矩阵与线性变换

合集下载

第二章 矩阵与线性变换

第二章 矩阵与线性变换

证 我们仅给出证明的思路, 细节见习题 3. 设 dim U = s, dim W = t, dim (U ∩ W ) = r. 任取 U ∩ W 的一组基 α1 , α2 , · · · , αr . 由于 U ∩ W 是 U 与 W 的公共子空间, 故 U ∩ W 的基 是 U 与 W 的线性无关的向量组, 因此可以扩充成 U 或 W 的基. 设 α1 , α2 , · · · , αr , βr+1 , βr+2 , · · · , βs 与 α1 , α2 , · · · , αr , γr+1 , γr+2 , · · · , γt 分别是 U 与 W 的基. 则 α1 , α2 , · · · , αr , βr+1 , βr+2 , · · · , βs , γr+1 , γr+2 , · · · , γt 是 U + W 的一组基. (为此只需证明该向量组线性无关, 且 U + W 的任何向量均可由这些向量 线性表示.) 由维数定理可知, 欲使子空间 U + W 的维数最大, 必要且只要 U ∩ W = 0, 亦即 U 与 W 重 合的部分最小. 这时我们称和 U + W 是直 直和, 记为 U ⊕ W . 因此 dim (U ⊕ W ) = dim U +dim W . 例 2.1.4 二维平面 R2 是 x 轴与 y 轴 (均是 1 维子空间) 的直和. 类似地, R3 是 x 轴, yoz 平面 (这是一个 2 维子空间) 的直和. 例 2.1.5 只含奇 (偶) 次项的多项式称为奇 (偶) 多项式. 0 多项式既是奇多项式也是偶 多项式. 全体奇 (偶) 多项式作成多项式空间的子空间, 称为奇 (偶) 多项式子空间. 多项式空间 是奇多项式子空间与偶多项式子空间的直和. 例 2.1.6 n 阶矩阵空间 Mn (F ) 是纯量矩阵子空间 {A ∈ Mn |A = λI, λ ∈ F } 与迹 0 子空 间 {A ∈ Mn |trA = 0} 的直和. 定 理 2.1.3 (直和的判定) 设 U 与 W 是线性空间 V 的两个子空间, 则下列命题等价: (1) U + W 是直和 (即 U ∩ W = 0); (2) 对任意 α ∈ U + W , 分解式 α = u + w, 其中 u ∈ U, w ∈ W 是唯一的, 即若还 有 α=u +w, 则 u=u, w =w; (3) 零向量的分解式唯一; 即若 0 = u + w, u ∈ U, w ∈ W , 则 u = w = 0; (4) dim (U + W ) = dim U + dim W . 注: 经常将 定理 2.1.3(3) 作为直和的定义. 31

线性代数6-3线性变换及其矩阵

线性代数6-3线性变换及其矩阵

,,
n与1,

2
,,

是线性空间
n
V
中的两组基 ,并且由基 1,2 ,,n到基1, 2 ,, n
的过渡矩阵为 P,V中的线性变换在两组基 下的矩阵
分别为A, B,则有B P1AP.
证明
1, 2 ,, n 1,2 ,,n P T 1,2,,n 1,2,,n A, T 1, 2,, n 1, 2,, n B
该基下的坐标(x1, x2 ,, xn )和该基的像T (1),T (2 )
,T (n )所确定 3.线性变换矩阵
由于T (1),T (2 ),T (n )是V中的向量,所以可由1,
2 ,n线性表示.所以有
T 1 a111 a21 2 an1 n ,
a22

an2

a2n



(
,
1

ann
,,
2
),
n
a
i
2i

,
a ni
定义Rn中的变换 y T (x)为 T( x) Ax,( x Rn),
则T为线性变换.
总结:要证一个变换 T 是线性变换,必须证 T 保持 加法和数量乘法,即
证毕.
定理表明:A 与B 相似,且两个基之间的过渡矩阵 P 就是相似变换矩阵.
例4 设V 2中的线性变换T在基 1 , 2下的矩阵为
A a11 a12 , a21 a22
求T在基 2 , 1下的矩阵.

