原位杂交和荧光定量
各种PCR简介

原位PCR:PCR在组织或细胞样本片上直接进行,用原位杂交找到目的基因的表达位置。
递减PCR:每个循环降低1度退火温度,无需确定最佳退火温度即可反应。
菌落PCR:不用提取基因组DNA,不用酶切鉴定,直接对把菌体热解后暴露的DNA跑PCR简并PCR:用氨基酸序列设计带有简并性的引物库,可以发现新基因或基因家族、多重PCR:也就是把许多种引物放进去,一次增殖多种DNA(省资源)。
不对称PCR:两种引物含量不同(50或100:1),用于制作单链DNA(在前几轮循环中已把低浓度引物用完并搞出足够的模板链,之后便可以快速合成目标链)有色互补PCR(CCA-PCR):用不同荧光染料标记引物5'端,如果是靶基因那会出现两头荧光(正反链都符合各自引物故出现两种荧光,只有一头荧光不是靶序列)。
可用于检测靶基因是否存在荧光实时定量PCR:在反应前探针上荧光被淬灭基团,不外放荧光。
而在反应过程中Taq酶会破坏探针,此时荧光不能被淬灭基团吸收,对外放出。
显然同时复制的DNA越多,放出荧光越强,即荧光越强,DNA含量越多。
用CT值代表发出荧光强度达到预先设定的阈值所需的循环数,那么CT值越大,DNA丰度越小(复制越多次才达到预计数量)。
由于PCR的DNA可为cDNA,因而也可测出mRNA丰度热不对称交错PCR:为了用已知序列找未知序列。
基本原理为:1.用简并性引物在未知序列上创造位点。
2.用巢式PCR提高扩增产物特异性3.用2轮高温(特异性引物反应),1轮低温交替(非特异性引物反应)的超级PCR循环提高特异产物比例。
(即不对称PCR的部分)4.通过稀释来降低非特异性产物比例。
微生物荧光原位杂交实验技术

微生物荧光原位杂交实验技术背景微生物荧光原位杂交实验技术是在原位杂交技术的基础上发展而来的。
原位杂交技术最早应用于染色体分析,后来逐渐应用于微生物检测领域。
随着荧光标记技术的不断发展,人们开始利用荧光标记探针进行原位杂交,从而提高了检测的灵敏度和特异性。
原理微生物荧光原位杂交实验技术的原理是利用特定的荧光标记探针与细胞中的微生物进行杂交,从而将微生物定性和定量地检测出来。
该技术的基本原理是碱基互补配对原则,即探针的序列与待测微生物的序列互补,从而形成稳定的杂交双链。
利用荧光检测仪器检测荧光信号,从而实现对微生物的定量和定位分析。
实验方法样品的制备:将待测样品进行处理,使微生物细胞分离并保持活性。
探针的制备:将特定的DNA或RNA片段进行标记,形成荧光探针。
杂交反应:将样品和探针在一定条件下进行杂交反应,形成杂交双链。
洗涤和干燥:去除未结合的探针和杂质,保持杂交信号的特异性。
荧光检测:利用荧光检测仪器检测样品的荧光信号,并对数据进行处理和分析。
实验结果通过微生物荧光原位杂交实验技术,我们可以得到样品的定性和定量数据。
实验的成功率较高,特异性较强,能够清晰地检测出目标微生物的存在和数量。
该技术的灵敏度较高,可以检测出低拷贝数的微生物基因,为研究提供了有力的工具。
实验讨论微生物荧光原位杂交实验技术具有许多优势,如高特异性、高灵敏度和能够保持细胞结构的完整性等。
然而,该技术也存在一些不足之处,如探针制备过程较为繁琐、杂交反应条件要求较高以及荧光检测仪器价格昂贵等。
荧光探针的稳定性也可能影响实验结果的可靠性。
因此,在应用该技术时需要注意这些因素,并选择合适的探针和实验条件,以保证实验结果的准确性和可靠性。
结论微生物荧光原位杂交实验技术在研究领域具有广泛的应用前景。
除了在微生物检测方面的应用,该技术还可以应用于其他领域,如基因表达分析、细胞凋亡研究等。
虽然该技术存在一些不足之处,但随着技术的不断发展和优化,相信未来会有更多的应用前景等待着我们去探索和发现。
免疫荧光原位杂交

