聚合物基复合材料

合集下载

聚合物基复合材料的优势及特点详细介绍

聚合物基复合材料的优势及特点详细介绍

聚合物基复合材料的优势及特点详细介绍Advantages of Polymer-based Composite MaterialsPolymer-based composite materials have numerous advantages, making them widely used in various industries. Here are some of the key benefits:1. Lightweight: Polymer composites are known for their low density, making them significantly lighter than traditional materials such as metals. This property makes them ideal for applications where weight reduction is essential, such as aerospace and automotive industries.2. High Strength-to-Weight Ratio: Despite their lightweight nature, polymer composites exhibit excellent strength-to-weight ratios. They possess high tensile strength, allowing them to withstand heavy loads and resist deformation. This strength makes them suitable for structural applications where strength and durability are crucial.3. Corrosion Resistance: Unlike metals, polymer composites are highly resistant to corrosion. They do not rust or corrode whenexposed to moisture or harsh chemicals. This property makes them suitable for applications in marine environments or chemical processing industries.4. Design Flexibility: Polymer composites can be easily molded into complex shapes, offering designers immense flexibility. This versatility allows for the creation of intricate and customized components, meeting specific design requirements. It also enables the integration of multiple functionalities into a single part, reducing the need for assembly.5. Electrical Insulation: Polymer composites possess excellent electrical insulation properties. They can effectively shield against electrical currents and prevent short circuits. This characteristic makes them suitable for applications in electrical and electronic industries, where insulation is critical.6. Cost-Effectiveness: Polymer composites often offer acost-effective solution compared to traditional materials. While the initial manufacturing costs may be higher, their long-term benefits, such as reduced maintenance and longer lifespan, offset the initial investment.In conclusion, the advantages of polymer-based composite materials, including their lightweight nature, highstrength-to-weight ratio, corrosion resistance, design flexibility, electrical insulation, and cost-effectiveness, make them a preferred choice in various industries.中文回答:聚合物基复合材料的优点聚合物基复合材料具有许多优点,广泛应用于各个行业。

聚合物基复合材料的热稳定性研究

聚合物基复合材料的热稳定性研究

聚合物基复合材料的热稳定性研究聚合物基复合材料由于其优异的性能,在众多领域得到了广泛的应用。

然而,其热稳定性是影响其使用性能和寿命的关键因素之一。

因此,对聚合物基复合材料热稳定性的研究具有重要的理论和实际意义。

聚合物基复合材料是由聚合物基体和增强材料组成的多相体系。

常见的聚合物基体包括热塑性聚合物(如聚乙烯、聚丙烯等)和热固性聚合物(如环氧树脂、不饱和聚酯树脂等);增强材料则有纤维(如碳纤维、玻璃纤维等)、颗粒(如滑石粉、碳酸钙等)等。

