高考数学热点专题测试平面解析几何含详解

高考数学热点专题测试平面解析几何含详解
高考数学热点专题测试平面解析几何含详解

2010年高考数学热点专题测试平面解析几何(含详解)

一、选择题:

1、直线4x +3y =40与圆x 2+y 2=100的位置关系是( ) (A )相交 (B )相切 (C )相离 (D )无法确定

2、经过点M (2,1)作圆C :x 2+y 2=5的切线,则切线方程是( )

(A x +y -5=0 (B x +y +5=0

(C )2x +y -5=0 (D )2x +y +5=0

3、直线y =x -1上的点到圆C :x 2+y 2+4x -2y +4=0的最近距离为( )

(A )1 (B ) (C -1 (D )-1

4、已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( ) A .0322

2=--+x y x B .042

2=++x y x

C .0322

2=-++x y x

D .042

2

=-+x y x

5、已知圆的方程为2

2

680x y x y +--=.设该圆过点(35),的最长弦和最短弦分别为AC 和BD ,则四边形

ABCD 的面积为( )

A ..C .

D .

6、设椭圆1C 的离心率为

5

13

,焦点在x 轴上且长轴长为26.若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )

A .22

22143x y -=

B .22

221135x y -=

C .22

22134x y -=

D .22

2211312

x y -=

7、若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 8、抛物线y x =2的准线方程是( )

(A )014=+x (B )014=+y (C )012=+x

(D )012=+y

9、已知点),(y x P 在圆2

2

(2)1x y -+=上运动,则代数式

y

x

的最大值是( )

(A )

33 (B )-3

3 (C (D 10、已知点P 在抛物线2

4y x =上,那么点P 到点(21)Q -,

的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )

(A )114??- ???

(B )114?? ???

(C )(12), (D )(1

2)-, 11、我国于07年10月24日成功发射嫦娥一号卫星,并经四次变轨飞向月球。嫦娥一号绕地球运行的轨迹是以地球的地心为焦点的椭圆(地球半径忽略不计)。若第一次变轨前卫星的近地点到地心的距离为m ,远地点到地心的距离为n ,第二次变轨后两距离分别为2m 、2n (近地点是指卫星到地面的最近距离,远地点是最远距离),

则第一次变轨前的椭圆的离心率比第二次变轨后的椭圆的离心率

A.变大

B.变小

C.不变

D.以上都有可能

12、设AB 是椭圆122

22=+b

y a x (0>>b a )的长轴,若把AB100等分,过每个分点作AB 的垂线,交椭圆的

上半部分于P 1、P 2、… 、P 99 ,F 1为椭圆的左焦点,则21111P F P F A F +++…B F P F 1991++的值是 ( ) (A )a 98 (B )a 99 (C )a 100 (D )a 101

二、填空题

13、由点(13)P ,引圆22

9x y +=的切线,则切线长等于

14、已知两圆221:210240C x y x y +-+-=,22

2:2280C x y x y +++-=,

则它们的公共弦长为______

15、在平面直角坐标系xoy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是.

16、双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交

12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.求双曲线的离心率_____

三、解答题

17、已知,圆C :01282

2

=+-+y y x ,直线l :02=++a y ax .

(1) 当a 为何值时,直线l 与圆C 相切;

(2) 当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程.

18.已知平面区域00240x y x y ≥??≥??+-≤?

恰好被面积最小的圆222

:()()C x a y b r -+-=及其内

部所覆盖.

(Ⅰ)试求圆C 的方程.

(Ⅱ)若斜率为1的直线l 与圆C 交于不同两点,.A B 满足CA CB ⊥,求直线l 的方程.

19、若椭圆)0(122

22>>=+b a b

y a x 过点(-3,2),离心率为33,⊙O 的圆心为原点,直径为椭圆的短轴,⊙

M 的方程为4)6()8(2

2

=-+-y x ,过⊙M 上任一点P 作⊙O 的切线PA 、PB ,切点为A 、B. (1)求椭圆的方程;

(2)若直线PA 与⊙M 的另一交点为Q ,当弦PQ 最大时,求直线PA 的直线方程; (3)求OB OA ?的最大值与最小值.

