is U.The main shortage of the optimal Type-2 fuzzy-PID controller is the lack of systematic approaches to define fuzzy rules and fuzzy membership functions.As we know,most fuzzy rules are based on human knowledge and differ among persons despite the same system perfor-mance.Because of this,it is complex to assume that the given expert’s knowledge captured in the form of the fuzzy controller leads to optimal control.Therefore,the efficient approaches for tuning the membership function and control rules without a trial and error method are significantly re-quired.Because of this,the idea of employing RNW-PSO algorithm to achieve best rising time(t r),settling time(t s),Table2.The used parameters of RNW-PSO Size of the Swarm 50Dimension of Problem 20Maximum Number of iterations 100Cognitive Parameter C 11Social Parameter C 21Construction Factor C 1Fig.2.Optimal Type-2Fuzzy-PID controller %peak overshoot (M p ),steady-state error (E ss )is repre-sented [28].Generally,the heuristic algorithm like PSOonly requires to check the cost function for guidance of its search and no longer requiring informations about the sys-tem.So,in this paper,the Least Mean Square (LMS)of error is considered.The parameters of RNW-PSO are also listed in Table 2.In the use of Gaussian membership functions we will face with three different cases.1)Gaussian membership functions with the same means and variances,2)Gaussian membership functions with the same means and variable variances,and 3)Gaussian membership functions with variable means and the same variances.In [28]an optimal fuzzy-PI controller is designed for a nonlinear delay differ-ential model of glucose-insulin regulation system,and it is shown that Gaussian membership functions with variable means and the same variances have better performance in controlling this system,therefore we applied this idea in design process with the difference that the variances are selected interval.The specifications of the input and output variables are given in Tables 3and 4,respectively.The rulebase has the following nine rules:•R 1:IF e is E-˜N and ˙e is CE -˜N,THEN U is NL .•R 2:IF e is E -˜N and ˙e is CE -˜Z,THEN U is NS .•R 3:IF e is E -˜N and ˙e is CE -˜P,THEN U is ˜Z .•R 4:IF e is E -˜Z and ˙e is CE -˜N,THEN U is NS .Table 3.The Parameters of Input Gaussian MembershipFunctions Input Variables Membership Functions Mean Variance IntervalNegative (E −˜N )−0.0751[0.07910.1881]Eror (E)Zero (E −˜Z )0.0527[0.07910.1881]Positive (E −˜P )7.7634×10−4[0.07910.1881]Negative (CE −˜N )−0.1612[0.00700.0231]Change of Error (CE)Zero (CE −˜Z )0.0311[0.00700.0231]Positive (CE −˜P )0.0215[0.00700.0231]Table 4.The Parameters of Output Gaussian MembershipFunctions Output Variables Membership Functions Mean Variance IntervalNegative Large ( NL)−0.0141[0.01220.0486]Negative Small ( NS)−0.1051[0.01220.0486]Control Input (U)Zero (˜Z )−0.1681[0.01220.0486]Positive Small (PS)0.0549[0.01220.0486]Positive Large (PL)0.3496[0.01220.0486]•R 5:IF e is E -˜Z and ˙e is CE -˜Z ,THEN U is ˜Z .•R 6:IF e is E -˜Z and ˙e is CE -˜P ,THEN U is P S .•R 7:IF e is E -˜P and ˙e is CE -˜N ,THEN U is ˜Z .•R 8:IF e is E -˜P and ˙e is CE -˜Z ,THEN U is P S .