不同的基体和增强材料的组合,以及它们之间的界面相互作用,都会对复合材料的热稳定性产生影响。

热稳定性可以从多个方面来衡量。

其中,热分解温度是一个重要的指标。

当聚合物基复合材料受热时,会发生化学键的断裂和重组,导致材料的质量损失和性能下降。

通过热重分析(TGA)等技术,可以测量材料在不同温度下的质量变化,从而确定其热分解温度。

一般来说,热分解温度越高,材料的热稳定性越好。

聚合物基体的化学结构对复合材料的热稳定性起着决定性的作用。

例如,具有芳香环结构的聚合物通常比脂肪族聚合物具有更高的热稳定性。

这是因为芳香环的共轭结构能够增加分子的刚性和热稳定性。

此外,聚合物的分子量和分子量分布也会影响热稳定性。

较高的分子量通常会提高材料的热稳定性,因为分子链之间的缠结和相互作用更强,能够更好地抵抗热分解。

增强材料对聚合物基复合材料的热稳定性也有显著的影响。

以纤维增强复合材料为例,纤维的种类、长度、直径和含量等因素都会影响热稳定性。

碳纤维具有优异的热稳定性,将其加入聚合物基体中可以显著提高复合材料的热分解温度。

这是因为碳纤维不仅本身具有较高的耐热性,还能够起到导热和阻碍热传递的作用,从而延缓基体的热分解。

复合材料中基体与增强材料之间的界面相互作用也不可忽视。

良好的界面结合能够有效地传递应力和热量,提高复合材料的整体性能。

界面处的化学键合、物理吸附和机械嵌合等作用都会影响热稳定性。

例如,通过对纤维进行表面处理,增加其与基体之间的相容性和界面结合强度,可以提高复合材料的热稳定性。

聚合物基复合材料 聚合物基复合材料界面

聚合物基复合材料  聚合物基复合材料界面

树脂基体 基体表面区 相互渗透区 增强材料表面区 增强材料 外力场
4
在化学成分上,除了基体 增强物及涂层中的 基体、增强物 涂层中的 元素外,还有基体中杂质 由环境带来的杂质。 元素 基体中杂质和由环境带来的杂质 这些成分或以原始状态存在,或重新组合成新 的化合物。 界面上的化学成分 相结构很复杂 化学成分和 界面上的化学成分和相结构很复杂
7
2.液体对固体的浸润能力 2.液体对固体的浸润能力
在复合材料制备过程中,通常都存在一个液 体对固体的相互浸润。 浸润: 浸润: 不同的液滴放在不同的固体表面上,有时液 滴会马上铺展开来,遮盖固体表面,这一现象称 为浸润, 有时液滴会仍团聚成球状,这一现象称为 “不浸润”或“浸润不好”。
8
浸润角: 浸润角:即气~液界面与液~固之间的夹角
12
4.2.2 界面的粘结和作用机理
当基体浸润增强材料后,紧接着便发生基体 基体浸润增强材料后,紧接着便发生基体 与增强材料的粘结(Bonding)。 与增强材料的粘结 。 粘结(或称粘合 粘着、粘接)是指不同种类的两 粘结(或称粘合、粘着、粘接)是指不同种类的两 粘合、 种材料相互接触并结合在一起的一种现象 的一种现象。 种材料相互接触并结合在一起的一种现象。 界面的粘结强度直接影响着复合材料的 直接影响着复合材料的力学性能 界面的粘结强度直接影响着复合材料的力学性能 以及其它物理 化学性能,如耐热性、耐蚀性、 其它物理、 以及其它物理、化学性能,如耐热性、耐蚀性、 耐磨性等。 耐磨性等。
9
σLV σSV σSL
它们与浸润角之间存在如式(4-1)关系:
σ SV = σ SL + σ LV cos θ σ SV − σ SL cos θ = σ LV

6.聚合物基复合材料的性能

6.聚合物基复合材料的性能


玻璃钢 碳纤维Ⅰ/ 环氧 碳纤维Ⅱ/ 环氧 有机纤维 / 环氧
硼纤维 / 环氧
7.8 2.8 4.5 2.0 1.45 1.6 1.4 2.1
1.03 0.47 0.96 1.06 1.5 1.07 1.4 1.38
2.1 0.75 1.14 0.4 1.4 2.4 0.8 2.1
0.13 0.17 0.21 0.53 1.03 0.7 1.0 0.66
直线上的两个力F作用时,发生简单剪切。 g = △l / l0 = tan q, s s = F/ A0 • 均匀压缩: gv = △V / V0
力学性能的基本指标—弹性模量
弹性模量(模量)
单位应变所需应力的大小,是材料刚性的表征。
三种形变对应三种模量 拉伸模量(杨氏模量):E = s / e 剪切模量 :G = ss / g 体积模量(本体模量):B = P / gv
应变
受到外力作用而又不产生惯性移动时,材料的几何形状和尺寸发生的变化
应力
定义为单位面积上的内力,内力是材料宏观变形时,其内部分子及原子间 发生相对位移,产生分子间及原子间对抗外力的附加内力。
材料的受力方式
• 简单拉伸:张应变e = △l / l0, 习用应力s = F/ A0.
• 简单剪切:材料受到与截面相平行、大小相等、方向相反且不在同一
会迅速重新分配到未破坏的纤维上,使整个构件在短期内不致于失去承 载能力。
聚合物基复合材料的总体性能(3)
可设计性强、成型工艺简单
通过改变纤维、基体的种类及相对含量、纤维集合形式及排列方式、 铺层结构等可满足材料结构和性能的各种设计要求。 整体成型,一般不需二次加工,可采用手糊成型、模压成型、缠绕成 型、注射成型和拉挤成型等各种方法制成各种形状的产品。

