第三章-理想反应器PFR-1
合集下载
1.1 理想反应器

1.1.3.3 中间流 中间流: : 介于平推流和全混流之间。 介于平推流和全混流之间。 如:多釜串联、实际反应器; 多釜串联、实际反应器;
1.1.2.2 产生返混的原因 产生返混的原因主要有: 主要有: 主要有 1、涡流与干扰; 、涡流与干扰; 2、速度分布; 、速度分布; 3、沟流; 、沟流; 4、倒流; 、倒流; 5、短路与死角。 、短路与死角。
1.1.2.3 返混对化学反应的影响
1、返混 、 停留时间不一 副产品
a. 短:部分粒子未发生化学反应 b. 长:部分粒子进一步反应 收率 2、返混 、 质量 反应物浓度下降: : 反应器体积 VR
CAf
CA*
CA0
1.1.2
返 混
返混 是连续操作反应器的固有的流动特性, 管式反应器和连续釜式反应器,均存在这一 现象。
连续操作反应器的容积VR 平均停留时间τ = 物料的体积流量v
即:物料流经反应器所需的时间
1.1.2.1 年龄分布与返混
停留时间分布分为: 停留时间分布分为: 分为 1. 年龄分布 : 指反应器内的物料。 指反应器内的物料。 2. 寿命分布 : 指反应器出口处的物料。 指反应器出口处的物料。
1.1.1.2 管式反应器
-- 2
L CA0
L
1.1.1.3 连续反应釜 (CSTR)
间歇釜、连续釜的设备结构是一致的 设备结构是一致的, 间歇釜、连续釜的设备结构是一致的, 主要是工艺 操作过程不同而致。 操作过程不同而致。 特点 ****: : 1、反应器内各点的温度、浓度一致。 、反应器内各点的温度、浓度一致。 2、总体物料量进出平衡,出口物料中物料性质与釜 、总体物料量进出平衡, 内物料性质一致。 内物料性质一致。 3、稳态时,釜内物料性质不随时间而变化。 、稳态时,釜内物料性质不随时间而变化。
第三节 理想均相反应器的计算

第三节 理想均相反应器的计算
间歇搅拌釜式反应器(BSTR) 平推流(活塞流)反应器(PFR) 理想均相反应器 全混流(连续搅拌釜式)反应器(CSTR) 多级全混流反应器(MCSTR)
一、基本原理
1. 物料衡算式:
流入量 = 流出量 + 反应消耗量 + 累积量 2. 热量衡算式: 物料带入量 = 物料带出量 + 反应热效应 + 累积量 3. 反应动力学方程式:
0
c A0 x Af (rA ) f (1 A x Af )
因此,对于变容过程,往往选择标准状况下的体积流量 作为计算空时的基准。
全混釜一般设计方程讨论
5. 动力学特征
1 rA
c A0
1 rA f
1 x Af (rA ) f
1 rA
t c A0
x Af
0
dxA rA
矩形面积
FA0 0.685 1 171 L h 单位时间处理物料的体积量为: 0 c A0 0.004
(3)计算反应体积 V 0 (t t) 171 (8.47 1) 1619L 1.619(m3 ) (4)由装料系数0.75计算反应器体积 V 1.619 VR 2.159(m3 ) 0.75
3.2kmol/m3。该反应为一级,反应温度下的反应速率常数为8×10-3s-1,最 终转化率为98.9%。若加料速率为10kmol/h,则需多大体积的全混流反应 器?若在一个体积为1m3的等温间歇釜中进行,辅助操作时间为30min,求 苯酚的产量和处理10kmol/h过氧化异丙苯时的反应体积?并与全混釜比较。 【思考123】① 恒容过程?变容过程?② 求反应器体积?反应体积? ③ 怎样从设计方程到反应体积?