•R 9:IF e is E -˜P and ˙e is CE -˜P ,THEN U is P L .The firing intervals and consequents of the nine rulesgiven in Table 5.From the KM algorithms,y l and y r can be computed as follow:y l =f 1NL 1+f 2 NS 2+f 3˜Z 3+f 4 NS 4f 1+f 2+f 3+f 4+f 5+f 6+f 7+f 8+f 9+f 5˜Z 5+f 6 P S 6+f 7˜Z 7+f 8 P S 8+f 9 P L9f 1+f 2+f 3+f 4+f 5+f 6+f 7+f 8+f 9Table 5.Firing intervals of the nine rules Rule No.:Firing Interval Consequent R 1[f 1,f 1]=[µE −˜N (e )×µCE −˜N (˙e ),µE −˜N (e )×µE −˜N (˙e )][ NL1, NL 1]R 2[f 2,f 2]=[µE −˜N (e )×µCE −˜Z (˙e ),µE −˜N (e )×µCE −˜Z (˙e )][ NS 2, NS 2]R 3[f 3,f 3]=[µE −˜N (e )µCE −˜P (˙e ),µE −˜N (e )×µCE −˜P (˙e )][˜Z3,˜Z 3]R 4[f 4,f 4]=[µE −˜Z (e )×µCE −˜N (˙e ),µE −˜Z (e )×µCE −˜N (˙e )][ NS 4, NS 4]R 5[f 5,f 5]=[µE −˜Z (e )×µCE −˜Z (˙e ),µE −˜Z(e )×µCE −˜Z (˙e )][˜Z5,˜Z 5]R 6[f 6,f 6]=[µE −˜Z (e )×µCE −˜P (˙e ),µE −˜Z (e )×µCE −˜P (˙e )][ P S 6, P S 6]R 7[f 7,f 7]=[µE −˜P (e )×µCE −˜N (˙e ),µE −˜P(e )×µCE −˜N (˙e )][˜Z7,˜Z 7]R 8[f 8,f 8]=[µE −˜P (e )×µCE −˜Z (˙e ),µE −˜P (e )×µCE −˜Z (˙e )][ P S 8, P S 8]R 9[f 9,f 9]=[µE −˜P (e )×µCE −˜P (˙e ),µE −˜P (e )×µCE −˜P (˙e )][ P L 9, P L 9]y r =f 1NL 1+f 2NS 2+f 3˜Z3+f 4 NS 4f 1+f 2+f 3+f 4+f 5+f 6+f 7+f 8+f 9+f 5˜Z 5+f 6 P S 6+f 7˜Z 7+f 8 P S 8+f 9 P L 9f 1+f 2+f 3+f 4+f 5+f 6+f 7+f 8+f 9Finally,the crisp output of the IT2FLS,y,can be cal-culated as follow:y =y l +y r2.(24)5SIMULATIONS AND RESULTS In order to simulate the proposed controller,MATLABsoftware is applied.The simulation is run on a personalcomputer Core 2Due,2.8GHz,4Gbytes RAM,under Windows 7.The RNW-PSO optimizes the controller’s parameters dynamically.To minimize fitness function,in each iteration,the parameters are randomly chosen by RNW-PSO algorithm.These parameters consist of mean and variance of Gaussian membership functions and PID controller’s coefficients.Then the program will be run.In the end of run,the fitness function’s value is calculated and is compared with the value calculated in previous it-erations.If the new value be better than previous values,the new estimated values for parameters are stored.After completion of iteration loop,RNW-PSO algorithm offers the best answer as an optimal answer.The optimal param-eters of PID controller are given in Table 6.The transferTable 6.Optimal parameters of PID controllerProportional Gain -Kp 1.1814Derivative Gain -Kd 0.0473Integral Gain -Ki 1.5056Fig.3.Obtained membership functions of input 1function of the supply air pressure loop under normal cir-cumstances is as follows:G (s )=0.81e −2s(0.97s +1)(0.1s +1),(25)where gain K =0.81,τ1=0.97,τ2=0.1and deadtime δ=2sec.For this process weighting parameters are defined N e =0.9,N ˙e =5and N u =2.5.Input andoutput membership functions of designed optimal type-2fuzzy-PID controller namely error (Input 1),change of er-ror (Input 2),and control input are shown in Figs.3,4,and5respectively.It can be observed from these Figs that the RNW-PSO has improved the logical sequence of member-ship functions.For instance,about input 2the membership function CE-P comes before CE-Z.In order to evaluate controller performance against the existing uncertainties in parameters of nominal modelthree different transfer function has been introduced.Toinvestigate this issue the applied transfer functions in [29]is used.1.when