3第四章 聚合物基复合材料(PMC)

3第四章 聚合物基复合材料(PMC)

第一节 PMC基体

传统的聚合物基体是热固性的,其最大 的优点是具有良好助工艺性。由于固化 前热固性树脂粘度很低,因而宜于在常 温常压下浸渍纤维,并在较低的温度和 压力下固化成型;固化后具有良好的耐 药品性和抗蠕变性;缺点是预浸料需低 温冷藏且贮存期有限,成型周期长和材 料韧性差。
第四章 聚合物基复合材料(PMC) 第一节 概 述
三、层合复合材料的表示法 最常见的聚合物基复合材料结构形式为 层合(或层压)板。层合板中的最小结构单 元称为铺层(1dminar),铺层分单向和双 向两类。单向铺层即由连续纤维浸渍树 脂后所形成的单向预浸料(通常标准厚度 为o.13mm),而双向铺层是由织物浸渍 树脂后形成的预浸料,一般厚度比单向 铺层厚。
第二类方法是基于实际复合材料的测试技术, 如短梁剪切方法、薄壁管扭转方法、90°拉伸 方法等.它们通常是在简单的平面应力假设下, 测得复合材料层板的面内或层间剪切强度,它 们适用于作为工程数据并用于不同材料的比较, 但不是真实的界面强度数据,有时也不能真实 反映界面失效机制。 其他测试方法:单纤维临界长度法、微压入方 法、短梁剪切强度等。






一、 二、 三、 四、 五、 六、 七、 八、
预浸料及预浸料制造工艺 手糊成型 袋压成型 缠绕成型 拉挤成型 模压成型 纤维增强热塑性塑料(FRTP)成型技术 其它成型方法 1.注射成型; 2.喷射成型; 3.树脂传递成型; 4.

