高一函数知识点总结归纳
高一数学课本函数知识点总结

高一数学课本函数知识点总结高一数学课本函数知识点有哪些?下面就是给大家带来的高一数学课本函数知识点,希望能帮助到大家!高一数学课本知识点总结11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;(1)(a0,a≠1,b0,n∈R+);(2)logaN=(a0,a≠1,b0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a0,a≠1,N0);6.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一三角函数知识点归纳总结公式

高一三角函数知识点归纳总结公式三角函数是高中数学中的一个重要内容,它在数学和物理等学科中有着广泛的应用。
下面我将对高一阶段学习的三角函数的知识点进行归纳总结,并给出相应的公式。
1. 正弦函数(sin)正弦函数是三角函数中最基本的函数之一,它表示一个角的正弦值与其对边和斜边的比值。
其公式为:sinθ = 对边 / 斜边2. 余弦函数(cos)余弦函数是三角函数中另一个基本的函数,它表示一个角的余弦值与其邻边和斜边的比值。
其公式为:cosθ = 邻边 / 斜边3. 正切函数(tan)正切函数是三角函数中较为复杂的函数,它表示一个角的正切值与其对边和邻边的比值。
其公式为:tanθ = 对边 / 邻边4. 余切函数(cot)余切函数是正切函数的倒数,表示一个角的余切值与其邻边和对边的比值。
其公式为:cotθ = 邻边 / 对边5. 正割函数(sec)正割函数是余弦函数的倒数,表示一个角的正割值与其斜边和邻边的比值。
其公式为:secθ = 斜边 / 邻边6. 余割函数(csc)余割函数是正弦函数的倒数,表示一个角的余割值与其斜边和对边的比值。
其公式为:cscθ = 斜边 / 对边除了以上的基本三角函数,还有一些与三角函数相关的公式:7. 和差角公式sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)8. 二倍角公式sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ) / (1 - tan^2θ)9. 半角公式sin(θ/2) = ± √((1 - cosθ) / 2)cos(θ/2) = ± √((1 + cosθ) / 2)tan(θ/2) = ± √((1 - cosθ) / (1 + cosθ))10. 诱导公式sin(A ± π/2) = ± cosAcos(A ± π/2) = ∓ sinAtan(A ± π/2) = -cotA这些公式是高一阶段学习三角函数时需要掌握和应用的重要工具,通过熟练掌握这些公式,可以帮助我们解决各种与三角函数相关的问题。
高一数学函数知识点总结及例题

高一数学函数知识点总结及例题函数是高中数学中的重要概念,也是后续学习数学的基础。
本文将对高一数学中的函数知识点进行总结,并提供一些例题帮助读者更好地理解和应用这些知识。
一、函数的定义与性质函数是一种特殊的关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素,可以用来描述两个变量之间的依赖关系。
函数通常记作f(x),其中x为自变量,f(x)为函数值或因变量。
函数的性质包括定义域、值域、单调性、奇偶性等。
定义域是自变量的取值范围,值域是函数值的取值范围。
函数可以是单调递增、单调递减或既不递增也不递减。
奇偶性是指函数的对称性,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
例题1:已知函数f(x)=-2x+3,求函数的定义域和值域。
解:由于函数中的x没有任何限制,所以定义域为全体实数。
对于值域,由于函数是线性函数,可以取到任意的实数值,所以值域也是全体实数。
例题2:已知函数g(x)=x^2-4x,判断函数的单调性和奇偶性。
解:函数g(x)是二次函数,当系数a>0时,函数是开口向上的抛物线,函数是单调递增的;当系数a<0时,函数是开口向下的抛物线,函数是单调递减的。
由于g(x)是二次函数,所以它是偶函数。
二、函数的图像及其性质函数的图像是函数在平面直角坐标系上的几何表示,可以通过绘制函数的图像来更直观地理解函数的性质。
1. 幂函数:幂函数是指形如y=ax^n的函数,其中a和n为常数,且a≠0,n为整数。
幂函数的图像的特点是曲线形状与n的正负和大小有关,其中当n为偶数时,图像关于y轴对称;当n为奇数时,图像关于原点对称。
2. 指数函数:指数函数是以常数e(自然对数的底数)为底数的幂函数,形如y=a*e^x,其中a为常数。
指数函数的图像特点是在右侧逐渐上升,在左侧逐渐下降,且经过点(0,1)。
3. 对数函数:对数函数是指以常数a(a>0且a≠1)为底数的对数函数,形如y=loga(x),其中x为正实数。
高一上所有函数知识点归纳

高一上所有函数知识点归纳函数是数学中的重要概念之一,在高中数学的学习过程中占据着重要的地位。
通过对函数的学习,不仅可以提高我们的数学运算能力,还可以帮助我们更好地理解数学问题。