间歇搅拌釜式反应器(BSTR) 平推流(活塞流)反应器(PFR) 理想均相反应器 全混流(连续搅拌釜式)反应器(CSTR) 多级全混流反应器(MCSTR)
一、基本原理
1. 物料衡算式:
流入量 = 流出量 + 反应消耗量 + 累积量 2. 热量衡算式: 物料带入量 = 物料带出量 + 反应热效应 + 累积量 3. 反应动力学方程式:
0
c A0 x Af (rA ) f (1 A x Af )
因此,对于变容过程,往往选择标准状况下的体积流量 作为计算空时的基准。
全混釜一般设计方程讨论
5. 动力学特征
1 rA
c A0
1 rA f
1 x Af (rA ) f
1 rA
t c A0
x Af
0
dxA rA
矩形面积
FA0 0.685 1 171 L h 单位时间处理物料的体积量为: 0 c A0 0.004
(3)计算反应体积 V 0 (t t) 171 (8.47 1) 1619L 1.619(m3 ) (4)由装料系数0.75计算反应器体积 V 1.619 VR 2.159(m3 ) 0.75
3.2kmol/m3。该反应为一级,反应温度下的反应速率常数为8×10-3s-1,最 终转化率为98.9%。若加料速率为10kmol/h,则需多大体积的全混流反应 器?若在一个体积为1m3的等温间歇釜中进行,辅助操作时间为30min,求 苯酚的产量和处理10kmol/h过氧化异丙苯时的反应体积?并与全混釜比较。 【思考123】① 恒容过程?变容过程?② 求反应器体积?反应体积? ③ 怎样从设计方程到反应体积?
化学反应工程 第三章 理想反应器(2)

产生这一结果的原因
–全混流反应器中存在返混
–间歇反应器中不存在返混
反应器中的流动模式影响到了反应结果
全混流反应器的热量衡算和热 稳定性
全混流要达到定常态操作,必须保证反 应器为等温(恒定温度)操作
对其进行热量衡算,可以确定换热量、 换热面积等相关参数
CSTR热衡算方程式(操作方程式)
对于具有返混的反应器,同时进入反应器的物料微团, 并不同时离开反应器,因此,出现停留时间分布。这时, 采用平均停留时间来描述
平均停留时间:反应器的有效容积与反应器内物料的体
积流速之比,即: t V v
–对于恒容过程,因为 v v0,所以,t
–对于平推流反应器, t t
–对于间歇操作的完全混合反应器, t t
特征
–反应器内完全混合
反应器内具有均一的温度、浓度,且与出口物料的 温度、浓度相同;
–定常态的操作(稳态操作)
物料衡算
流入A的 - 流出A的 = 反应掉的A + A的累积
摩尔数 摩尔数 的摩尔数
v0CA0 v0CA (rA )V 0 整理得:
V C A0 C A C A0 xA
CA )V
可知
C
CA0
CA
– 对于反应级数大于0的反应,当达到的同样转化率及产
量时,τ>t,即:VCSTR>VBR
全混流反应器的容积效率
–分批式反应器的容积与全混流反应器所需反 应器容积之比:
由此可知:
VBR t
VCSTR
–反应级数大于0的反应,η <1
–反应级数小于0的反应,η >1
这是绝热操作的CSTR所允许的最大温升。若反应流体进、出口温
理想反应器的设计

这时,可采用图解法
图解法原理
C Ai 1 C Ai C Ai 1 C Ai i (rAi ) f (C Ai )
-rA
rAi f (C Ai )
C Ai 1
i
C Ai
i
x
f(CA)
y f ( x)
C Ai 1
CA1
CA0
CA
多级串联反应器体积设计
求: 已二酸的转化率分别为xA=0.5、 0.6、0.8所需的反应时间分别为 多少? 若每天处理已二酸2400kg,转 化率为80%,每批操作的辅助 时间为1小时,试计算确定反应 器的体积大小。
苯乙烯集合设备设计参数
项目要求
年产量/吨 9000 生产时间 7200
甲苯/% 聚合率
12 79.5
辅助时间 /h 反应温度 /℃ 速率常数 1/kmol/1 转化率/%
项目要求
年产量/ 9000 吨 生产时间 7200
甲苯/%
聚合率
12
79.5
辅助时间 /h 反应温度 /℃ 速率常数 1/kmol/1 转化率/%
1
140 0.25
装料系数 80%
70
密度(查 880 表) kg/m3
计算过程
假设是四级串联釜:第一级转化率是:30%
第二级是50%,第三级是60%,第四级是