聚合物基复合材料(顾书英)课件!1

聚合物基复合材料(顾书英)课件!1

碳纤维
碳纤维属于聚合的碳。它是由有机纤维经固相反应转 化为碳纤维,如PAN纤维或者沥青纤维在保护气氛下热 处理生成含碳量在90% ~99%范围的纤维
碳纤维的主要性能
(1) 力学性能 碳纤维密度小、具有较高的比强度和比模量,断裂伸长率低。其 弹性模量比金属高两倍;抗拉强度比钢材高四倍,比铝高六倍。 一根手指粗的碳纤维制成的绳子,可吊起几十吨重的火车头。其 比强度是钢材的十六倍、铝的十二倍。 (2) 热性能 ① 碳纤维的耐高低温性能良好。一般在-180℃低温下,石墨纤维 仍然很柔软。在惰性气体保护下,2000℃以上仍保持原有的强度 和弹性模量。此外碳纤维还具有耐高温蠕变性能,一般在1900℃ 以上才能出现永久塑性变形; ② 碳纤维的导热性能好,而且随着温度升高,导热系数由高逐渐 降低; ③ 碳纤维的线膨胀系数很小,比钢材小几十倍,接近于零。在急 冷急热的情况下,很少变形,尺寸稳定性好,耐疲劳性能好,所 以用它制成的复合材料可制造精密仪器零件。
第二章 填充改性复合材料及其制备方法
填充剂的种类
无机填充剂:碳酸盐类、硫酸盐类、金属氧化 物类、金属粉类、金属氢氧化物类、含硅化合 物类、碳素类 有机填充剂 :木粉、果壳粉
填充剂按形状划分,有粉状、粒状、片状、纤维状 等。
填充剂的基本特性
填料的细度:目数、粒径 填料的形状 填料的表面特性 填料的密度与硬度 其它特性
芳纶纤维
芳香族聚酰胺(凯芙拉纤维,Kevlar)由对苯二甲酸和对苯二甲 酰氯缩聚反应制得。 (1) 力学性能 ① 具有无机纤维一样的刚性,它的强度超过了任何有机纤维; ② 密度最小,强度高,弹性模量高,强度分散性大; ③ 具有良好的韧性,抗压性能,抗扭性能较低; ④ 抗蠕变性能好,抗疲劳性能好。 (2) 热性能 (a) 耐热性很好,可以在-195 ~ 260℃的温度范围内使用; (b) 热稳定性好,不易燃烧。 (3) 电性能 阻尼性能好,电绝缘性好 (4) 其它性能 ① 抗摩擦,磨耗性能优异; ② 易加工、耐腐蚀; ③ 具有良好的尺寸稳定性,与树脂粘附力强。

1.11聚合物基复合材料界面(精)

1.11聚合物基复合材料界面(精)


• 3)减弱界面局部应力作用理论 • 当聚合物基复合材料固化时,聚合物基体产生收缩。而且,基体与纤 维的热膨胀系数相差较大,因此在固化过程中,纤维与基体界面上就会产生 附加应力。这种附加应力会使界面破坏,导致复合材料性能下降。此外,由 外载荷作用产生的应力,在复合材料中的分布也是不均匀的,因从复合材料 的微观结构可知,纤维与树脂的界面不是平滑的,结果在界面上某些部位集 中了比平均应力高的应力,这种应力集中将首先使纤维与基体间的化学键断 裂,使复合材料内部形成微裂纹,这样也会导致复合材料的性能下降。
• 2)浸润理论 • 两相间的结合模式属于机械粘接与润湿吸附。物理吸附主要是范德华 力的作用,使两相间进行粘附。两组分间如能实现完全浸润,则树脂在高能 表面的物理吸附所提供的粘接强度,将大大超过树脂的内聚强度。 要获得好的表面浸润,基体起初必须是低粘度,且其表面张力低于无 机物表面临界表面张力。一般无机物固体表面具有很高的临界表面张力。但 很多亲水无机物在大气中与湿气平衡时,都被吸附水所覆盖,这将影响树脂 对表面的浸润。
• 4)摩擦理论 • 基体与增强材料间界面的形成(粘接)完全是由于摩擦作用。两者间的摩擦 系数决定了复合材料的强度。偶联剂的作用在于增加了两相间的摩擦系数,使 复合材料的强度提高。 对于水等低分子物浸入后,复合材料的强度下降,但干燥后强度又能部 分恢复的现象,这是由于水浸入界面后,基体与增强材料间的摩擦系数减小, 界面传递应力的能力减弱,故强度降低,而干燥后界面内的水减少,基体与增 强材料间的摩擦系数增大,传递应力的能力增加,故强度部分地恢复。
• 聚合物基复合材料界面的形成大体分为两个阶段: 1、基体与增强材料的接触与润湿过程。 2、聚合物的固化过程。
聚合物基复合材料的界面结构