免疫荧光原位杂交FISH(荧光原位杂交)荧光原位杂交用于通过互补探针序列的杂交来显示确定的核酸序列。
FISH 有很多应用,从基本的基因定位到染色体畸变的诊断(细胞遗传学)。
多色FISH 图像分析需要使用单独的滤光片激发块(立方体)或激发滤光片转轮结合多波段二向色镜和发射滤光片来隔离各种信号。
荧光免疫原位杂交(FISH)和多路复用(Densely Multiplexed)成像的串色当同时使用具有多个密集光谱的荧光染料时,区分荧光标记的能力决定了检测结果的速度和准确性。
在进行荧光免疫原位杂交(FISH)测量时,这种密集的图像复用特别重要。
因此,减少串色(即来自不希望的荧光染料的信号相对于所需荧光染料的信号影响)至关重要。
下表量化了使用特定的BrightLine 荧光免疫原位杂交(FISH)滤光片组时,相邻荧光染料之间的串扰值。
该串扰值决定于典型的归一化荧光染料光谱、滤光片的设计光谱和强金属卤化物灯光谱的重叠。
这些结果已经针对每个给定的滤光片组进行了标准化,因此用户应该读取每行(而不是每列)的值以查看给定滤光片组的预期串扰值。
例如,当使用SpectrumGold™滤光片组对标记有SpectrumGreen™、SpectrumGold™和SpectrumRed™荧光染料的样品进行成像时,不需要的SpectrumGreen 信号将小于所需要的SpectrumGold 信号的2%,并且SpectrumRed 信号将小于1%。
好的滤光片会带来哪些不同 ?BrightLine“不易烧熔”滤光片在多年的使用中,在研究和临床领域都得到了广泛的测试。
BrightLine 荧光免疫原位杂交FISH 滤光片组也进行了严格的独立测试。
结果显示:使用BrightLine 滤光片组进行荧光免疫原位杂交FISH 分析时,无论您是查找和分析中期分裂,还是通过点计数对细胞进行评分,都可以提高分析的速度和准确性。
荧光滤光片简介一个分子吸收其吸收谱带波长范围(即吸收光谱)内的光,然后几乎瞬间发出较长的、位于其发射谱带波长范围(即发射光谱)内的光,此时,就会发生光学荧光。
荧光原位杂交实验具体步骤及详细说明

荧光原位杂交实验具体步骤及详细说明荧光原位杂交(fluorescence in situ hybridization,FISH)是一种用于确定DNA或RNA序列在细胞或组织中的位置的技术。
下面将详细介绍荧光原位杂交的具体步骤和相应的详细说明。
1.细胞准备首先,需要准备细胞样本。
可以选择使用原代细胞,细胞悬液或切片等。
2.固定将细胞固定在载玻片或载玻片上面。
固定通常使用的试剂是乙酸乙酯和甲醇的混合物,通常比例为1:33.水合将载玻片中的组织或细胞水合处理。
这一步可以通过将载玻片浸泡在去离子水或缓冲液中进行。
4.处理将载玻片进行预处理,以使DNA或RNA序列更易于杂交。
常用的预处理方法有:-煮沸:将载玻片浸泡在2×SSC(1×SSC:0.15MNaCl,0.015MNa3C6H5O7·2H2O,pH7.0)中,然后置于热盖板上加热至100°C,持续约10-20分钟。
-碱性水解:将载玻片浸泡在10%NaOH中,进行碱性水解,然后在盐溶液中冲洗。
5.杂交探针准备荧光探针或荧光标记的引物。
探针的选择取决于要检测的DNA或RNA序列。
探针的设计通常基于目标序列的序列信息,并且通过化学修饰和荧光标记以增加其杂交效率和检测灵敏度。
6.杂交将探针加到载玻片上的样本上,并与目标序列进行杂交。
杂交过程中,探针与目标序列进行互补配对,形成探针-目标复合物。
杂交的温度取决于探针的碱基组成和目标序列的GC含量。
7.洗涤将载玻片在洗涤缓冲液中进行洗涤,以去除未与目标序列杂交的探针。
8.检测使用荧光显微镜观察载玻片上的标记。
荧光标记的探针将通过荧光显微镜检测获得荧光信号。
根据荧光信号的数量和强度,可以确定目标序列的位置和数量。
9.成像和分析通过拍摄荧光显微镜图像来记录荧光信号。
使用图像处理软件进行图像分析,包括亮度分析和定量信号分析。
总结:荧光原位杂交是一种用于确定DNA或RNA序列在细胞或组织中位置的强大技术。
端粒绝对长度荧光原位杂交