计算过程
生产时间=XA/k*(1-XA)=0.795/0.051=15.6h
有效体积=15.6*1572.3=24509=24.5m3 实际体积=24.5/0.8=30.7m3
平推流反应器
物料衡算式:
空时:是空间时间的简称。它是指在
规定的条件下,反应器有效容积和进料 体积流量的比值,
图解法原理
C Ai 1 C Ai C Ai 1 C Ai i (rAi ) f (C Ai )
-rA
rAi f (C Ai )
C Ai 1
i
C Ai
i
x
f(CA)
y f ( x)
C Ai 1
CA1
CA0
CA
多级串联反应器体积设计
求: 已二酸的转化率分别为xA=0.5、 0.6、0.8所需的反应时间分别为 多少? 若每天处理已二酸2400kg,转 化率为80%,每批操作的辅助 时间为1小时,试计算确定反应 器的体积大小。
苯乙烯集合设备设计参数
项目要求
年产量/吨 9000 生产时间 7200
甲苯/% 聚合率
12 79.5
辅助时间 /h 反应温度 /℃ 速率常数 1/kmol/1 转化率/%
项目要求
年产量/ 9000 吨 生产时间 7200
甲苯/%
聚合率
12
79.5
辅助时间 /h 反应温度 /℃ 速率常数 1/kmol/1 转化率/%
1
140 0.25
装料系数 80%
70
密度(查 880 表) kg/m3
计算过程
假设是四级串联釜:第一级转化率是:30%
第二级是50%,第三级是60%,第四级是
计算过程
生产时间=XA/k*(1-XA)=0.795/0.051=15.6h
有效体积=15.6*1572.3=24509=24.5m3 实际体积=24.5/0.8=30.7m3
平推流反应器
物料衡算式:
空时:是空间时间的简称。它是指在
规定的条件下,反应器有效容积和进料 体积流量的比值,
全混流反应器计算的基本公式-化学反应工程

三、间歇反应器中的单反应
设有单一反应A→P
动力学方程为
rA
kC
n A
n=1时,
rA kCA
按式(3-5)残余浓度式
kt ln CA0 CA
或转化率公式:
kt ln(1 xA )
残余浓度式是计算经反应后残余A的浓度,而转化率式 是计算A的利用率,根据工艺要求可以公式(3-5)计 算。间歇反应中反应速率、转化率和残余浓度的计算结 果列于表3-1。
三、非理想流动模型
1. 实际反应器存在着程度不一的工程因素,流动状况不 同程度的偏离理想流动,称为非理想流动。
2. 非理想流动模型 在理想流动模型的基础上考虑非理想因素的流动模型, 称为理想流动模型。常用的非理想流动模型有:
1)轴向混合模型 2)多级串联全混流模型
目前大部分非理想流动模型都是以平推流模型为基础 发展而成的。
第三章 理想流动反应器
概述 按照操作方式,可以分为间歇过程和连续过程,相应的反
应器为间歇反应器和流动反应器。 对于间歇反应器,物料一次性加入,反应一定时间后把产
物一次性取出,反应是分批进行的。物料在反应器内的流 动状况是相同的,经历的反应时间也是相同的。 对于流动反应器,物料不断地加入反应器,又不断地离开 反应器。 考察物料在反应器内的流动状况。有的物料正常的通过反 应器,有的物料进入反应器的死角,有的物料短路(即近 路)通过反应器,有的物料在反应器内回流。
关系)
0级反应: 1级反应: 2级反应:
CA CA0 k,t
CA CA0ekt
CA
CA0 1 CA0kt
CA随t 直线下降 CA随t 较缓慢下降 CA随t 缓慢下降
对于一级或二级不可逆反应,在反应后期CA的下降速
第三章化学反应器中的混合现象全解

Chemical Reaction Engineering
• 混合是化学反应器中普遍存在的一种传递过 程,混合的作用是使反应器中物料的组成和 温度趋于均匀,不同的混合机理和混合程度 对反应结果(转化率和选择性)往往具有重 要的影响。
• 反应器中发生的混合现象是十分复杂的。对 反应器中的混合现象进行如实的描述和分析 非常困难。对实际过程进行简化,借助各种 理想化的模型去分析混合对反应过程的影响 依然是必要的。
Chemical Reaction Engineering
聚集状态