20、已知圆O :12

2

=+y x ,圆C :1)4()2(2

2

=-+-y x ,由两圆外一点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,如右图,满足|PA |=|PB |.

(Ⅰ)求实数a 、b 间满足的等量关系; (Ⅱ)求切线长|PA |的最小值;

(Ⅲ)是否存在以P 为圆心的圆,使它与圆O 相内切

并且与圆C 相外切?若存在,求出圆P 的方程; 若不存在,说明理由.

21、已知双曲线22

22:1(0,0)x y C a b a b

-->>的两个焦点为:(2,0),:(2,0),(3,7)F F P -点的曲线C 上.

(Ⅰ)求双曲线C 的方程;

(Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为22,

求直线l 的方程

B

P A

22、已知圆O :22

2x y +=交x 轴于A ,B 两点,曲线C 是以AB 为长轴,

离心率为

2

的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交椭圆C 的左准线

于点Q .

(Ⅰ)求椭圆C 的标准方程;

(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

参考答案(详解)

一、选择题 1 2 3 4 5 6 7 8 9 10 11 12 A

C

D

D

B

A

D

B

A

A

C

D

1、(A )

解:圆心为(0,0),R =10,圆心到直线距离:d

=8<10。

2、(C )

解:因为,点M 在圆上,圆心C (0,0),OM k =1020--=1

2

,过点M 的切线的斜率为k =-2,切线方程为:y -1=-2(x -2),即2x +y =5 3、(D )

解:圆心(-2,1),R =1,圆心到直线距离:d

,最近距离为:

-1。 4、D

解:设圆心为2234

(,0),(0),2,2,(2)45

a a a a x y +>==-+= 5、B

解: 化成标准方程 2

2

(3)(4)25x y -+-=,过点(3,5)的最长弦为10,AC =

最短弦为2225146,BD =-=1

20 6.2

S AC BD =?= 6、A

解:对于椭圆1C ,13,5,a c ==曲线2C 为双曲线,5,c =4a =,3,b =标准方程为:22

22 1.43

x y -=

7、D

解:点P 到直线x =-1的距离比它到点(2,0)的距离小1,即

点P 到直线x =-2的距离与它到点(2,0)的距离相等,故点P 的轨迹是抛物线,选(D )。 8、B

解:由2p =1,则p =1

2

,抛物线的开口向上,焦点在y 轴上,所以, 准线方程为:y =-1

4

,即4y +1=0,故选(B )。 9、A 解:设

y x

=00y k x -=-,则k 表示点),(y x P 与点(0,0)连线的斜率.当该直线kx -y =0与圆相切时,k 取得最大值与最小值.圆心(2,0),由

21

k +=1,解得33±

=k ,∴2

1

--x y 的最大值为33, 10、A

解:抛物线的焦点为F (1,0),作PA 垂直于准线x =-1,则 |PA |=|PF |,当A 、P 、Q 在同一条直线上时, |PF |+|PQ |=|PA |+|PQ |=|AQ |,

此时,点P 到Q 点距离与抛物线焦点距离之和取得最小值, P 点的纵坐标为-1,有1=4x ,x =14,此时P 点坐标为(1

4

,-1),故选(A )。

11、C

解:第一次变轨前离心率m n m

n m n m

n e +-=+-=2

21,第二次变轨后离心率

m

n m

n e +-=

2 ,21e e =∴。 12、D

解:由椭圆的定义知a P F P F i i 221=+(99,,2,1 =i ),

.198992)(99

121a a P F P F i i i =?=+∴∑=由题意知9921,,,P P P 关于y 轴成对称分布,

.99)(21)(99

12199

1

1a P F P F P F i i i i i =+=∴∑∑==又a B F A F 211=+ ,故所求的值为a 101.

二、填空题 13、1

解:圆心(0,0),则由勾股定理,得切线长为:(0-1)2+(0-3)2-9=1。

14、25

解:由两圆12C C ,方程可知公共弦方程为240x y -+=,

∴圆1C 圆心(15)-,到直线(公共弦)的距离为1104

355

d ++==.

∴弦长222(52)(35)25=?-=.

15、2

8y x =

解:设所求抛物线方程为2

y ax =,依题意2428a a =?=,故所求为2

8y x =.

