九年级数学图形的位似3
人教版九年级数学下册:27.3《位似》教案1

人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。
但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。
三. 教学目标1.了解位似的定义,掌握位似图形的性质。
2.能够识别生活中的位似图形,并运用位似知识解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.重点:位似的定义,位似图形的性质。
2.难点:运用位似知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。
3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。
六. 教学准备1.准备相关的图片和实例,用于教学演示。
2.准备练习题,用于巩固所学知识。
3.准备黑板,用于板书关键知识点。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。
引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。
2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。
讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。
让学生通过观察实例,理解并掌握位似的概念。
3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。
九年级数学《图形的位似》教学设计

《图形的位似》教学设计平山县外国语中学荣彦国一、教学目标1、知识目标:(1)了解图形的位似概念,会判断简单的位似图形和位似中心。
(2)理解位似图形的性质,掌握以坐标原点为位似中心的位似变换的性质。
2、能力目标:(1)能利用位似将一个图形放大或缩小,解决一些简单的实际问题。
(2)培养学生综合分析问题、解决问题的能力,进一步提高学生利用图形的变换解决问题的能力和小组合作、探究学习的能力,促进良好的数学思维习惯和应用意识的形成。
(3)发展学生的合情推理能力和初步的逻辑推理能力。
3、情感目标:(1)通过较多的社会背景素材的展现,使学生亲身经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习内容的现实性、应用性、挑战性。
(2)进一步体验合作互助、解决难题的情感,感受数学创造的乐趣,增进学好数学的信心。
二、教学重点和难点教学重点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
教学难点:在直角坐标系中,以原点为位似中心的位似变换的性质涉及到数形结合、分类讨论的数学思想等一些学生的数学薄弱环节,不容易被理解,是本节教学的难点。
三、教学过程(2)在平行四边形ABCD中,△ABO与△CDO与正方形A′B′C′D′分别是AC,AB,AD从中,我们可以看到,OA△ ABO∽△A′B′O,则ABCD的位似图形,并把ABCD的边长放大3三、设计理念1、培养学习兴趣图形的位似是相似形的延伸和深化。
位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形。
从教材编排的一些素材看,不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值。
2、培养探究精神新课标的理念,数学教育要面向全体学生,人人都能获得必需的数学。
图形的位似,作为新增的内容,以其丰富的社会背景为素材展示给我们,使我们感受到数学创造的乐趣,但它对后续学习的知识联系不是很大,所以我认为,本节课的教学内容应以教材的编排为准,概念、性质、应用等让学生容易接受就好,水到渠成,不必要拓展和深化。
初三数学位似图形的概念及画法教案

初三数学位似图形的概念及画法教案教学目标1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.重点、难点1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.一.创设情境活动1 提出问题:生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.初三数学位似图形的概念及画法教案思考:观察图27.3-2图中有多边形相似吗?如果有,那么这种相似什么共同的特征?图27.3-2活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.)结论:________________________________________________初三数学位似图形的概念及画法教案二、利用位似,可以将一个图形放大或缩小活动2 提出问题:把图1中的四边形ABCD 缩小到原来的21. 分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一: 作法二:作法三:初三数学位似图形的概念及画法教案三、课堂练习1下列图中的两个图形不是位似图形的是( )A .B .C .D .2下列四图中的两个三角形是位似三角形的是( )A .图(3)、图(4)B .B .图(2)、图(3)、图(4)C .C .图(2)、图(3)D .D .图(1)、图(2)3.如图,三个正六边形全等,其中成位似图形关系的有( ) A .0对 B .1对 C .2对 D .3对。
九年级数学上册 3.6 位似 第1课时 位似图形的概念及画法课件上册数学课件

12/10/2021
第 6 题答图
7.图 3-6-12 中小方格是边长为 1 的正方形,△ABC 与△A′B′C′是以点 O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心 O; (2)求△ABC 与△A′B′C′的相似比.