gain K =0.81,τ1=0.2,τ2=2and dead timeFig.4.Obtained membership functions of input 2Fig.5.Obtained membership functions of Output δ=2sec.,then the transfer function of the supply air pressure loop is as followG (s )=0.81e −2s(0.97s +1)(0.1s +1)(26)For this process weighting parameters are defined N e =0.9,N ˙e =15and N u =0.3.2.when gain K =1.2,τ1=0.97,τ2=0.1and dead time δ=3sec.,then the transfer function of the sup-ply air pressure loop is as followG (s )=1.2e −3s(0.97s +1)(0.1s +1)(27)For this process weighting parameters are defined N e =0.9,N ˙e =3and N u =1.3.when gain K =1.2,τ1=0.97,τ2=0.1and dead time δ=4sec.,then the transfer function of the sup-ply air pressure loop is as followG (s )=1.2e−4s(0.97s +1)(0.1s +1)(28)For this process weighting parameters are defined N e =0.9,N ˙e =3and N u =1.The Figs.6-9and Table 7are indicated that the supply air pressure loop of HV AC acts satisfactorily both under nominal transfer function and also under existing uncer-tainties in parameters of model.Table 8implies that both the rise time and settling time are highly appropriate.Peak overshoots are also demonstrated insignificant when Opti-mal Type-2Fuzzy-PID Controller (OT2FPIDC)is applied.The proposed controller in this paper is much less com-plicated than the existing non-optimal fuzzy controller in [30].The designed controller in this paper has only 9rules whereas with these limited rules the design requirements are satisfied.But in [30]for achieving the satisfactory re-sults 49rules are defined.This fact shows the superiority of the controller in this paper than the controller proposed in[30].Fig.6.Performance of the transfer function given by Eq.(25)Fig.7.Performance of the transfer function given by Eq.(26)Fig.8.Performance of the transfer function given by Eq.(27)Fig.9.Performance of the transfer function given by Eq.(28)Table7.Performance analysis of OT2FPIDC for different HVAC-Supply Air Pressure LoopTransfer function t r sec t s sec Mp%Ess%G(s)=0.81e−2s(0.97s+1)(0.1s+1)2.584.740.000.12G(s)=0.81e−2s(0.2s+1)(2s+1)4.448.170.000.01G(s)=1.2e−3s(0.97s+1)(0.1s+1)2.165.880.000.08G(s)=1.2e−4s(0.97s+1)(0.1s+1)2.266.750.000.06parison between performance of PID,ANF, STFPIC,and OT2FPIDC under normal condition and un-der existing uncertainties in parameters of model Transfer Function ControllerTypeMp%t s secG(s)=0.81e−2s(0.97s+1)(0.1s+1)PID3.96.7 ANF3.57.5 STFPIC0.003.6 OT2FPIDC0.004.74G(s)=0.81e−2s(0.2s+1)(2s+1)PID17.916.2 ANF0.910.6 STFPIC0.0888.9 OT2FPIDC0.008.17G(s)=1.2e−3s(0.97s+1)(0.1s+1)PID6337 ANF5619 STFPIC17.66 OT2FPIDC0.005.88G(s)=1.2e−4s(0.97s+1)(0.1s+1)PID100≥120ANF5932STFPIC256.9OT2FPIDC0.006.756CONCLUSIONA novel optimal type-2fuzzy-PID controller has beensuggested for temperature regulation of HCAC system.Simulation results indicate that the new optimal fuzzy-PID controller has faster response,smaller overshoot andhigher accuracy than PID,ANF,and STFPIC under normalcondition and under existing uncertainties in parameters ofmodel.The new optimal type-2fuzzy-PID controller canbe extensively applied in the HV AC industry.REFERENCES[1]Radakovic,Z.R.,Milosevic,V.M.,and Radakovic,S.B.,Application of temperature fuzzy controller in an indirectresistance furnace,Applied Energy,2002,vol.73,pp.167-182[2]Nguyen,H.T.,Prasad,N.R.,Walker,C.L.,and Walker,E.A.,A First Course in Fuzzy and Neural Control,USA:Chapman&Hall/CRC,2003.