16、

5 解:(1)因为OA AB OB 、

、成等差数列,所以可设OA m d =-,AB m =,OB m d =+, 画出草图,如图,由勾股定理可得:2

2

2

()()m d m m d -+=+ 得

14

d m

=,

tan b AOF a

∠=

tan tan 2AB AOB AOF OA ∠=∠=

=m m d -=43

, 由倍角公式∴2

2431b

a b a ?

=??- ?

??,解得:12b a =,则离心率e =c

a =

22

a b +=5.

三、解答题

17.解:将圆C 的方程012822=+-+y y x 配方得标准方程为4)4(2

2=-+y x ,则此圆的圆心为(0,4),

半径为2.

(1) 若直线l 与圆C 相切,则有

21

|

24|2=++a a .解得43

-=a .

(2) 解:过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得

????

??

???====+++=.

221

,2,1|24|22222

AB DA AC DA CD a a CD 解得1,7--=a . ∴直线l 的方程是0147=+-y x 和02=+-y x .

18. 解:(1)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形,

所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),

所以圆C 的方程是2

2

(2)(1)5x y -+-=. (2)设直线l 的方程是:y x b =+.

因为CA CB ⊥,所以圆心C 到直线l

,

=

解得

:1b =-±所以直线l 的方程是

:1y x =-±.

19.解:(1)由题意得:?????==∴????

?????+===+10153314922

22222b a c b a a c b a ,所以椭圆的方程为

1101522=+y x (2)由题可知当直线PA 过圆M 的圆心(8,6)时,弦PQ 最大

因为直线PA 的斜率一定存在, 设直线PA 的方程为:y-6=k(x-8)

又因为PA 与圆O 相切,所以圆心(0,0)到直线PA 的距离为10 即

101|68|2

=+-k k 可得9

13

31==k k 或

所以直线PA 的方程为:0509130103=--=+-y x y x 或 20、解:(Ⅰ)连结PO 、PC ,∵|PA |=|PB |,|OA |=|CB |=1, ∴|PO |2=|PC |2,从而2

2

2

2

)4()2(-+-=+b a b a

化简得实数a 、b 间满足的等量关系为:052=-+b a .

(Ⅱ)由052=-+b a ,得52+-=b a

1||||||2222-+=-=b a OA PO PA 1)52(22-++-=b b 4)2(52420522+-=+-=b b b

∴当2=b 时,2||min =PA

(III )∵圆O 和圆C 的半径均为1,若存在半径为R 圆P ,与圆O 相内切 并且与圆C 相外切,则有

1||-=R PO 且 1||+=R PC

于是有:2||||=-PO PC 即 2||||+=PO PC 从而得 2)4()2(222

2

++=

-+-b a b a

两边平方,整理得)2(422b a b a +-=+ 将52=+b a 代入上式得:0122<-=+b a 故满足条件的实数a 、b 不存在,∴不存在符合题设条件的圆P .

21、 (Ⅰ)解:依题意,由a 2+b 2=4,得双曲线方程为142

222=--a

y

a x (0<a 2<4=, 将点(3,7)代入上式,得147

92

2=--a

a .解得a 2=18(舍去)或a 2=2, 故所求双曲线方程为.12

22

2=-y x (Ⅱ)解:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,

得(1-k 2)x 2-4kx -6=0.

∵直线I 与双曲线C 相交于不同的两点E 、F ,

∴???-±≠??????-?+-=?≠-,

33,10)1(64)4(,

012

22

<<,>k k k k k ∴k ∈(-1,3-)∪(1,3).

设E (x 1,y 1),F (x 2,y 2),则由①式得x 1+x 2=,16

,142

2

12k x x k k -=-于是 |EF |=22122

212

21))(1()()(x x k y y x x -+=

-+-

=|

1|32214)(12

2

2

212

212

k k k x x x x k

--+=-++?

?

而原点O 到直线l 的距离d =

2

12

k

+,

∴S ΔOEF =.|

1|322|1|322112

21||212

2

222

2

k k k k k k EF d --=--++=??

?