(
2
,
1)

(
1 ,
2)

0 1
1 , 0

线性变换与矩阵的关系

线性变换与矩阵的关系

线性变换与矩阵的关系学院:数学与计算机科学学院班级:2011级数学与应用数学姓名:学号:线性变换与矩阵的关系(西北民族大学数学与应用数学专业,兰州 730124)指导教师一、线性变换定义1 设有两个非空集合V,U,若对于V中任一元素α,按照一定规则总有U中一个确定的元素β和它对应,则这个对应规则被称为从集合V到集合U的变换(或映射),记作β=T(α)或β=T α,( α∈V)。

设α∈V,T(α)= β,则说变换T把元素α变为β,β称为α在变换T下的象,α称为β在变换T下的源,V称为变换T的源集,象的全体所构成的集合称为象集,记作T(V)。

即T(V)={ β=T(α)|α∈V},显然T(V) ⊂U注:变换的概念实际上是函数概念的推广。

定义2 设V n,U m分别是实数域R上的n维和m维线性空间,T是一个从V n到U m得变换,如果变换满足(1)任给α1 ,α2∈V n,有T(α1+α2)=T(α1)+T(α2);(2)任给α∈V n,k∈R,都有 T(kα)=kT(α)。

那么,就称T为从V n到U m的线性变换。

说明:○1线性变换就是保持线性组合的对应的变换。

○2一般用黑体大写字母T,A,B,…代表现象变换,T(α)或Tα代表元α在变换下的象。

○3若U m=V n,则T是一个从线性空间V n到其自身的线性变换,称为线性空V n中的线性变换。

下面主要讨论线性空间V n中的线性变换。

二、线性变换的性质设T是V n中的线性变换,则(1)T(0)=0,T(-α)=-T(α);(2)若β=k1α1+k2α2+…+k mαm,则Tβ=k1Tα1+k2Tα2+…+k m Tαm;(3)若α1,…αm线性相关,则Tα1…Tαm亦线性相关;注:讨论对线性无关的情形不一定成立。

(4)线性变换T的象集T(V n)是一个线性空间V n的子空间。

记S T={α|α∈V n,T α=0}称为线性变换T的核,S T是V n的子空间。

线性变换与矩阵的关系

线性变换与矩阵的关系

线性变换与矩阵的关系线性代数是数学中的一个分支学科,它是整个数学的一个基础。

线性代数的核心概念是线性变换和矩阵。

线性变换可以被视为线性代数中最基本的概念,矩阵则是线性变换最常用的工具。

本文将探讨线性变换与矩阵之间的关系。

一、线性变换的定义线性变换是一种把向量空间V中的每一个元素映射到向量空间W中的一种映射。

如果对于每个向量x和每个标量c,我们都有T(x + cy) = T(x) + cT(y),则此映射为线性变换。

其中,T为线性变换的运算符,y是向量空间V中的元素。

线性变换的一个重要性质是它保持线性运算。

这意味着,对于向量空间V中的任何两个向量x和y,以及标量c,都有:T(x + y) = T(x) + T(y)T(cx) = cT(x)这些性质使得线性变换在数学中扮演着重要的角色。

二、矩阵的定义矩阵是一个有限的、有序的、由数构成的矩形表。

我们通常用大写字母表示矩阵,例如A。

矩阵可以用来表示线性变换,而线性变换可以用矩阵来描述。

我们可以将矩阵视为一种数字表示,它包含了一个线性变换所以可能的操作。

三、线性变换和矩阵的关系线性变换和矩阵是密不可分的。

每个线性变换都可以表示为一个矩阵,而每个矩阵也可以表示为一个线性变换。

矩阵的第i行和第j列上的元素用a(i,j)表示。

我们可以用以下公式将一个向量空间中的向量转换成矩阵的形式:⎡ a(1,1) a(1,2) ... a(1,n)⎤⎢ a(2,1) a(2,2) ... a(2,n)⎥A = ⎢ ... ... ... ... ... ⎥⎢ a(n,1) a(n,2) ... a(n,n)⎥⎣⎦对于一个给定的矩阵A,我们可以将它作为线性变换T的矩阵表示。

这个线性变换对一个向量进行变换的方式为 T(x) = Ax,其中x为向量,Ax表示矩阵A和向量x的乘积。

矩阵乘法的目的是用一个矩阵描述一种线性变换。

在矩阵乘法中,行列式中每个元素都表示了一种特定的线性变换。

数学矩阵与线性变换的关系与应用

数学矩阵与线性变换的关系与应用

数学矩阵与线性变换的关系与应用引言矩阵是数学中一种重要的工具,广泛应用于各个领域。

在线性代数中,矩阵与线性变换之间有着密切的关系。

本文将探讨矩阵与线性变换的基本概念、性质以及它们在实际问题中的应用。

一、矩阵的基本概念矩阵是由数个数按照一定的规则排列成的矩形阵列。

矩阵可以表示为一个m行n列的矩形数组,其中每个元素都是一个数。

例如,一个2行3列的矩阵可以表示为:A = [a11 a12 a13][a21 a22 a23]其中a11、a12、a13、a21、a22、a23分别表示矩阵A的元素。