[3]Z.Kovaˇc i´c,Bogdan,S.,Crnošija,P.,An automated fuzzycontroller design for high-order systems,Automatika-Ltd.,vol.2,no.3,pp.37-40,1996.[4]Qiao,W.,Masaharu Mizumoto,Fuzzy sets and systems,1996,vol.78,pp.23-35.[5]Pedrycz,W.,and de Oliveira,J.V.,Optimization of fuzzymodels,IEEE Trans.Syst.,Man,Cyber.,1996,vol.26,no.4,pp.627–636.[6]Hyun-Joon,C.,Kwang-Bo,C.,Bo-Hyeun,W.,Fuzzy-PIDhybrid control:automatic rule generation using genetic al-gorithm,Fuzzy sets and systems,1997,vol.92,no.3,pp.305-316.[7]Alcala,R.,Casillas,J.,Cordon,O.,Gonzalez,A.,and Her-rera,F.,A genetic rule weighting and selection process forfuzzy control of heating,ventilation and air conditioningsystems,Engineering application of Artificial Intelligence,2005,vol.28,pp.279–296.[8]Qiang,X.,Wen-Jian,C.,and Ming,H.,A practical decen-tralized PID auto-tuning method for TITO systems underclosed–loop control,International Journal of InnovativeComputing,Information and Control,2006,vol.2,no.2,pp.305-322[9]Qing-Gao,W.,Chang-Chieh,H.,Yong,Z.,and Qiang,B.,Multivariable Controller Auto-Tuning with its Applicationin HV AC Systems,Proc.of the American Control Conf.,California,1999,vol.6,pp.4353–4357[10]Mudi,R.K.,and Pal,N.R.,A robust self-tuning scheme forPI and PD type fuzzy controllers,IEEE trans.on fuzzy sys.,1997,vol.7,no.1,pp.2-16.[11]Q.Bi,Cai,W.J.,Wang,Q.G.,Hang,C.C.,Lee,E.L.,Sun,Y.,Liu,K.D.,Zhang,Y.,and Zou,B.,Advanced controllerauto-tuning and its application in HV AC systems,ControlEngineering Practice,vol.8,no.6,pp.633-644.2000.[12]H.Hagras,“A hierarchical type-2fuzzy logic control ar-chitecture for autonomous mobile robots,”IEEE Trans.on Fuzzy Systems,vol.12,pp.524–539,2004.[13]Hagras,H.;“Type-2FLCs:A new generation of fuzzy con-trollers,”IEEE Computational Intelligence Magazine,vol.2,no.1,pp.30–43,2007Intelligence Magazine,vol.2,no.1,pp.30–43,2007.[14]J.M.Mendel,Uncertain Rule-Based Fuzzy Logic Systems:Introduction and New Directions.Upper Saddle River,NJ: Prentice-Hall,2001.[15]Dongrui Wu,Woei Wan Tan,“Genetic learning and perfor-mance evaluation of type-2fuzzy logic controllers,”Engi-neering Applications of Artificial Intelligence,vol.19,no.8,pp.829–841,2006.[16]L.A.Zadeh,The concept of a linguistic variable and its ap-plication to approximate reasoning-1,Information Sciences, vol.8,pp.199–249,1975.[17]N.N.Karnik and J.M.Mendel,“Centroid of a type-2fuzzyset,”Information Sciences,vol.132,pp.195–220,2001. [18]J.M.Mendel and D.Wu,Perceptual Computing:Aid-ing People in Making Subjective Judgments.Hoboken,NJ: Wiley-IEEE Press,2010.[19]D.Wu and J.M.Mendel,“Enhanced Karnik-Mendel Algo-rithms,”IEEE Trans.on Fuzzy Systems,vol.17,no.4,pp.923–934,2009.[20]Dongrui,U.;Maowen Nie;Comparison and practical im-plementation of type-reduction algorithms for type-2fuzzy sets and systems,2011IEEE International Conference on Fuzzy Systems June27-30,2011,Taipei,Taiwan. [21]Modares,H.,Alfi,A.,and Naghibi Sistani,M.B.,Param-eter Estimation of Bilinear Systems Based on an Adap-tive Particle Swarm Optimization,Eng.Appl.Artifi.Intell., 2010,vol.23,pp.1105-1111.