? 若S ΔOEF =22,即,0222|

1|3222

42

2=--?=--k k k k 解得k =±2, 满足②.故满足条件的直线l 有两条,其方程分别为y =22+x 和.22+-=x y

22、解:(Ⅰ)

因为2

a e =

=

,所以c=1 则b=1,即椭圆C 的标准方程为2

212

x y += (Ⅱ)因为P (1,1),所以1

2

PF k =

,所以2OQ k =-,所以直线OQ 的方程为y=-2x 又椭圆的左准线方程为x=-2,所以点Q(-2,4)

所以1PQ k =-,又1OP k =,所以1k k PQ OP -=⊥,即OP PQ ⊥, 故直线PQ 与圆O 相切

(Ⅲ)当点P 在圆O 上运动时,直线PQ 与圆O 保持相切

证明:设00(,)P x y

(0x ≠),则22

002y x =-,所以001PF y k x =

+,00

1

OQ x k y +=-, 所以直线OQ 的方程为00

1

x y x y +=- 所以点Q(-2,

00

22

x y +) 所以0

022000000000000

22(22)22(2)(2)PQ

x y y y x x x x

k x x y x y y +--+--====-+++,又00OP y k x =,

所以1k k PQ OP -=⊥,即OP PQ ⊥,故直线PQ 始终与圆O 相切

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2020高考数学立体几何练习题23题

2020高考数学之立体几何解答題23題 一.解答题(共23小题) 1.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点. (Ⅰ)求证:AN∥平面MEC; (Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为?若存在,求出AP的长h;若不存在,请说明理由. 2.如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2 的菱形,AC⊥CB,BC=1. (Ⅰ)证明:AC1⊥平面A1BC; (Ⅱ)求二面角B﹣A1C﹣B1的大小.

3.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. 4.在正三棱锥P﹣ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2,求PB与平面BDC所成角的正弦值.

5.如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知. (1)求证:B1C1⊥平面OAH; (2)求二面角O﹣A1B1﹣C1的大小. 6.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1)求证:AD⊥BC. (2)求二面角B﹣AC﹣D的大小. (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

平面解析几何初步测试题

平面解析几何初步测试题 一、选择题:(包括12个小题,每题5分,共60分) 1.已知直线l 过(1,2),(1,3),则直线l 的斜率() A. 等于0 B . 等于1 C . 等于21 D. 不存在 2. 若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( ) A.1 B .-1 C .0 D.7 3. 已知A (x 1,y 1)、B(x2,y 2)两点的连线平行y 轴,则|AB |=( ) A、|x 1-x 2|B 、|y 1-y 2|C、 x 2-x1D 、 y 2-y 1 4. 若0ac >,且0bc <,直线0ax by c ++=不通过( ) A.第三象限B.第一象限 C.第四象限D.第二象限 5. 经过两点(3,9)、(-1,1)的直线在x轴上的截距为() A.23- B .32- C .32 D .2 6.直线2x -y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7.满足下列条件的1l 与2l ,其中12l l //的是( ) (1)1l 的斜率为2,2l 过点(12)A ,,(48)B ,; (2)1l 经过点(33)P ,,(53)Q -,,2l 平行于x 轴,但不经过P ,Q 两点; (3)1l 经过点(10)M -,,(52)N --,,2l 经过点(43)R -,,(05)S ,. A.(1)(2)B .(2)(3) C.(1)(3)D.(1)(2)(3) 8.已知直线01:1=++ay x l 与直线22 1:2+=x y l 垂直,则a 的值是( ) A 2 B -2 C.21 D .2 1- 9. 下列直线中,与直线10x y +-=的相交的是 A 、226x y += B 、0x y += C 、3y x =-- D 、1y x =-

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

2018届高考数学(理)热点题型:立体几何(含答案解析)

4 42 立体几何 热点一空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. π 【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO. (1)求证:平面PBD⊥平面COD; (2)求直线PD与平面BDC所成角的正弦值. (1)证明∵OB=OC,又∵∠ABC= π 4 , ππ ∴∠OCB=,∴∠BOC=. ∴CO⊥AB. 又PO⊥平面ABC, OC?平面ABC,∴PO⊥OC. 又∵PO,AB?平面PAB,PO∩AB=O, ∴CO⊥平面PAB,即CO⊥平面PDB. 又CO?平面COD, ∴平面PDB⊥平面COD. (2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.