本文将对高一上学期所有函数知识点进行归纳总结,帮助同学们更好地掌握这一部分内容。
1. 函数的概念和基本性质函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。
通常用f(x)表示函数,其中x为自变量,f(x)为函数的值或因变量。
函数有定义域、值域和对应关系等基本性质。
同时,还有奇函数和偶函数的性质,以及函数的有界性和单调性等重要概念。
2. 函数图像的绘制对于给定的函数,可以使用函数图像来表示函数的性质和规律。
绘制函数图像的基本步骤包括确定坐标轴、选择适当的比例尺、计算关键点的函数值和绘制连接这些点的曲线等。
函数图像可以帮助我们更直观地理解函数的特点,比如函数的增减性、极值点和拐点等。
3. 函数的基本类型高一上学期所学的函数主要包括线性函数、二次函数、指数函数和对数函数。
线性函数是一种最简单的函数,其图像为一条直线,表达式为y=ax+b。
二次函数是一种抛物线函数,表达式为y=ax²+bx+c。
指数函数和对数函数则是指数和对数运算的函数形式,具有各自的特点和性质。
4. 函数的运算函数之间可以进行加减乘除等运算,这些运算称为函数的四则运算。
函数的加减运算分别是对应元素相加和相减,函数的乘法是对应元素相乘,函数的除法是对应元素相除。
这些运算可以帮助我们处理函数之间的关系,进一步理解函数的性质。
5. 函数的复合与反函数函数的复合是指将一个函数的输出作为另一个函数的输入进行运算。
函数的反函数是指满足特定条件的逆向关系函数。
函数的复合和反函数可以帮助我们更灵活地处理函数之间的关系,并解决实际问题中的数学模型。
6. 函数方程和函数不等式函数方程和函数不等式是函数中的重要问题,通过解方程和不等式可以求出满足特定条件的自变量。
高一数学必修一函数概念的知识点

高一数学必修一函数概念的知识点高一数学必修一函数概念的知识点在日常过程学习中,是不是经常追着老师要知识点?知识点在教育实践中,是指对某一个知识的泛称。
哪些知识点能够真正帮助到我们呢?以下是店铺整理的高一数学必修一函数概念的知识点,仅供参考,欢迎大家阅读。
高一数学必修一函数概念的知识点 11、映射的定义2、函数的概念3、函数的三要素:定义域、值域和对应法则。
4、两个函数能成为同一函数的条件当且仅当两个函数的定义域和对应法则完全相同时,这两个函数才是同一函数。
5、区间的概念和记号6、函数的表示方法函数的表示方法有三种。
(1)解析法(2)列表法(3)图像法7、分段函数常见考法本节是段考和高考必不可少的考查部分,多以选择题和填空题的形式出现。
段考中常考查函数的定义域、值域、对应法则、同一函数、函数的解析式和分段函数。
高考中可以和高中数学的大部分章节知识联合考查,但是难度不大,属于容易题。
多考查函数的定义域、函数的表示方法和分段函数。
误区提醒1、映射是一种特殊的函数,映射中的集合A,B可以是数集,也可以是点集或其他集合,这两个集合有先后顺序。
A到B的映射与B到A的映射是不同的。
而函数是数集到数集的映射,所以函数是特殊的映射,但是映射不一定是函数。
2、函数的问题,要遵循“定义域优先”的原则。
无论是简单的函数,还是复杂的函数,无论是具体的函数,还是抽象的函数,必须优先考虑函数的定义域。
之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便。
3、分段函数是一个函数,而不是几个函数。
分段函数书写时,注意格式规范,一般在左边的区间写在上面,右边的区间写在下面,每一段自变量的取值范围的交集为空集,所有段的自变量的取值范围的并集是函数的定义域。
高一数学必修一函数概念的知识点 2一、函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,是对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A。
函数知识点高一笔记总结

函数知识点高一笔记总结函数是数学中的一个重要概念,在高中数学中占据着重要的地位。
通过学习函数,我们可以更好地理解数学中的关系以及解决问题的方法。
下面是关于函数知识点的高一笔记总结。
一、函数的定义和表示法函数是一种特殊的关系,每个自变量对应唯一一个因变量。
函数可以用以下几种表示法表示:1. 符号表示:用f(x)表示函数,其中f为函数名,x为自变量。
2. 表格表示:用一个表格列出自变量和对应的因变量的值。
3. 图像表示:将函数的自变量和因变量的值画在坐标系上,形成函数的图像。
二、函数的性质函数具有以下几个重要的性质:1. 定义域和值域:函数的定义域是自变量可能取值的集合,值域是函数的输出值的集合。
2. 奇偶性:函数可以是奇函数或偶函数。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
3. 单调性:函数可以是递增的或递减的。
递增函数满足当x₁ < x₂时,f(x₁) < f(x₂);递减函数满足当x₁ < x₂时,f(x₁) > f(x₂)。
4. 极值点:函数的极值点是函数在定义域内的局部最大值点或最小值点。
三、常见函数类型高中数学中经常会遇到的函数类型包括:1. 线性函数:函数的图像是一条直线,可以表示为y = kx + b,其中k为斜率,b为截距。