聚合物基复合材料的概念、特性、应用与进展

聚合物基复合材料的概念、特性、应用与进展

芳纶/杜邦聚酰胺 芳纶/泡沫芯板 碳纤维/杜邦聚酰胺 碳纤维/环氧树脂 碳纤维/芳纶/环氧树脂 玻璃纤维增强塑料 第一章 聚合物基复合材料的概念、特性、应用与进展
第一章 聚合物基复合材料的概念、特性、应用与进展
第一章 聚合物基复合材料的概念、特性、应用与进展
GLARE蒙皮用于A380飞机的上机身蒙皮 第一章 聚合物基复合材料的概念、特性、应用与进展
第一章 聚合物基复合材料的概念、特性、应用与进展 复合材料的意义 现代高科技的发展更是离不开复合材料。例如:火箭壳体材料对射程的影响: 1.1 前言:
第一章 聚合物基复合材料的概念、特性、应用与进展
碳/碳复合材料 以碳纤维或碳化硅纤维(或织物)为增强体,以碳为基体的复合材料的总称。碳基复合材料有两种制备方法: 一是浸渍法,即用增强体浸渍熔融的石油或沥青,再经碳化和石墨处理,它的基体是石墨碳,呈层状条带结构,性能是各向异性的。还有用增强体浸渍糠醇(呋喃甲醇)或酚醛等热固性树脂,只经碳化处理,它的基体是玻璃碳,即无定型碳结构,性能是各向同性的; 另一是CVD法,即把烃类化合物的热解碳沉积在增强体上来进行复合,这种方法的碳基体是类似玻璃碳的热解碳。碳/碳复合材料不耐氧化,所以有时需要加抗氧化涂层。
1.1 前言:
第一章 聚合物基复合材料的概念、特性、应用与进展 三、复合材料的发展历史和意义 1、复合材料的发展历史 6000年前人类就已经会用稻草加粘土作为建筑复合材料。水泥复合材料已广泛地应用于高楼大厦和河堤大坝等的建筑,发挥着极为重要的作用; 20世纪40年代,美国用碎布酚醛树脂制备枪托、代替木材,发展成为玻璃纤维增强塑料(玻璃钢)这种广泛应用的比较现代化复合材料。 1.1 前言:
第一章 聚合物基复合材料的概念、特性、应用与进展
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚合物基复合材料 第二节 聚合物基复合材料(PMC) 1.1 聚合物基体 1.2 PMC界面 1.3 PMC制备工艺 1.4 PMC性能与应用

聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。

实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。

通常意义上的聚合物基复合材料一般就是指纤维增强塑料(FRP),而为各种目的加入各种填料的高分子材料不在这里论及。

1.1聚合物基体 聚合物基体是纤维增强塑料的一个必需组分,在复合材料成型过程中,基体经过复杂的物理、化学变化过程,与增强纤维复合成具有一定形状的整体。因而基体性能直接影响复合材料性能。基体的主要作用包括将纤维粘合成整体并使纤维位置固定,在纤维间传递载荷,并使载荷均匀;决定复合材料的一些性能。如复合材料的高温使用性能(耐热性)、横向性能、剪切性能、耐介质性能(如耐水、耐化学品性能)等;决定复合材料成型工艺方法及工艺参数选择;保护纤维免受各种损伤。此外对复合材料一些性能有重要影响,如纵向位伸、尤其是压缩性能,疲劳性能,断裂韧性等。

1、分类 用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加工成型而无任何化学变比。热固性基体如环氧树脂、酚醛树脂、双马树脂、不饱和聚酯等,它们在制成最终产品前,通常为分于量较小的液态或固态预聚体,经加热或加固化剂发生化学反应固化后,形成不溶不熔的三维网状高分子。

2、热塑性基体 原则上.所有的热塑性树脂,如聚烯烃、聚醚、聚酰胺、聚脂、聚砜等都可作为复合材料基体。

普通的热塑性基体包括通用塑料,如聚丙烯(PP)、ABS树

脂和工程塑料等。它们通常用20一40%的短纤维增强,拉伸强度和弹性模量可提高1—2倍,可明显改善蠕变性能,提高热变形温度和导热系数,降低线膨胀系数,增加尺寸稳定性,降低吸湿率,抑制应力开裂、提高疲劳性能。这些短纤维增强的热塑性塑料作为工程材料广泛用于机械零部件、汽车、化工设备等。