[22]Zhang,L.,Yu,H.,Hu,S.,A New Approach to Improve Par-ticle Swarm Optimization,Proc.of the international conf.on Genetic and evolutionary computation,2003,134-139.[23]Shi,Y.,Eberhart,R.,A Modified Particle Swarm Optimizer,in Proc.of the IEEE Conf.On Evolutionary Computation, Singapore,1998,pp.69-73.[24]Eberhart,R.C.,and Shi,Y.,Tracking and optimizing dy-namic systems with particle swarms,in Proc.IEEE Congr.Evolutionary Computation,Seoul,Korea,2001,pp.94–97.[25]J.Kennedy.The particle swarm:social adaptation of knowl-edge.Proc.IEEE International Conference on Evolutionary Computation(Indianapolis,Indiana),IEEE Service Center, Piscataway,NJ303-308.[26]ing selection to improve particle swarmoptimization.IEEE International Conference on Evolution-ary Computation,Anchor age,Alaska,May4-9.[27]Y.Shi and R.Eberhart.Fuzzy adaptive particle swarm opti-mization.2001.Proc.Of the2001Congress on Evolution-ary Computation,vol.1101-106[28]Jian,W.,and Wenjian,C.,Development of an adaptiveneuro-fuzzy method for supply air pressure control in HV AC system,Syst.,Man,Cybern.,IEEE,2000.[29]Al-Fandi,M.,Jaradat,M.A.K.,and Sardahi,Y.,OptimalPI-fuzzy logic controller of glucose concentration using ge-netic algoritm,International Journal of Knowledge-based and Intelligent Engineering Systems,2011,vol.15,pp.99-117.[30]A.K.,Pal,and Mudi,R.K.,Self-Tuning Fuzzy PI Controllerand its Application to HV AC Systems,IJCC,2008,vol.6, no.1,pp.25-30.Mohammad Hassan Khooban received theB.Sc.degree in Control Engineering from theFars Science and Research Branch,in2010andM.Sc.degrees in Control Engineering from Is-lamic Azad University,Iran,in2012.His em-ployment experience included working at Sar-vestan Branch-Islamic Azad University of Iran,Advisor to Iranian Space Agency,Iranian SpaceCenter,Mechanic Institute,Shiraz,Iran,sincenow.His research interests include HeuristicOptimization,Nonlinar Robust Control,Fuzzy Logic and PowerSystems.Davood Nazari Maryam Abadi received theB.Sc,in Elec.Eng.from the Sadjad Instituteof Higher Education Mashhad,Iran.He receivedthe M.Sc,in Elec.Eng.from the Azad Universityof Iran,Garmsar branch,Currently.His researchinterests are in Nonlinear control,Power systemstability studies,Fuzzy systems and Artificial in-telligence.Alireza Alfihas received his B.Sc.degree fromFerdowsi University of Mashhad,Mashhad,Iran,in2000,and his M.Sc.and Ph.D.degrees fromIran University of Technology,Tehran,Iran,in2002and2007,all in Electrical Engineering.He joined Shahrood University of Technology in2008,where he is currently an Assistant Profes-sor of Electrical Engineering.His research inter-ests include heuristic optimization,control the-ory,time delay systems,fuzzy logic and chaoticsystems.Mehdi Siahi recevied the B.Sc.degree in Elecr-tical Engineering from the Yazd University,YazdIRAN in2001and M.Sc.degree in Control Engi-neering from the Shahrood University of Thech-nology,Shahrood,Iran,in2003.He obtained thePh.D.degree in cotrol engineering from shahroodUniverstity of Thechnology,Shahrood,Iran,in2008.He is now an assistant professor and hasbeen with Faculty of Electrical Engineering,Is-lamic Azad University of garmsar Branch,Iranfrom2004.His current research is on fault Toler-ant Control systems,Robust Control and Nonlinear systems。

相关文档
最新文档