二、线性变换的基本概念线性变换是指保持向量加法和数乘运算的运算规则不变的变换。

线性变换可以将一个向量映射到另一个向量,同时保持向量间的线性关系。

线性变换可以表示为一个矩阵乘以一个向量的形式。

例如,一个二维空间中的线性变换可以表示为:[x'] [a b] [x][y'] = [c d] * [y]其中[x, y]表示原始向量,[x', y']表示变换后的向量,[a, b, c, d]表示线性变换的矩阵。

三、矩阵与线性变换的关系矩阵与线性变换之间存在着紧密的关系。

事实上,每个线性变换都可以用一个矩阵来表示,而每个矩阵也可以表示一个线性变换。

对于一个线性变换,我们可以将其表示为一个矩阵乘以一个向量的形式。

这个矩阵被称为线性变换的矩阵表示。

线性变换的矩阵表示可以通过将线性变换作用于单位向量的结果来得到。

例如,对于一个二维空间中的线性变换,我们可以将其矩阵表示表示为:[x'] [a b] [1][y'] = [c d] * [0]其中[1, 0]表示单位向量。

通过对单位向量进行线性变换,我们可以得到线性变换的矩阵表示。

四、矩阵与线性变换的性质矩阵与线性变换之间还有一些重要的性质。

首先,矩阵乘法满足结合律和分配律。

这意味着对于两个矩阵A和B,以及一个向量x,我们有:(A * B) * x = A * (B * x)其次,矩阵乘法还满足乘法单位元的存在性。

线性变换的矩阵表示线性变换与矩阵的关系与计算

线性变换的矩阵表示线性变换与矩阵的关系与计算

线性变换的矩阵表示线性变换与矩阵的关系与计算线性变换的矩阵表示——线性变换与矩阵的关系与计算在数学中,线性变换是一类重要的变换,具有广泛的应用背景。

线性变换可以通过矩阵来表示,这为我们在计算和理解线性变换提供了便利。

本文将介绍线性变换与矩阵的关系,以及如何进行线性变换的矩阵计算。

一、线性变换与矩阵的关系线性变换是指保持直线性质和原点不动的变换。

对于一个n维向量空间V中的向量x,若存在一个线性变换T,将向量x映射为向量y,即y=T(x),则称T为从V到V的一个线性变换。

线性变换可以通过矩阵的乘法运算来表示。

设V是n维向量空间,取V中的一组基{v1,v2,...,vn},在这组基下,对于向量x和y,若y=T(x),则存在一个n×n的矩阵A,使得y=Ax。

这个矩阵A就是线性变换T对应的矩阵表示。

矩阵表示的好处在于,通过矩阵的乘法运算,我们可以将线性变换转化为矩阵的计算,从而简化问题的求解过程。

二、线性变换的矩阵表示对于线性变换T,我们希望找到它对应的矩阵表示A。

假设V是n 维向量空间,取V中的一组基{v1,v2,...,vn}。

根据线性变换的定义,对于向量vi,有T(vi)=wi,我们可以将T(vi)表示为基向量w1,w2,...,wn的线性组合。

设T(vi)=w1i+w2i+...+wni,其中wi是基向量wi的系数。

我们可以将系数wi构成一个列向量Wi,将基向量构成一个矩阵W。

则有W=[w1,w2,...,wn],Wi=AW,其中A是线性变换T对应的矩阵表示。

求解矩阵A的方法有很多种,最常用的方法是利用线性变换T在基向量上的作用。

将基向量vi映射为向量wi,我们可以在基向量的基础上用线性组合的方式得到wi。

将所有的基向量和对应的映射向量展开,我们可以得到矩阵A的表达式。

三、线性变换的矩阵计算在得到线性变换的矩阵表示后,我们可以利用矩阵的乘法运算对线性变换进行计算。

设矩阵A对应线性变换T,向量x对应向量y,即y=Ax。

线性代数上21线性变换与矩阵

第二十一讲 线性变换与矩阵 一、线性变换的概念和基本性质
线性空间 V 到其自身的映射通常叫做 V 的一个变换, 而线 性变换是线性空间 V 的最简单也是最重要的一种变换. 定义1 设σ : V→V 是线性空间 V 到自身的一个映射(变换), 如果 σ 保持加法及数乘运算, 即对任意 α, β∈V, 对任意常 数 k, 都有
= ∑ kx i β i = k ∑ x i β i = kσ (α ).
i =1 i 满足条件的线性变换.
13