端粒绝对长度荧光原位杂交
端粒绝对长度荧光原位杂交(Absolute Telomere Length Fluorescence In Situ Hybridization,aTL-FISH)是一种用于测量染色体端粒长度的分子生物学技术。
端粒是染色体末端的保护结构,起到保持染色体稳定性和避免损伤的作用。
而端粒长度与细胞衰老和疾病发展密切相关,因此测量端粒长度对于研究细胞老化、癌症和其他相关疾病具有重要意义。
在aTL-FISH技术中,使用一种特殊的DNA探针,该探针与端粒DNA序列互补。
这种探针标记有荧光染料,能够与端粒DNA结合。
实验过程中,首先将细胞样本固定在载玻片上,然后通过处理,使细胞内的染色体处于解旋并暴露出端粒区域。
接着,将标记有荧光的端粒DNA探针与细胞样本一起孵育。
荧光探针会与端粒DNA序列结合形成特定的信号。
最后,使用显微镜观察荧光信号,通过图像分析软件定量测量细胞中的端粒长度。
这样就可以获得每个细胞的端粒长度数据,进而对整个细胞群体的端粒长度进行分析和比较。
aTL-FISH技术能够提供端粒长度的定量信息,帮助研究人员了解染色体的稳定性、细胞衰老和疾病的发展过程。
它被广泛应用于生物医学研究中,特别是与细胞老化、癌症和疾病相关的研究领域。
2024荧光原位杂交技术在血液肿瘤中的应用规范(全文)

2024荧光原位杂交技术在血液肿瘤中的应用规范(全文)荧光原位杂交(FISH)技术是基于碱基互补配对原则,利用荧光标记的核酸探针,对待测标本DNA序列进行定位、定性和定量分析的技术,是遗传学异常的主要检测手段之一。
相较于核型分析,FISH技术具有快速、灵敏度高及特异性强的优势,是血液肿瘤诊断和预后判定的重要手段。
为进一步规范FISH技术在血液肿瘤中的应用,中国抗癌协会血液病转化医学专业委员会、中国老年医学学会病理学分会及中华医学会血液学分会组织国内血液学、病理学和检验学专家,制定了FISH 在血液肿瘤中的应用规范。
1 FISH在血液肿瘤诊疗中的应用价值1.1 诊断分型遗传学改变是血液肿瘤诊断分型的主要依据。
急性白血病(AL)、慢性粒细胞白血病(CML)、伴嗜酸粒细胞增多和酪氨酸激酶基因融合的髓系/淋系肿瘤(MLN-TK)、骨髓增生异常综合征(MDS)、大B 细胞淋巴瘤、滤泡淋巴瘤(FL)、套细胞淋巴瘤(MCL)、伯基特淋巴瘤(BL)、边缘区淋巴瘤(MZL)、间变大细胞淋巴瘤(ALCL)、T幼淋巴细胞白血病(T-PLL)等均需要借助FISH检测关键的遗传学异常才能精准分型。
1.2 预后分层目前针对急性髓系白血病(AML)、急性淋巴细胞白血病(ALL)、MDS、慢性淋巴细胞白血病(CLL)、原发性骨髓纤维化(PMF)、多发性骨髓瘤(MM)等血液肿瘤,世界卫生组织(WHO)、美国国立综合癌症网络(NCCN)指南已提出了基于遗传学异常的预后分层/评分体系。
FISH检测在血液肿瘤的预后评估中发挥着不可替代的作用。
1.3 指导治疗CML患者中费城染色体(Ph染色体)或BCR::ABL1融合基因的发现开启了酪氨酸激酶抑制剂(TKI)靶向治疗的新时代。
此外,针对PML::RARA融合基因或其他RARA重排的全反式维甲酸和砷剂、ABL信号通路(ABL1、ABL2、PDGFRA、PDGFRB重排)的TKI药物、JAK-STAT信号通路(CRLF2、JAK1/2/3重排)的JAK抑制剂、FLT3重排的FLT3抑制剂、ALK重排的ALK抑制剂等均已正式应用于临床治疗或处于临床试验阶段。
原位杂交技术