? →·n ? 则 sin θ=? ?|PD||n|? PD BC BD BC BD =? ?= 02+(-1)2+(-1)2× 12+12+32 ? 11 1×0+1×(-1)+3×(-1) 设 OA =1,则 PO =OB =OC =2,DA =1. 则 C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴→=(0,-1,-1),→=(2,-2,0),→=(0,-3,1). 设平面 BDC 的一个法向量为 n =(x ,y ,z), ??n·→=0, ?2x -2y =0, ∴? ∴? ??n·→=0, ?-3y +z =0, 令 y =1,则 x =1,z =3,∴n=(1,1,3). 设 PD 与平面 BDC 所成的角为 θ, ? PD ? → ? ? ? ? 2 22 . 即直线 PD 与平面 BDC 所成角的正弦值为 2 22 11 . 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【对点训练】 如图所示,在多面体 A B D DCBA 中,四边形 AA B B ,ADD A ,ABCD 均为正方 1 1 1 1 1 1 1 形,E 为 B D 的中点,过 A ,D ,E 的平面交 CD 于 F. 1 1 1 1 (1)证明:EF∥B C. 1 (2)求二面角 EA D B 的余弦值. 1 1 (1)证明 由正方形的性质可知 A B ∥AB∥DC,且 A B =AB =DC ,所以四边形 A B CD 为平行 1 1 1 1 1 1

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

【高中数学】单元《空间向量与立体几何》知识点归纳 一、选择题 1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( ) A . 643 π B .8316π π+ C .28π D .8216π π+ 【答案】B 【解析】 【分析】 结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】 结合三视图,还原直观图,得到 故体积22221183242231633V r h r l πππππ=?+?=?+??=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等. 2.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存 在一点P ,使得1AP D P +取得最小值,则此最小值为( )

A .7 B .3 C .1+3 D .2 【答案】A 【解析】 【分析】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值, Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=. 所以11=90+60=150MA D ∠o o o 221111111113 2cos 13223()72 MD A D A M A D A M MA D ∴=+-∠=+-??- ??= 故选A . 【点睛】 本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A 10 B .3:1 C .2:1 D 102 【答案】A

《平面解析几何》复习试卷及答案解析

2021年新高考数学总复习第九章《平面解析几何》 复习试卷及答案解析 一、选择题 1.已知椭圆C :16x 2+4y 2=1,则下列结论正确的是( ) A .长轴长为12 B .焦距为34 C .短轴长为14 D .离心率为 32 答案 D 解析 由椭圆方程16x 2+4y 2=1化为标准方程可得 x 2116+y 214 =1,所以a =12,b =14,c =34 , 长轴2a =1,焦距2c =32,短轴2b =12, 离心率e =c a =32 .故选D. 2.双曲线x 23-y 2 9 =1的渐近线方程是( ) A .y =±3x B .y =±13x C .y =±3x D .y =±33 x 答案 C 解析 因为x 23-y 2 9 =1, 所以a =3,b =3,渐近线方程为y =±b a x , 即为y =±3x ,故选C. 3.已知双曲线my 2-x 2=1(m ∈R )与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为( ) A .y =±3x B .y =±3x C .y =±13 x D .y =±33x 答案 A

解析 ∵抛物线x 2=8y 的焦点为(0,2), ∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13 , ∴双曲线的渐近线方程为y =±3x ,故选A. 4.(2019·河北衡水中学模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)和直线l :x 4+y 3 =1,若过C 的左焦点和下顶点的直线与l 平行,则椭圆C 的离心率为( ) A.45 B.35 C.34 D.15 答案 A 解析 直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以b c =34 , 又b 2+c 2=a 2?????34c 2+c 2=a 2?2516c 2=a 2, 所以e =c a =45 ,故选A. 5.(2019·洛阳、许昌质检)若双曲线x 2-y 2 b 2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是( ) A .(1,2] B .[2,+∞) C .(1,3] D .[3,+∞) 答案 A 解析 双曲线x 2-y 2 b 2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即 2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A. 6.(2019·河北武邑中学调研)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|F A |=2|FB |,则k 等于( ) A.13 B.23 C.23 D.223 答案 D 解析 由????? y =k (x +2),y 2=8x ,消去y 得 k 2x 2+(4k 2-8)x +4k 2=0, Δ=(4k 2-8)2-16k 4>0,又k >0,解得0