反应物系的聚集状态指进入反应器的不同物料微团间进行的物 质交换所能达到的程度以及在反应器微元尺度上所能达到的物 料组成的均匀程度。 反应物系的聚集状态有两种极限: ● 微观流体 :一种是不同物料微团间 能进行充分的物质交换 , 从而在反应器微元尺度上能达到分子尺度的均匀 , 这类物系称
• 返混指不同时间进入反应器的物料之间 发生的混合, 是连续流动反应器才具有
的一种传递现象, 可通过PFR和CSTR
这两种理想流动反应器的性能比较来考 察返混的利弊。
Plug Flow Reactor PFR Continuous Stirred Tank Reactor CSTR
Chemical Reaction Engineering
返混对复杂反应选择性的影响
分析
1
对简单反应, 返混仅仅影响反应速率。而对复杂反应, 返混对产 物选择性也有影响。
●平行反应
反应的瞬时选择性为:
R 主反应
A
2
S
副反应
☆当主反应级数n1高于>副反应的n2时,CA↑,S↑ →PFR的选择性高于CSTR (CA小) 。 ☆当n2 >n1时,则相反。
• 混合是化学反应器中普遍存在的一种传递过 程,混合的作用是使反应器中物料的组成和 温度趋于均匀,不同的混合机理和混合程度 对反应结果(转化率和选择性)往往具有重 要的影响。
• 反应器中发生的混合现象是十分复杂的。对 反应器中的混合现象进行如实的描述和分析 非常困难。对实际过程进行简化,借助各种 理想化的模型去分析混合对反应过程的影响 依然是必要的。
Chemical Reaction Engineering
聚集状态
反应物系的聚集状态指进入反应器的不同物料微团间进行的物 质交换所能达到的程度以及在反应器微元尺度上所能达到的物 料组成的均匀程度。 反应物系的聚集状态有两种极限: ● 微观流体 :一种是不同物料微团间 能进行充分的物质交换 , 从而在反应器微元尺度上能达到分子尺度的均匀 , 这类物系称
• 返混指不同时间进入反应器的物料之间 发生的混合, 是连续流动反应器才具有
的一种传递现象, 可通过PFR和CSTR
这两种理想流动反应器的性能比较来考 察返混的利弊。
Plug Flow Reactor PFR Continuous Stirred Tank Reactor CSTR
Chemical Reaction Engineering
返混对复杂反应选择性的影响
分析
1
对简单反应, 返混仅仅影响反应速率。而对复杂反应, 返混对产 物选择性也有影响。
●平行反应
反应的瞬时选择性为:
R 主反应
A
2
S
副反应
☆当主反应级数n1高于>副反应的n2时,CA↑,S↑ →PFR的选择性高于CSTR (CA小) 。 ☆当n2 >n1时,则相反。
第三章 管式反应器
第三章 管式反应器
第一节 管式反应器的设计模型
3.1.1 管式反应器的基本特征 1.流动模型(平推流模型) 指任一瞬间进入反应器的物料都在垂直于流向的一个平面内,沿着流向 平行地向前推移,犹如汽缸中的活塞运动一样。该流型的基本特征。 (1)在反应器内流动的物料不发生任何返混(返混、不是一般意义上的 混合,指在反应器中具有不同停留时间的物料间的混合,是连续流动反应 器特有的一种传递现象,在间歇反应器中不存在返混,返混,改变反应器 内浓度分布,反应物浓度下降,产物浓度升高,影响反应器生产能力及产 物的选择性)。 (2)反应器内参数只沿轴向变化。稳定态下,物料参数沿着流体向有相 同的变化序列。 (3)稳态下,器内物料的停留时间相等,且等于平均停留时间。
∫
VR 0
X dVR dxA =∫ 0 (−r ) FA0 A
A
VR = FA 0
∫
xA 0
dx A ( − rA )
根据:在连续反应器的性能方程中,常应用到空时 这一参数 这一参数, 根据:在连续反应器的性能方程中,常应用到空时τ这一参数,规定
τ=
V V0
其定义为在 规定条件下,进入反应器的物料通过反应器所需的时间。式中: 规定条件下,进入反应器的物料通过反应器所需的时间。式中:
式中 k
k
为正逆反应的反应速率常数,αi,βi
则为正逆
反应对反应组分i的反应级数。 反应对反应组分 的反应级数。 的反应级数