生物素:在动物细胞中是羧化酶的辅酶,在肝、肾、心、
肺等组织中丰富,主要集中在线粒体中。 地高辛:从洋地黄植物的花和叶中提取。
(动物细胞中不存在)
组织样品制备
(一).去除或抑制RNA酶
方法有两类:
物理方法: 对耐高温的器具如玻璃器皿,不锈钢器具进行高
温烘烤(180-200℃干烤4-6小时)。
原理:碱基互补配对原则
No Image
原位分子杂交
杂交体
杂交条件
严格度概念
DNA-DNA
杂交体
DNA-RNA RNA-RNA
稳定性:
DNA-DNA﹥DNA-RNA ﹥RNA-RNA
稳定性受以下因素影响:甲酰胺浓度 盐浓度等 温度等
原位杂交技术的条件
杂交液 探针浓度 温度 PH 时间
杂交液
对溶液和耐高温塑料器具作高温蒸汽消毒 化学方法:
焦磷酸二乙酯(DEPC) 作用机制:通过与组氨酸结合使蛋白质变性
(二)取材
组织要求新鲜,迅速投入到固定液中 标本置于低温环境下可抑制RNA酶作用
(三)固定
4%多聚甲醛培养2-6小时(培养细胞30分钟)
(四)包埋和切片
常规方法
(五)电镜杂交技术
(六)冷冻切片
冷冻切片保存靶细胞较多,较易获得杂交 信号
原位杂交
(一)杂交前处理
1.灭活内源性酶 在用酶作为报告分子时
(过氧化物酶 碱性磷酸酶)
2.RNA酶处理 3.盐酸和乙酸酐处理 提高杂交效率并降低背景 4.通透处理 消化去除细胞表面和内部特别是靶细胞
周围的蛋白质,增加探针等反应分子对 靶核酸分子的接触机会
温度
杂交时温度一般低于相对杂交体Tm值25℃
荧光原位杂交技术及其应用

荧光原位杂交技术及其应用作者:钱文丹陈波利来源:《乡村科技》 2018年第25期1 荧光原位杂交技术原理荧光原位杂交技术(Fluorescence in situ hybridization,FISH)是一种重要的非放射性原位杂交技术。
其基本原理是如果被检测的染色体或DNA纤维切片上的靶DNA与所用的核酸探针是同源互补的,二者经变性—退火—复性,即可形成靶DNA与核酸探针的杂交体。
将核酸探针的某一种核苷酸标记上报告分子如生物素、地高辛,可利用该报告分子与荧光素标记的特异亲和素之间的免疫化学反应,经荧光检测体系在镜下对待测DNA进行定性、定量或相对定位分析[1]。
与其他杂交技术进行综合比较发现,荧光原位杂交技术(FISH)具有一些优势:循环周期短,稳定性高,非常安全;分辨率高,为3~20 Mb;探针能较长时间保存;多色标记,简单直观;在荧光显微镜下在同一切片上同时观察几种DNA探针的定位,直接得到其相对序列和位置,从而大大加速生物基因组和功能基因组定位的研究。
2 荧光原位杂交技术要点FISH 选用的标本可以是分裂期细胞染色体,也可以是间期细胞。
生物素、地高辛、Dinitrophenyl(DNP)、AminoacetylFluorine(AAF)等均可用于探针标记。
近年来,大片段的DNA探针(100~400 kb)已被研制出来,由于控针较长,故可将荧光物质直接标记在核苷酸上,使杂交过程进一步简化,而且杂交信号更强。
荧光原位杂交可以通过CCD(电荷耦合器件)相机系统或激光共聚焦扫描成像系统将摄取的信号存储在计算机中,经过软件特殊处理后显示在屏幕上。
使用数码成像相机系统或CCD相机系统,灰度图像被拍摄几次并存储在计算机中,接下来通过一些人造色,软件系统接收获得的示例图像,经过软件的综合处理,最后以多色图像显示出来。
此外,在G-带状染色体被75 酒精或甲醇褪色后,FISH可以更清楚地识别易位。
FISH 技术和RFLP(Restrict Fragment Lenth Polymorphysim)结合,可以更准确地描述染色体长短臂的结构变化以及染色体梳子或复制品的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原位杂交和荧光定量
原位杂交是一种将特定标记的已知顺序核酸为探针与细胞或组织切片中核酸进行杂交,从而对特定核酸顺序进行精确定量定位的过程。
基本原理是两条核苷酸单链片段,在适宜的条件下,能过氢键结合,形成DNA-DNA、DNA-RNA或RNA-RNA双键分子的特点,应用带有标记的(放射性同位素、荧光素生物素、地高辛等非放射性物质)DNA或RNA片段作为核酸探针,与组织切片或细胞内待测核酸(RNA或DNA)片段进行杂交,然后可用放射自显影等方法予以显示,在光镜或电镜下观察目的mRNA或DNA 的存在并定位。
荧光定量原位杂交技术则是一种分子遗传学实验技术,将直接与荧光素结合的寡聚核苷酸探针或采用间接法标记的寡聚核苷酸探针与变性后的染色体、细胞或组织中的核酸按照碱基互补配对原则进行杂交,经变性-退火-复性-洗涤后即可形成靶DNA 与核酸探针的杂交体,直接检测或通过免疫荧光系统检测,最后在荧光显微镜下显影,即可对待测DNA进行定性、定量或相对定位分析。
总的来说,原位杂交和荧光定量原位杂交都是一种在细胞或组织切片中定位特定核酸序列的技术,其中荧光定量原位杂交技术可以提供更多的定量和定性信息。