高考数学专题复习与策略专题平面解析几何突破点圆锥曲线中的综合问题专题限时集训理

专题限时集训(十五)圆锥曲线中的综合问题 [建议用时:45分钟] 1.(2016·中原名校联盟二模)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1, F 2,点B (0,3)为短轴的一个端点,∠OF 2B =60°. 图15-4 (1)求椭圆C 的方程; (2)如图15-4,过右焦点F 2,且斜率为k (k ≠0)的直线l 与椭圆C 相交于D ,E 两点,A 为椭圆的右顶点,直线AE ,AD 分别交直线x =3于点M ,N ,线段MN 的中点为P ,记直线PF 2的斜率为k ′.试问k ·k ′是否为定值?若为定值,求出该定值;若不为定值,请说明理由. [解] (1)由条件可知a =2,b =3,故所求椭圆方程为x 24+y 2 3=1.4分 (2)设过点F 2(1,0)的直线l 的方程为y =k (x -1). 由????? y =k x -1,x 24+y 23 =1,可得(4k 2+3)x 2-8k 2x +4k 2 -12=0.5分 因为点F 2(1,0)在椭圆内,所以直线l 和椭圆都相交,即Δ>0恒成立.设点E (x 1,y 1), D (x 2,y 2), 则x 1+x 2=8k 2 4k 2+3,x 1x 2=4k 2 -124k 2+3.6分 因为直线AE 的方程为y =y 1x 1-2(x -2),直线AD 的方程为y =y 2 x 2-2 (x -2), 令x =3,可得M ? ? ??? 3, y 1x 1-2,N ? ????3,y 2x 2-2,所以点P 的坐标? ????3,12? ????y 1x 1-2+y 2x 2-2.8分 直线PF 2的斜率为k ′=12? ?? ??y 1 x 1-2+y 2x 2-2-0 3-1 =14·x 1y 2+x 2y 1-2y 1+y 2x 1x 2-2x 1+x 2+4=14·2kx 1x 2-3k x 1+x 2+4k x 1x 2-2x 1+x 2+4

年高考数学试题知识分类大全立体几何

年高考数学试题知识分类大全立体几何 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

2007年高考数学试题汇编 立体几何 一、选择题 1.(全国Ⅰ?理7题)如图,正四棱柱1111D C B A ABCD -中, AB AA 21=,则异面直线11AD B A 与所成角的余弦值为( D ) A .51 B .52 C .53 D .5 4 2.(全国Ⅱ?理7题)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于( A ) A . 6 B . 10 C . 2 2 D . 3 3.(北京理3题)平面α∥平面β的一个充分条件是( D ) A .存在一条直线a a ααβ,∥,∥ B .存在一条直线a a a αβ?,,∥ C .存在两条平行直线a b a b a b αββα??,,,,∥,∥ D .存在两条异面直线a b a a b αβα?,,,∥,∥ 4.(安徽理2题)设l ,m ,n 均为直线,其中m ,n 在平面α内,“l α⊥”是l m ⊥且“l n ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也 不必要条件 5.(安徽理8题)半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( ) A .)33arccos(- B .)36arccos(- C .)31arccos(- D .)4 1arccos(- 6.(福建理8题)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( D ) A .,,//,////m n m n ααββαβ??? B . //,,//m n m n αβαβ??? C .,//m m n n αα⊥⊥? D . //,m n n m αα⊥?⊥

平面解析几何直线练习题含答案

直线测试题 一.选择题(每小题5分共40分) 1. 下列四个命题中的真命题是( ) A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程 (y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示; C.不经过原点的直线都可以用方程 1=+b y a x 表示; D.经过定点A (0, b )的直线都可以用方程y =kx +b 表示。 【答案】B 【解析】A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)不能用方程b y a x +=1表示;D 中过A (0, b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 2. 图1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ) A.k 1<k 2<k 3 B.k 3<k 1<k 2 C.k 3<k 2<k 1 D.k 1<k 3<k 2 【答案】D 【解析】直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3 均为锐角, 且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D. 3. 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( ) A. A 1A 2+B 1B 2=0 B.A 1A 2-B 1B 2=0 C.12121-=B B A A D.2 121A A B B =1 【答案】A 【解析】法一:当两直线的斜率都存在时,- 11B A ·(2 2B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,???==???==0 001221B A B A 或,