定理5 设 α1, α2,…, αn, 是 n 维线性空间 V 的一组基, A = (aij) 是任一 n 阶矩阵, 则有唯一的线性变换 σ 满足 σ(α1, α2,…, αn) = (α1, α2,…, αn)A. 证明 以矩阵 A 的第 j 列元素作为坐标构造向量 βj: βj = a1jα1+ a2jα2+…+ anjαn, (j = 1, 2,…, n). 由定理4存在线性变换 σ 使 σ(αj) = βj. 于是 σ(α1, α2,…, αn) = (β1, β2,…, βn) = (α1, α2,…, αn)A. 即有线性变换 σ 在基 α1, α2,…, αn 下的矩阵是 A. 如果 σ, τ 这两个线性变换都在基 α1, α2,…, αn 下的矩阵都 是 A, 那么 σ(α1, α2,…, αn) = (α1, α2,…, αn)A = τ(α1, α2,…, αn), 这就有 σ(α1) = τ(α1), σ(α2) = τ(α2),…, σ(αn) = τ(αn). 根据 14 定理2知 σ = τ, 所以满足要求的线性变换是唯一的.
σ(α1, α2,…, αn) = (α1, α2,…, αn)A.
(2)
n 阶矩阵 A 叫做线性变换 σ 在基 α1, α2,…, αn 下的矩阵. 其 中 A 的第 j 列就是基向量 αj 的象 σ(αj) 在这组基下的坐标.

线性变换及其矩阵

第三讲 线性变换及其矩阵一、线性变换及其运算定义:设V 是数域K 上的线性空间,T 是V 到自身的一个映射,使得对于V 中的任意元素x 均存在唯一的 y ∈V 与之对应,则称T 为V 的一个变换或算子,记为y x T =)(称y 为x 在变换T 下的象,x 为y 的原象。

若变化T 还满足)()()(y T x T y x T +=+ )()(x kT kx T = K k V y x ∈∈∀,,称T 为线性变换。

[例1] 二维实向量空间122i R R ξξξ⎧⎫⎡⎤=∈⎨⎬⎢⎥⎣⎦⎩⎭,将其绕原点反时针方向旋转θ角的操作即⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛2121cos sin sin cos ξξθθθθηη就是一个线性变换。

[例2] 次数不超过n 的全体实多项式nP 构成实数域上的一个1n +维的线性空间,其基可选为{}21,,,,n x xx ,微分算子dD dx=是n P 上的一个线性变换。

[例3] 取定矩阵nn K C B A ⨯∈,,,定义nn K ⨯的变换C XB AX X T ++=)( n n K X ⨯∈,是否是线性变换 2. 性质(1) 线性变换把零元素仍变为零元素 (2) 负元素的象为原来元素的象的负元素(3) 线性变换把线性相关的元素组仍变为线性相关的元素组 应该注意,线性无关的元素组经过线性变换不一定再是线性无关的。

但(4) 如果线性变换是一个单射,则把线性无关的元素组变为线性无关的元素组 3. 线性变换的运算(1) 恒等变换e T :,e x V T x x ∀∈=(2) 零变换0T :0,0x V T x∀∈=(3) 变换的相等:1T 、2T 是V 的两个线性变换,x V ∀∈,均有12T x T x =,则称1T =2T(4) 线性变换的和1T +2T :x V ∀∈,1212()TT x T x Tx +=+(5) 线性变换的数乘kT :x V ∀∈,()()kT xk Tx =负变换:()()T xTx -=-(6) 线性变换的乘积12TT :x V ∀∈,1212()()TT x T T x =(7) 逆变换:x V ∀∈,若存在线性变换S 使得eT TS ST ==,则称S 为T 的逆变换 (8) 线性变换的多项式:n n T T T T =个,并规定0e T T = 0()Nnn n f T a T==∑→()Nn n n f T x a T x ==∑需要说明的是:1)线性变换的乘积也是线性变换;2)和矩阵的乘积一样,线性变换的乘积不满足交换律;满足结合律;3)不是所有的变换都具有逆变换,线性变换可逆的充要条件是线性变换是一一对应的 4)若线性变换T 可逆,则其逆变换唯一且1-T 也是线性变换;5)线性空间V 上的线性变换的全体对于定义的加法与数乘运算构成数域K 上的线性空间二、线性变换的矩阵表示线性变换用矩阵表示,将抽象的线性变换转化为具体的矩阵形式。