而耐高温的特种工程塑料作为先进复合材料基体,通常以连续纤维增强,其典型品种的结构和物性数据列于表4—4。

聚醚醚酮(PEEK)是一种半结晶性热塑性树脂,其玻璃化转变温度为143度,熔点为334度,结晶度与其加工热历史有关,一般在20一40%,最大结晶度为48%。PEEK具有优异的力学性能和耐热性,其在空气中的热分解温度达6500C,加工温度在370一4200C,以PEEK为墓体的复合材料可在2500C的高温下长期使用。在室温下,PEEK的模量与环氧树脂相当,强度优于环氧,而断裂韧性极高(比韧性环氧树脂还寓一个数量级以上)。PEEK耐化学腐蚀性可与环氧树脂媲美.而吸湿宰比环氧低得多。PEEK耐绝大多数有机溶剂和酸碱,除液体氢氟酸、浓硫酸等个别强质子酸外,PEEK不为任何溶剂所溶解。此外,PEEK还具有优秀的阻燃性、极低的发烟串和有毒气体释放率,以及极好的耐辐射性。碳纤维(AS—4)增强PEEK的第二代产品称ACP—2,耐疲劳性超过环氧/碳纤维复合材料.耐冲击性好,在室温下具有很良好的耐蛹变性能。APc—2的层间断裂韧性很高,(G1c>L 8KJ/m’)。PEEK基复合材料已经在飞机结构上大量使用。

聚醚砜(PES)是一种非晶聚合物,其玻璃化转变温度高达225nC,可在1800c温度下长期使用。但是,由于PEs的耐溶剂性差,限制了它在飞机结构等领域的应用,但PES基复合材料的在电子产品、雷达天线罩、靶机蒙皮等方面得到大量应用,它也可用于宇宙飞船的关键部件。

聚酰按酰亚胺(PAI)是一种熔体粘度很高的热塑性树脂,通常也称假热塑性树脂。它具有优异的耐热性,其玻璃化温度Tg可达280℃,长期使用温度达240℃。

3、热固性基体 热固性基体(不饱合聚酯树脂、环氧树脂、酚醛树脂等)在连续纤维增强树脂基复合材料中一直占统治地位。不饱合聚酯树脂、酚醛树脂主要用于玻璃增强塑料,其中聚酯树脂用量最大,约占总量的80%,而环氧树脂则一般用作耐腐蚀性或先进复合材料基体。几种热固性树脂.(浇铸体)典型的物理及力学性能列于表4—2。

不饱合聚酯树脂(UP—UnsaturatedPo1yes比rR6sin)是由不饱合二元酸或酸酐、饱合二元酸或酸酐与二元醇经缩聚反应合成的低聚物。将其溶解在乙烯类单体中所形成的溶液称不饱合聚酯树脂。表4—3比较了几种热固性

树脂基体的性能及应用范围。通用不饱合聚酯是由顺丁烯二酸酐、邻苯二甲酸酐与I,2—丙二醉按摩尔比1“1;2.15合成的,溶于苯乙烯中得到低粘度树脂。UP的固化是由聚亩中的双键,在引发剂(如过氧化物)作用下与固化剂苯乙烯(或MMA)共聚形成高交联度的三维网状结构而完成的。不饱合聚酯的性能取决于单体类型和比例,饱和二元酸与不饱和二元酸比例越大,则树脂韧性越好,但耐热性越差。UP是目前复合材料领域中用量最大约一类树脂基体,其牌号繁多、用途广泛,可根据制品性能要求及成型工艺方法的不同,选用不同种类树脂,可适用于手糊、模压、缠绕、拉挤等各种工艺。

与环氧比较,不炮台聚酪树胎的固化收缩率较大、耐热性较差,但由于它的价格较便宜,制造也较方便,因而作为通用复合材料加GF/UP玻璃钢仍占市场主导地位。广泛用于电器、建筑、防腐、交通等许多领域。