2. 幂函数:函数的图像是一条平滑的曲线,可以表示为y =ax^b,其中a和b为常数。
3. 指数函数:函数的图像是以常数e为底的指数曲线,可以表示为y = ab^x,其中a和b为常数。
4. 对数函数:函数是指数函数的反函数,可以表示为y =logb(x),其中b为底数。
四、函数的运算函数之间可以进行常见的运算,包括:1. 函数的和、差、积和商:两个函数的和(差)是将对应的自变量值相加(相减),对应的因变量值也相加(相减);函数的积是将对应的自变量值相乘,对应的因变量值也相乘;函数的商是将对应的自变量值相除,对应的因变量值也相除。
高一三角函数知识点归纳总结公式
高一三角函数知识点归纳总结公式以下是高一三角函数的一些知识点和公式:1. 三角函数的基本性质:周期性:sin(x) 和 cos(x) 的周期都是2π。
奇偶性:sin(x) 是奇函数,cos(x) 是偶函数。
有界性:sin(x) 和 cos(x) 的取值范围都是 [-1, 1]。
2. 三角函数的定义域和值域:定义域:对于所有实数 x,sin(x) 和 cos(x) 的定义域都是 R。
值域:sin(x) 和 cos(x) 的值域都是 [-1, 1]。
3. 三角函数的周期性和对称性:周期性:sin(x) 和 cos(x) 的周期都是2π。
对称性:sin(x) 在(0, π) 上是增函数,在(π, 2π) 上是减函数;cos(x) 在(0, π/2) 和(π, 3π/2) 上是减函数,在(π/2, π) 和(3π/2, 2π) 上是增函数。
4. 三角函数的和差公式:sin(x+y) = sinxcosy + cosxsinycos(x+y) = cosxcosy - sinxsiny5. 三角函数的倍角公式:sin2x = 2sinxcosxcos2x = cos²x - sin²xtan2x = 2tanx / (1 - tan²x)6. 三角函数的半角公式:sin(x/2) = ±√[(1 - cosx) / 2]cos(x/2) = ±√[(1 + cosx) / 2]tan(x/2) = ±√[(1 - cosx) / (1 + cosx)]7. 三角函数的和差化积公式:sin(x+y)-siny=2sin((x-y)/2)cos((x+3y)/2)cos(x+y)-coxy=-2sin((x-y)/2)cos((x+3y)/2)8. 其他常用公式:sin²θ + cos²θ = 1(勾股定理)tanθ = sinθ / cosθ(正切的定义)arcsin(x)、arccos(x)、arctan(x) 等反三角函数。
高一函数换元法知识点总结
高一函数换元法知识点总结函数是数学中的重要概念,也是高中数学中的重要内容之一。
在数学的学习过程中,我们经常会遇到各种不同的函数,而函数的换元法是其中的一种重要方法。
本文将对高一函数换元法的知识点进行总结,以帮助同学们更好地掌握这一内容。
一、什么是函数换元法函数换元法是一种通过将自变量或因变量替换成新的变量,从而简化函数的形式和计算的方法的数学方法。
通过合适的换元操作,我们可以将原函数转化为更易于处理的形式,从而更好地解决问题。
二、如何进行函数换元函数换元法的基本原则是将函数中的某个符号替换成另一个符号,并确保变换是可逆的。
具体而言,我们可以通过以下几个步骤进行函数的换元操作。
1. 选择合适的换元变量:根据问题中的要求,我们通常选择与原函数中的一项相对应的符号作为换元变量。
同时,我们还需要考虑到这个变量的可独立性和计算的方便性。
2. 建立新的变量与原变量之间的关系式:替换后的变量应该与原来的变量之间有明确的关系。
这个关系式可以通过已知条件或特殊的转换方法来确定。
3. 计算新的函数表达式:根据建立的关系式,将原函数中的自变量或因变量用新的变量表达出来。
在进行计算时,可以结合换元变量的特点和函数的性质,适当地进行化简或变形。
4. 反向换元:如果需要得到原来的变量表达式,可以通过将新变量的表达式代入到建立的关系式中,从而得到原变量与新变量之间的关系。
三、常用的函数换元方法函数换元法在实际运用中,有许多常见的方法和技巧,以下列举几种常用的函数换元法。
1. 线性换元法:当函数的自变量或因变量中含有线性关系时,可以通过选择新的变量,将其线性化,从而简化计算。
2. 幂函数换元法:当函数的自变量或因变量涉及幂函数时,可以通过选取合适的底数和指数,将其转换成简单的形式。
3. 三角函数换元法:当函数涉及三角函数时,可以通过选取适当的三角函数和反三角函数的关系,化简计算。
4. 指数换元法:当函数涉及指数函数时,可以通过选取适当的底数和指数,进行换元。
高一三角函数知识点归纳总结公式
高一三角函数知识点归纳总结公式一、正弦函数的相关公式:1. 周期公式:y = sin(x)的周期是2π,即sin(x + 2π) = sin(x)。
2. 幅值公式:y = a·sin(x)的幅值是|a|,即|sin(x)| ≤ |a|。
3. 对称公式:sin(-x) = -sin(x),即正弦函数关于y轴对称。
4. 奇偶性公式:sin(-x) = -sin(x),即正弦函数是奇函数。
5. 正弦函数图像的特点:振幅为a,最值为±a,对称轴是y = 0。