矩阵与线性变换

矩阵与线性变换在线性代数中,矩阵与线性变换是密切相关的概念。

矩阵是一种有序矩形数表,而线性变换是一种保持向量加法和数乘的运算的函数。

本文将就矩阵与线性变换的概念、性质以及二者之间的关系进行探讨。

一、矩阵的定义和性质矩阵是数学中一种重要的代数结构,对于描述线性变换起到关键作用。

它是按照矩形的形式排列的一组数。

在定义方面,一个矩阵可以表示为m行n列的一个矩形数表,记作A=[a_{ij}],其中1 ≤ i ≤ m,1 ≤ j ≤ n。

其中,a_{ij}表示矩阵A中第i行第j列的元素。

矩阵的性质有以下几点:1. 矩阵的行数和列数分别称为矩阵的行数和列数。

对于一个m行n列的矩阵,可以记作A_{m×n}。

2. 矩阵A中的元素可以是实数或者复数。

根据元素的性质,可以将矩阵分为实矩阵和复矩阵。

3. 矩阵的转置是指行和列进行对换,记作A^T。

矩阵的转置可以通过矩阵的行与列进行对换得到。

4. 矩阵的加法和数乘是指对矩阵中的每个元素进行相应的操作得到一个新的矩阵。

二、线性变换的定义和性质线性变换是线性代数中一个重要的概念,用于描述一个向量空间内的向量的变换规则。

其基本思想是保持向量加法和数乘的运算。

在线性代数中,一个线性变换可以定义为一个函数T,将向量空间V的向量映射到另一个向量空间W的向量。

线性变换的性质有以下几点:1. 线性变换必须满足保持向量加法的运算规则,即对于向量v和u,T(v+u) = T(v) + T(u)。

2. 线性变换必须满足保持数乘的运算规则,即对于向量v和标量c,T(cv) = cT(v)。

3. 对于线性变换T,它的核是指所有使得T(v) = 0的向量v的集合。

核是向量空间的一个子空间。

4. 对于线性变换T,它的值域是指所有T(v)的向量v的集合。

值域是向量空间的一个子空间。

三、矩阵与线性变换的关系矩阵与线性变换之间存在着密切的联系。

具体而言,对于一个 m 行n 列的矩阵 A,可以定义一个线性变换 T_A,该线性变换将一个 n 维向量空间 V 的向量映射到一个 m 维向量空间 W 的向量。

矩阵与线性变换的性质与求解方法

矩阵与线性变换的性质与求解方法线性变换是线性代数中的重要概念,而矩阵则是线性变换的一个重要工具。

矩阵与线性变换之间有着密切的联系,矩阵可以描述线性变换的性质和求解方法。

本文将主要探讨矩阵与线性变换的性质以及求解方法。

1. 线性变换的定义与性质在开始讨论矩阵与线性变换的关系之前,我们先了解一下线性变换的定义和性质。

线性变换是指在向量空间中,保持加法和数乘运算的函数。

具体而言,对于向量空间V中的两个向量u和v 以及一个标量c,线性变换T应满足以下两个性质:(1)T(u + v) = T(u) + T(v) (加法性质)(2)T(cu) = cT(u) (数乘性质)2. 矩阵与线性变换的关系矩阵可以用来表示线性变换,这一点是线性代数的一项重要概念。

假设我们有一个线性变换T,将向量空间V中的向量映射到向量空间W中的向量,可以用以下形式表示:T(x) = Ax其中,x是向量空间V中的一个向量,A是一个矩阵,T(x)是线性变换T作用在向量x上的结果。

3. 线性变换的矩阵表示当线性变换T被表示为矩阵A时,我们可以通过矩阵与向量的乘法来计算线性变换作用于向量上的结果。

具体而言,对于线性变换T(x) = Ax,将向量x表示为列向量[x1, x2, ..., xn],矩阵A为一个m×n的矩阵,则可以用以下形式计算线性变换的结果:T(x) = Ax = [a1_1 x1 + a1_2 x2 + ... + a1_n xn, a2_1 x1 + a2_2 x2 + ... + a2_n xn, ..., am_1 x1 + am_2 x2 + ... + am_n xn]4. 线性变换的求解方法在实际问题中,我们需要求解线性变换作用于给定向量上的结果。