12/10/2021
图 3-6-12
解:(1)如答图所示,点 O 即为所求; (2)由答图可知,△ABC 与△A′B′C′的相似比为 6∶12=1∶2.
12/10/2021
图 3-6-10
解:位似中心如答图,点 O 即为所求.
12/10/2021
第 5 题答图
6.[2018 春·邕宁区校级期中]如图 3-6-11,以点 O 为位似中心,将四边形 ABCD 放大为原来的 2 倍(只需画出一种情况即可).
12/10/2021
图 3-6-11
解:如答图所示(答案不唯一).
(2)将线段 A1B1 绕点 B1 逆时针旋转 90°得到线段 A2B1,画出线段 A2B1; (3)以 A,A1,B1,A2 为顶点的四边形 AA1B1A2 的面积是 20 个平方单位.
12/10/2021
解:(1)(2)如答图所示.
12/10/2021
第 8 题答图
12/10/2021
12/10/2021
解: 图略.
12/10/2021
图 3-6-2
类型之三 利用位似将一个图形放大或缩小 [2018 秋·孟津县期末]如图 3-6-3,以点 O 为位似中心,画出将△ABC
放大为原来的 2 倍的图形.
12/10/2021
图 3-6-3
解:如答图所示,△A′B′C′和△A″B″C″即为所求.
人教版九年级下册位似—两个位似图形坐标之间的关系课件

A
y
D
A′
B
D′
B′
C
C′ o
x
A′( -3,3 ), B′( -4,1 ), C′( -2,0 ), D′( -1,2 )
A′′ (3,-3 ), B′′ ( 4,-1 ), C′′ ( 2,0 ), D′′ ( 1,-2 )
A
y
D
B
C ′′
Co
x
B ′′
D ′′
A ′′
巩固训练
1. 在平面直角坐标系中,四边形 OABC 的顶点 坐标分别为 O (0,0),A (6,0),B (3,6),C (-3,3). 以原点 O 为位似中心,画出四边形 OABC 的位似图形,使它与四边形 OABC 的相 似是 2 : 3.
A′(-3,3),B′(-4,1),C′(-2,0),D′(-1,2).
或 A′′(3,-3),B′′(4,-1),C′′(2,0),D′′ (1,-2).
例题.在平面直角坐标系中, 四边形ABCD的四个顶点的
坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出
它的一个以原点O为位似中心,位似比为1:2的位似图形.
投影—“动” 悉重难点
解:画法一:将四边 形 OABC 各顶点的坐
标都乘 2 ;在平面 3
直角坐标系中描点O
(0,0),A' (4,0),B'
(2,4),C′ (-2,2),
用线段顺次连接O,
A',B',C'.
y 6
4 C
C' 2
-4
O
-2
-4
B B'
A' A 6x
人教版数学九年级下27.3第1课时位似图形的概念及画法教案及教学反思

27.3 位似第1课时位似图形的概念及画法1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的相关知识;(重点)2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.(难点)一、情境导入生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?二、合作探究探究点:位似图形【类型一】判定是否是位似图形下列3个图形中是位似图形的有( )A.0个 B.1个 C.2个 D.3个解析:根据位似图形的定义可知两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形是第一个和第三个.故选C.方法总结:判断两个图形是不是位似图形,首先要看它们是不是相似图形,再看它们对应顶点的连线是否交于一点.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】确定位似中心找出下列图形的位似中心.解析:(1)连接对应点AE、BF,并延长的交点就是位似中心;(2)连接对应点AN、BM,并延长的交点就是位似中心;(3)连接AA′,BB′,它们的交点就是位似中心.解:(1)连接对应点AE、BF,分别延长AE、BF,使AE、BF交于点O,点O就是位似中心;(2)连接对应点AN、BM,延长AN、BM,使AN、BM的延长线交于点O,点O就是位似中心;(3)连接AA′、BB′,AA′、BB′的交点就是位似中心O.方法总结:确定位似图形的位似中心时,要找准对应顶点,再经过每组对应顶点作直线,交点即为位似中心.