二、余弦函数的相关公式:1. 周期公式:y = cos(x)的周期是2π,即cos(x + 2π) = cos(x)。
2. 幅值公式:y = a·cos(x)的幅值是|a|,即|cos(x)| ≤ |a|。
3. 对称公式:cos(-x) = cos(x),即余弦函数关于y轴对称。
4. 奇偶性公式:cos(-x) = cos(x),即余弦函数是偶函数。
5. 余弦函数图像的特点:振幅为a,最值为±a,对称轴是y = a。
三、正切函数的相关公式:1. 周期公式:y = tan(x)的周期是π,即tan(x + π) = tan(x)。
2. 正切函数的定义域:tan(x)的定义域是x ≠ (2k + 1)·π/2,k是整数。
3. 正切函数的值域:tan(x)的值域是全体实数。
4. 正切函数图像的特点:无振幅和对称轴,有无穷多个间断点。
四、三角函数的和差化简公式:1. sin(x ± y) = sin(x)·cos(y) ± cos(x)·sin(y)。
2. cos(x ± y) = cos(x)·cos(y) ∓ sin(x)·sin(y)。
3. tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓ tan(x)·tan(y))。
高一数学周期函数知识点归纳
高一数学周期函数知识点归纳高一学年是数学学科中一个重要的节点,学生们开始接触到更加具体和深入的数学知识。
其中,周期函数是高中数学中的一个重要内容,也是学生们在数学学科中的一个重要门槛。
本文将围绕着高一数学中周期函数的知识点进行归纳和总结。
一、周期函数的定义和特点周期函数是指在一定的时间内,函数值呈现出一定的规律性重复变化的函数。
其中,最基本的周期函数是正弦函数和余弦函数。
它们的最小正周期都是2π,即在一个周期内,函数的值会重复。
周期函数有以下几个特点:1. 函数值在一个正周期内重复;2. 函数值在一个正周期内的增减变化规律相同;3. 函数值在不同的周期上的增减变化规律不同;4. 函数值在不同的周期上的取值范围可能不同。
二、周期函数图像的性质周期函数的图像具有一定的对称性,这是由函数的周期性决定的。
周期函数的图像有以下几个特点:1. 函数在每一个正周期内都有对称轴;2. 函数在每一个正周期内的增减变化过程都是对称的;3. 函数在不同的周期上的图像可能有水平平移、垂直平移和挤压等变化。
三、周期函数的性质和运算周期函数有一些特殊的性质和运算规律。
任务是关注其中的一些重要内容:1. 周期函数的零点:周期函数的零点是指函数值等于零的点。
对于正弦函数和余弦函数,它们的零点在每个周期的中间,分别为x=kπ和x=(k+0.5)π,其中k为整数。
2. 周期函数的最值:周期函数的最值指函数值的最大值和最小值。
对于正弦函数和余弦函数,它们的最大值和最小值分别为1和-1。
3. 周期函数的复合函数:周期函数的复合函数是指将周期函数放到另一个函数中进行求解。
通过合理的复合,可以使得周期函数的图像发生各种变化,如垂直平移、水平平移、挤压等,从而得到更加复杂的图像。
4. 周期函数的运算性质:周期函数也可以进行通常的四则运算和复合运算。
特别是正弦函数和余弦函数,在一些特定的运算过程中具有一定的性质,如:正弦函数的和函数还是正弦函数,除了函数值的增大和减小方向发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一函数知识点总结归纳
高中数学的学习难度主要在于概念的深入和方法的抽象。
高一是数学学习的起步阶段,更是重中之重。
今天小编在这给大家整理了高一函数知识点总结,接下来随着小编一起来看看吧!
高一函数知识点总结
1高一数学函数知识点归纳1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
2、函数定义域的解题思路:
⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数
⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 定义域一致,对应法则一致。
4、函数值域的求法
⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。
⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。
⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。
⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换
⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。
⑵ 伸缩变换:在x前加上系数。
⑶ 对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y 与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。
⑶ 不要求集合B中的每一个元素在集合A中都有原象。
7、分段函数
⑴ 在定义域的不同部分上有不同的解析式表达式。