有两种常见的求解方法:矩阵乘法和矩阵求逆。

(1)矩阵乘法:如果我们已知线性变换T的矩阵表示A和向量x,我们可以通过矩阵乘法来计算线性变换的结果T(x)。

将向量x表示为列向量[x1, x2, ..., xn],矩阵A为一个m×n的矩阵,则可以用以下形式计算线性变换的结果:T(x) = Ax(2)矩阵求逆:如果我们已知线性变换T的矩阵表示A和线性变换的结果T(x),我们可以通过求解方程组Ax = T(x)来求解向量x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵与线性变换
矩阵是线性代数中一个重要的概念,而线性变换则是与矩阵紧密相
关的一个概念。

本文将介绍矩阵和线性变换的基本概念及其相关性质。

一、矩阵的定义与性质
矩阵是由各种数按照一定的排列方式组成的矩形阵列。

通常用大写
字母表示矩阵,如A、B等。

一个m×n的矩阵表示有m行n列的矩阵,其中每个元素可以是实数或者复数。

矩阵加法:对于两个相同维数的矩阵A和B,它们的和A + B也是
一个同样维数的矩阵,其中每个元素等于对应位置的两个矩阵元素的和。

矩阵乘法:矩阵乘法是按照一定的规则,将一个m×n的矩阵A乘
以一个n×p的矩阵B得到一个m×p的矩阵C。

矩阵乘法具有结合律但
不满足交换律。

单位矩阵:单位矩阵是一个特殊的方阵,它的主对角线上的元素全
为1,其余元素全为0。

用I表示,即I = [1 0 0 ... 0; 0 1 0 ... 0; ...; 0 0 0 ...
1]。

二、线性变换的定义与性质
线性变换是一个将一个向量空间映射到另一个向量空间的函数。

线
性变换可以用矩阵来表示,而变换前后的向量可以用矩阵乘法的形式
表示。

线性变换的定义:对于向量空间V和W,若存在一个映射T:V → W,满足以下两个条件,即可称T为线性变换:
1. 对于任意的向量u、v∈V和标量c,有T(u+v) = T(u) + T(v)和
T(cu) = cT(u)。

2. T(0) = 0,即线性变换将零向量映射为零向量。

线性变换与矩阵的关系:我们可以通过一个m×n的矩阵A来表示
一个线性变换T:R^n → R^m。

对于向量x∈R^n,线性变换T的值可
以通过矩阵乘法的形式表示,即T(x) = Ax。

线性变换的性质:
1. 线性变换保持向量空间的线性运算,即对于任意的向量u、v∈V
和标量c,有T(u+v) = T(u) + T(v)和T(cu) = cT(u)。

2. 线性变换将零向量映射为零向量,即T(0) = 0。

3. 线性变换保持向量的线性相关关系,即对于线性相关的向量组
{v1, v2, ..., vn},有T(v1), T(v2), ..., T(vn)也是线性相关的。

4. 若线性变换T将向量v映射为零向量,则v属于线性变换的核空
间Ker(T)。

三、矩阵表示线性变换
在二维平面上,我们可以通过矩阵来表示常见的线性变换,如平移、旋转、缩放等。

平移变换:平移变换是将向量从一个位置平移至另一个位置的变换。

我们可以通过一个2×2的矩阵A来表示平移变换,如下所示:
A = [1 0; 0 1],其中1表示向右平移一个单位,0表示不变。

旋转变换:旋转变换是将向量绕一个固定点旋转一定角度的变换。

我们可以通过一个2×2的矩阵A来表示旋转变换,如下所示:
A = [cosθ -sinθ; sinθ cosθ],其中θ表示旋转角度。

缩放变换:缩放变换是将向量放缩至原来的一定比例的变换。

我们
可以通过一个2×2的矩阵A来表示缩放变换,如下所示:
A = [k1 0; 0 k2],其中k1和k2表示在x轴和y轴上的缩放比例。

通过矩阵表示线性变换不仅简化了计算过程,还便于矩阵的组合运算,从而实现更复杂的变换。

总结:
矩阵是线性代数中的重要概念,与线性变换密切相关。

矩阵的加法、乘法等运算通过矩阵来实现,而线性变换则是通过矩阵乘法将向量映
射到另一个向量空间。

矩阵和线性变换的相互关系使得我们可以通过
矩阵来表示各种线性变换,如平移、旋转、缩放等。

矩阵与线性变换
的理论不仅在数学上有重要意义,而且在计算机图形学、信号处理等
领域也有广泛的应用。

相关文档
最新文档