变式训练:见《学练优》本课时练习“课后巩固提升” 第2题【类型三】 画位似图形 按要求画位似图形:(1)图①中,以O 为位似中心,把△ABC 放大到原来的2倍;(2)图②中,以O 为位似中心,把△ABC 缩小为原来的13. 解析:(1)连接OA 、OB 、OC 并延长使AD =OA ,BE =BO ,CF =CO ,顺次连接D 、E 、F 就得出图形;(2)连接OA 、OB 、OC ,作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,连接OM ,作NF ∥OM 交OC 于F ,再依次作EF ∥BC ,DE ∥AB ,连接DF ,就可以求出结论.解:(1)如图①,画图步骤:①连接OA 、OB 、OC ;②分别延长OA 至D ,OB 至E ,OC 至F ,使AD =OA ,BE =BO ,CF =CO ;③顺次连接D 、E 、F ,∴△DEF 是所求作的三角形;(2)如图②,画图步骤:①连接OA 、OB 、OC ,②作射线CP ,在CP 上取点M 、N 、Q 使MN =NQ =CQ ,③连接OM ,④作NF ∥OM 交OC 于F ,⑤再依次作EF ∥BC 交OB 于E ,DE ∥AB 交OA 于D ,⑥连接DF ,∴△DEF 是所求作的三角形.方法总结:画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型四】 位似图形的实际应用在放映电影时,我们需要把胶片上的图片放大到银幕上,以便人们欣赏.如图,点P 为放映机的光源,△ABC 是胶片上面的画面,△A ′B ′C ′为银幕上看到的画面.若胶片上图片的规格是2.5cm ×2.5cm ,放映的银幕规格是2m ×2m ,光源P 与胶片的距离是20cm ,则银幕应距离光源P 多远时,放映的图象正好布满整个银幕?解析:由题中条件可知△A ′B ′C ′是△ABC 的位似图形,所以其对应边成比例,进而即可求解.解:图中△A ′B ′C ′是△ABC 的位似图形,设银幕距离光源P为x m 时,放映的图象正好布满整个银幕,则位似比为x 0.2=22.5×10-2,解得x =16.即银幕距离光源P 16m 时,放映的图象正好布满整个银幕.方法总结:在位似变换中,任意一对对应点到位似中心的距离之比等于对应边的比,面积比等于相似比的平方.【类型五】 利用位似的性质进行证明或计算如图,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF ,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB =2,CD =3,求EF 的长.解析:(1)利用相似三角形的判定方法以及位似图形的性质得出答案;(2)利用比例的性质以及相似三角形的性质求出BE BC =EF DC =25,求出EF 即可.解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形.理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形;(2)∵△BFE ∽△BDC ,△AEB ∽△DEC ,AB =2,CD =3,∴AB DC =BE EC=23,∴BE BC =EF DC =25,解得EF =65. 方法总结:位似图形上任意一对对应点到位似中心的距离之比等于相似比.位似图形的对应线段的比等于相似比.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计位似图形的概念及画法1.位似图形的概念;2.位似图形的性质及画法.在教学过程中,为了便于学生理解位似图形的特征,应注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.教师应把学习的主动权充分放给学生,在每一环节及时归纳总结,使学生学有所收获.。
图形的位似ppt课件
相似三角形对应边的比叫做相似比.
探索与思考
如图是一幅宣传海报,它由一组形状相同的图片组成.在图片①和图片②上任取一组对应点A,A’,可以发现:直线AA’都经过镜头中心点O,且 都等于一个固定值.请你实际试一试.
下图是两个相似五边形,设直线AA’与BB’相交于点O,那么直线CC’,DD’,EE’是否也都经过点O? , , , , 有什么关系?
D
EFΒιβλιοθήκη AOBC
D
E
F
A
O
B
C
结果会得到一个放大了的△DEF,且△DEF的三边是△ABC三边的2倍.即它们的位似比是2∶1.