环氧树脂(EP)是—种分子中各有两个或两个以上活性环氧基团—(二二12一)的低聚物。 环氧树脂具有适应性湿(可选择的品种、固化剂、改性剂等种类很多)、工艺件好、粘接力大、成型收缩率低、化学稳定性好等优点.因而其用量大,使用广泛。

环氧树脂的固化可以通过催化剂使环氧基相互连接而固化,也可以用台有能与环氧基反应的官能团的反应性固化剂固化。常用固化剂包括脂肪族或芳香族胺类,有机多元酸或酸酐等。单纯的环氧树脂固化后是很脆的,为了改善这一性能,常向体系中加入增韧剂。它不但能改善树脂的冲击强度相耐热冲击性能.还能减少固化时反应热和收缩率。但增韧剂的加入会导致树脂耐热性、电性能、耐化学腐浊性及某些力学性能的下降。

酚醛树脂是由酚类(主要是苯酚)和醛类(主要是甲醛)聚合生成的一类树脂,它是最早工业化的热因性合成树脂。由于其合成方便,价格低廉以及固化彻的一些特殊性能,如阻燃性、耐烷蚀性、低发烟性和耐热性等,使其不但在胶粘剂、油漆、电绝缘材料等方面仍大量应用。作为FRP基体也有许多应用.如制造宇宙飞行器的耐烧蚀材料、印刷电路板、隔热板、摩擦材料等。用于FRP的酚醛树脂很多是改性的,如硼酚醛、有机硅酚醛等。

1.2 PMC界面 由于复合材料结构有不同于金属材料结构的许多特点,因此复合材料结构设计也不同于金属材料结构设计。复合材料结构设计包含了材料设计的内容,复合材料的界面结构与性质直接控制或影响复合材料的性能。因而,复合材料的界面表征、控制或改善界面状态,对于复合材料设计来说是一项重要内容。

1.PMC界面结构 PMC界面层结构主要包括接近反应层

的基体拟制层、与基体的反应层或偶联剂参与的反应层、以及增强剂表面。有时,增强剂表面吸附的一些物质也可能残留在界面区或由于浸润不完全而在界面产生孔隙。当然,在界面区还存在残余热应力的作用。因而.了解界面结构的目的就是要了解基体与增强剂表面的作用,偶联剂与增强剂及基体作用,增强剂表面的组成、结构及物理、化学性质,界面层性质,界面粘接强度的大小以及残余应力的大小及作用等。 界面结构可以通过电子显微镜(SEM和TEM)、光电子能谱(ESCA,AES)、红外光谱(FTIR)和拉曼(只。man)光谱、二次离子质谱(s1MS)、色谱等现代分析技术进行界面层的化学结构和组织结构解析。

由于界面粘结取决于纤维的排列、化学性质,以及高分子基体的分子结构和化学组成,因此界面性质是因纤维—基体系统而异的。粘着理论认为,对一个简单系统来说,界面的粘结是由纤维与基体间的粘着力引起的。然而,纤维上常涂有一层涂料,这层涂料形成纤维与基体之间的结合层,对粘着可以认为主要是发生在界面上的五种机理,即吸附和浸润、相互扩散、静电吸引、化学键结合、机械粘着,所造成的。它们或者独立作用或者联合作用产生界面的粘结。

2. PMC界面粘接强度测定 PMC界面粘接强度是PMC界面的一项重要的性能指标,对于界面研究和复合材料设计都有重要意义。常用的界面粘接强度测定有两类方法,即单纤维测试方法和。

单纤维测试方法中有单纤维拔出法、单纤维临界长度法、微压入法等(如图4—6)。它们可容易地判断界面断裂机制和粘接强度,特别适用于经不同表面处理的纤维间的比较及研究真实的界面现象.但它的局限性是把一根孤立的纤维包埋在基体中,不能真实反映复合材料性能。

相关文档
最新文档