高考数学压轴专题(易错题)备战高考《平面解析几何》知识点总复习附答案解析

高中数学《平面解析几何》期末考知识点 一、选择题 1.已知椭圆22 1259 x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个 焦点的距离等于( ) A .1 B .3 C .6 D .10 【答案】C 【解析】 由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C . 2.已知椭圆2 2 :12 y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称, 则m 的取值范围是( ) A .? ?? B .? ?? C .? ?? D .? ?? 【答案】C 【解析】 【分析】 设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得 002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可. 【详解】 设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-. 又因为A ,B 在椭圆C 上,所以2211 12y x +=,2 2 2212 y x +=, 两式相减可得 1212 1212 2y y y y x x x x -+?=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =. 因为点M 在椭圆C 内部,所以2221m m +<,解得m ?∈ ?? . 故选:C 【点睛】 本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

平面解析几何初步测试题

平面解析几何初步测试题 一、选择题:(包括12个小题,每题5分,共60分) 1.已知直线l 过(1,2),(1,3),则直线l 的斜率( ) A. 等于0 B. 等于1 C. 等于21 D. 不存在 2. 若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( ) A .1 B .-1 C .0 D .7 3. 已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB|=( ) A 、|x 1-x 2| B 、|y 1-y 2| C 、 x 2-x 1 D 、 y 2-y 1 4. 若0ac >,且0bc <,直线0ax by c ++=不通过( ) A.第三象限 B.第一象限 C.第四象限 D.第二象限 5. 经过两点(3,9)、(-1,1)的直线在x 轴上的截距为( ) A .23 - B .32- C .32 D .2 6.直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7.满足下列条件的1l 与2l ,其中12l l //的是( ) (1)1l 的斜率为2,2l 过点(12)A ,,(48)B ,; (2)1l 经过点(33)P ,,(53)Q -,,2l 平行于x 轴,但不经过P ,Q 两点; (3)1l 经过点(10)M -,,(52)N --,,2l 经过点(43)R -,,(05)S ,. A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(2)(3) 8.已知直线01:1=++ay x l 与直线221 :2+=x y l 垂直,则a 的值是( ) A 2 B -2 C .21 D .21 - 9. 下列直线中,与直线10x y +-=的相交的是 A 、226x y += B 、0x y += C 、3y x =-- D 、1 y x =-

2018届高考数学立体几何(理科)专题02-二面角

2018届高考数学立体几何(理科)专题02 二面角 1.如图,在三棱柱111ABC A B C -中, 1,90A A AB ABC =∠=?侧面11A ABB ⊥底面ABC . (1)求证: 1AB ⊥平面1A BC ; (2)若15360AC BC A AB ==∠=?,,,求二面角11B A C C --的余弦值.

2.如图所示的多面体中,下底面平行四边形与上底面平行,且,,,,平面 平面,点为的中点. (1)过点作一个平面与平面平行,并说明理由; (2)求平面与平面所成锐二面角的余弦值.

3.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形, 2AB AD =, BD =,且PD ⊥底面ABCD . (1)证明:平面PBD ⊥平面PBC ; (2)若Q 为PC 的中点,且1AP BQ ?=u u u v u u u v ,求二面角Q BD C --的大小.

4.如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,,平面. (1)求证:; (2)求平面与平面所成锐角二面角的余弦值.

5.在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点. (1)求证: //EF 平面PCD ; (2)若0 ,120,AD AP PB APB ==∠=,求平面DEF 与平面PAB 所成锐二面角的余弦值.

6.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形, ,90AD BC ADC ∠=o P ,平面PAD ⊥底面ABCD , Q 为AD 中点, M 是棱PC 上的点, 1 2,1,2 PA PD BC AD CD === ==(Ⅰ)若点M 是棱PC 的中点,求证: PA P 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ; (Ⅲ)若二面角M BQ C --为30o ,设PM tMC =,试确定t 的值.

相关文档
最新文档