做一做:
利用橡皮筋将一个图形放大
交流小结,收获感悟
1. 对自己说,你有什么收获? 2. 对同学说,你有什么温馨提示? 3. 对老师说,你还有什么困惑?
布置作业,强化目标 作业:习题4.13
教学目标
1.了解位似图形及其有关概念,能够利用作位似图形等方法将一个图形放大或缩小. 2.学生经历将一个图形放大或缩小的方法,并且在学习和运用过程中发展数学应用意识. 3.培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值.
问题:什么叫相似多边形?什么叫相似多边形的相似比?
F
E
D
做一做:
例题讲解
(1)如果在射线OA,OB,OC上分别取D,E,F,使OD=2OA, OE=2OB, OF=2OC,那么,结果又会怎样?
(2)如果在射线AO,BO,CO上分别取点D,E,F使DO=OA,EO=OB,FO=OC,那么,结果又会怎样呢? 结果会得到一个与△ABC全等的△DEF,.即它们的位似比是1∶1.
九年级数学上册 23.5 位似图形 如何学好位似图形素材
如何学好位似图形位似图形是新课标中新增加的内容,具有较高的实用价值.那么如何学好呢?一、理解位似图形及有关概念如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形(如图1),这个点叫做位似中心,这时的相似比又称为位似比.温馨提示:(1)位似图形是相似图形的特例,不仅要求形状形同,而且还要求对应点的连线相交于同一点.因此位似图形一定是相似图形,但相似图形不一定是位似图形.(2)如图1,位似图形上任意两组对应点连线的交点或其延长线的交点就是位似中心,位似中心和两对对应点构成“A 型”或“X 型”的相似三角形.二、掌握位似图形的性质位似图形上任意一对对应点到位似中心的距离之比等于位似比.如图1,△ABC 与△C B A '''是位似图形,且位似比为k ,则='A O OA CO OC B O OB '='=k. 三、会作一个图形的位似图形作一个图形的位似图形,就是作一个与已知图形相似的具有特殊位置的图形,方法有多种:比如“橡皮筋法”,“方格纸法”,“平行线法”等,但常用的方法是根据“位似图形上任意一对对应点到位似中心的距离之比等于位似比”来作.其基本步骤是:选定位似中心——连点——延长——截倍(分)等,而得到放大或缩小的图形,新图形与原图形就是位似图形.例 将图2中的四边形ABCD 放大,使得放大前后对应线段的比为1∶2.分析:作出四边形ABCD 的位似图形,使新图与原图的位似比为2∶1,即可得到符合要求的图形.解:如图2:①任取一点O;②以点O为端点作射线OA,OB,OC,OD;③分别在射线OA,OB,OC,OD上取点A',B',C',D',使O A'∶OA=O B'∶ OB=O C'∶OC =O D'∶OD=2∶1;④连接A'B',B'C',C'D',D'A'.则四边形A'B'C'D'就是所求的图形(即四边形A'B'C'D'与四边形ABCD是位似比为2∶1的位似图形).温馨提示:抓住位似比是画位似图形的关键.由于位似中心可以任意选取,因此答案不唯一,画出一种即可.。
《图形的位似》与图形的相似
如果两个图形中对应顶点连线所 在的直线交于一点,则这两个图 形位似。
依据边判定位似
总结词
通过比较两个图形对应边的长度和夹 角的大小来判断是否位似。
详细描述
如果两个图形中对应边长相等,且对 应边之间的夹角相等,则这两个图形 位似。
依据角度判定位似
总结词
通过比较两个图形中对应角的大小来判断是否位似。
确定相似关系
在几何作图中,位似关系可以帮助确 定两个图形是否相似,从而判断它们 的形状和大小是否符合要求。
放大或缩小图形
利用位似关系,可以将一个图形按照 一定比例放大或缩小,这在建筑设计 、机械制造等领域非常有用。
在解决实际问题中的应用
测量和计算
在土地测量、建筑规划等领域, 位似图形可用于计算实际物体的 尺寸和比例,为工程设计和施工
当一个位似图形进行反射时,即关于一条直线进行对称, 其形状和大小保持不变。反射后,对称轴一侧的图形会出 现在对称轴另一侧的位置上,这种反射性质也是位似图形 的一个重要特性。
位似图形的平移性质
位似图形在平移时,其形状和大小保持不变,只是位置发生了平移。
当一个位似图形在平面上进行平移时,其形状和大小不会发生变化,只是整体位 置沿着某一方向发生了平移。这种平移性质也是位似图形的一个重要特性,使得 位似图形在几何学中具有广泛的应用。
理论作用
位似和相似的概念是几何学理论体系的重要组成部分,它们有助于理解 图形的性质和关系,以及解决几何问题。
03
实际应用
在实际生活中,位似和相似的概念也有广泛的应用。例如,在建筑设计