⑵ 各部分自变量和函数值的取值范围不同。
⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。
8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。
2高一数学函数的性质1、函数的局部性质——单调性
设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1< x2时,都有f(x1)<f(x2),那么y=f(x)在区间d上是增函数,d是函数y=f(x)的单调递增区间;当x1< x2时,都有f(x1)="">f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。
⑴函数区间单调性的判断思路
ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。
ⅱ 做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。
ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。
⑵复合函数的单调性
复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。
⑶注意事项
函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。
2、函数的整体性质——奇偶性
对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;
对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。
小编推荐:高中数学必考知识点归纳总结
⑴奇函数和偶函数的性质
ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。
ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
⑵函数奇偶性判断思路
ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。
ⅱ确定f(x) 和f(-x)的关系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。
3、函数的最值问题
⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。
⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。
⑶关于二次函数在闭区间的最值问题
ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。
ⅱ 若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c 中,a>0时,顶点为最小值,a<0时顶点为最大值;后判断区间的两端点距离顶点的远近,离顶点远的端点的函数值,即为a>0时的最大值或a<0时的最小值。
ⅲ 若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性
若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);
若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。
3高一数学基本初等函数1、指数函数:函数y=ax (a>0且a≠1)叫做指数函数
a 的取值 a>1 0<a<1 定义域x∈R x∈R 值域y∈(0,+∞) y∈(0,+∞) 单调性全定义域单调递增全定义域单调递减奇偶性非奇非偶函数非奇非偶函数过定点(0,1)(0,1)
注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:
a>1时,最小值f(a),最大值f(b);0<a<1时,最小值f(b),最大值f(a)。
< p="">
⑵ 对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。
2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数
a 的取值 a>1 0<a<1 定义域x∈(0,+∞) x∈(0,+∞) 值域y∈R y∈R 单调性全定义域单调递全定义域单调递减奇偶性非奇非偶函数非奇非偶函数过定点 (1,0) (1,0)
3、幂函数:函数y=xa(a∈R),高中阶段,幂函数只研究第I象限的情况。
⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。
⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。
⑶a<0时,幂函数在(0,+∞)区间为减函数。
当x从右侧无限接近原点时,图像无限接近y轴正半轴; 当y无限接近正无穷时,图像无限接近x轴正半轴。
幂函数总图见下页。