、机械制造、测量等领域中,经常需要利用位似和相似的概念来处理和
分析图形数据。
05
位似图形的特殊性质
中考数学复习----《位似》知识点总结与专项练习题(含答案)
中考数学复习----《位似》知识点总结与专项练习题(含答案)知识点总结1. 位似的概念:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
2. 位似与平面直角坐标系:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k 。
练习题1、(2022•百色)已知△ABC 与△A 'B 'C '是位似图形,位似比是1:3,则△ABC 与△A 'B 'C '的面积比是( )A .1:3B .1:6C .1:9D .3:1【分析】利用为位似的性质得到△ABC 与△A 'B 'C '相似比是1:3,然后根据相似三角形的性质求解.【解答】解:∵△ABC 与△A 'B 'C '是位似图形,位似比是1:3,∴△ABC 与△A 'B 'C '相似比是1:3,∴△ABC 与△A 'B 'C '的面积比是1:9.故选:C .2、(2022•梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,已知 OA OA =31,若四边形ABCD 的面积是2,则四边形A ′B ′C ′D ′的面积是( )A .4B .6C .16D .18【分析】直接利用位似图形的性质得出面积比进而得出答案.【解答】解:∵以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,=,∴==, 则四边形A ′B ′C ′D ′面积为:18.故选:D .3、(2022•威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(34)3B .(34)7C .(34)6D .(43)6 【分析】根据余弦的定义得到OB =OA ,进而得到OG =()6OA ,根据位似图形的概念得到△GOH 与△AOB 位似,根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:在Rt △AOB 中,∠AOB =30°,∵cos∠AOB=,∴OB=OA,同理,OC=OB,∴OC=()2OA,……OG=()6OA,由位似图形的概念可知,△GOH与△AOB位似,且位似比为()6,∵S△AOB=1,∴S△GOH=[()6]2=()6,故选:C.4、(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2 B.1:4 C.1:3 D.1:9【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.5、(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF的周长是()A.4 B.6 C.9 D.16【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF 的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.∴C△ABC:C△DEF=2:3,∵△ABC的周长为4,∴△DEF的周长是6,故选:B.6、(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是.【分析】利用关于原点为位似中心的对应点的坐标变换规律得到相似比为2:1,然后根据相似三角形的性质解决问题.【解答】解:∵△OAB与△OCD位似,位似中心是坐标原点O,而点A(4,0),点C(2,0),∴相似比为4:2=2:1,∴△OAB与△OCD周长的比值为2.故答案为:2.7、(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.【分析】如图,连接B′D′.利用相似多边形的性质求出正方形A′B′C′D′的面积,求出边长,再求出B′D′可得结论.【解答】解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.8、(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是.【分析】先根据位似的性质得到△ABC和△DEF的位似比为OA:OD,再利用比例性质得到OA:OD=2:5,然后利用相似比等于位似比和相似三角形的性质求解.【解答】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.。