2.轴向扩散模型 . 该模型的基本假定为: 该模型的基本假定为 流体以恒定的流速u通过系统 通过系统; ① 流体以恒定的流速 通过系统; 在垂直于流体运动方向的横截面上径向浓度分布均一, ② 在垂直于流体运动方向的横截面上径向浓度分布均一,即径向混合达 到最大; 到最大; 由于湍流混合,分子扩散以及流速分布等传递机理而产生扩散, ③ 由于湍流混合,分子扩散以及流速分布等传递机理而产生扩散,仅 发 生在流动方向(即轴向),并以轴向扩散系数Da表示这些因素的综合作用。 生在流动方向(即轴向),并以轴向扩散系数 表示这些因素的综合作用。 ),并以轴向扩散系数 表示这些因素的综合作用 (1)物料衡算式 )
第一节 管式反应器的设计模型
3.1.1 管式反应器的基本特征 1.流动模型(平推流模型) 指任一瞬间进入反应器的物料都在垂直于流向的一个平面内,沿着流向 平行地向前推移,犹如汽缸中的活塞运动一样。该流型的基本特征。 (1)在反应器内流动的物料不发生任何返混(返混、不是一般意义上的 混合,指在反应器中具有不同停留时间的物料间的混合,是连续流动反应 器特有的一种传递现象,在间歇反应器中不存在返混,返混,改变反应器 内浓度分布,反应物浓度下降,产物浓度升高,影响反应器生产能力及产 物的选择性)。 (2)反应器内参数只沿轴向变化。稳定态下,物料参数沿着流体向有相 同的变化序列。 (3)稳态下,器内物料的停留时间相等,且等于平均停留时间。
∫
VR 0
X dVR dxA =∫ 0 (−r ) FA0 A
A
VR = FA 0
∫
xA 0
dx A ( − rA )
根据:在连续反应器的性能方程中,常应用到空时 这一参数 这一参数, 根据:在连续反应器的性能方程中,常应用到空时τ这一参数,规定
τ=
V V0
其定义为在 规定条件下,进入反应器的物料通过反应器所需的时间。式中: 规定条件下,进入反应器的物料通过反应器所需的时间。式中:
式中 k
k
为正逆反应的反应速率常数,αi,βi
则为正逆
反应对反应组分i的反应级数。 反应对反应组分 的反应级数。 的反应级数
2.轴向扩散模型 . 该模型的基本假定为: 该模型的基本假定为 流体以恒定的流速u通过系统 通过系统; ① 流体以恒定的流速 通过系统; 在垂直于流体运动方向的横截面上径向浓度分布均一, ② 在垂直于流体运动方向的横截面上径向浓度分布均一,即径向混合达 到最大; 到最大; 由于湍流混合,分子扩散以及流速分布等传递机理而产生扩散, ③ 由于湍流混合,分子扩散以及流速分布等传递机理而产生扩散,仅 发 生在流动方向(即轴向),并以轴向扩散系数Da表示这些因素的综合作用。 生在流动方向(即轴向),并以轴向扩散系数 表示这些因素的综合作用。 ),并以轴向扩散系数 表示这些因素的综合作用 (1)物料衡算式 )
第三章间歇釜式反应器知识讲解
20
3.3.1 单一反应
1.反应时间的计算 设在间歇反应器内进行如下化学反应 A+B→R
若VR为反应混合物的体积(反应器有效容积);-rA为t时刻的反 应速率;nA0为反应开始时A的摩尔量;nA为t时刻的A的摩尔 量。并以A为关键组分作微元时间dt内的物料衡算。
单 A的位 流时 入 单 A的 间 量 位 流时 出 单 A的 间 量 位 反时 应 的 反 间 量 积 应 A累 器速 中
所以
t CA0
x
Af
0
dxA (rA)
xA(nA0nA)/nA0(CA0CA)/CA0
dAxdA C /CA0
取 t=0 时 xA= 0、CA=CA0;t=t 时 xA=xAf、CA= CAf,
积分得
t CAf dC A CA0 (rA )
其中-rA一般具有
-rA=A0exp(-Ea/RT)CAmCBn ···的形式
10
(3)反应体积VR
• 反应体积是指设备中物料所占体积,又称有效体积。
确定反应器的容积V的前提是确定反应器的有效容 积(反应容积)VR。
如果由生产任务确定的单位时间的物料处理量为Q0,
操作时间为t’(包括反应时间t和辅助操作时间t0 ),则
反应器的有效容积:
VR=Q0 t'
其中 t’ = t + t0
17
• 例3-2 萘磺化反应器体积的计算。萘磺化生 产2-萘磺酸,然后通过碱熔得2-萘酚。已知 2-萘酚的收率按萘计为75%,2-萘酚的纯度 为 99% , 工 业 萘 纯 度 为 98.4% , 密 度 为 963kg/m3 。磺化剂为98%硫酸,密度为1.84。 萘与硫酸的摩尔比为1:1.07。每批磺化操 作周期为3.67小时。萘磺化釜的装料系数为 0.7。年产2-萘酚4000t,年工作日330天。
第三章 反应器计算
xA2
xA1
dxA 1 rA kCA0
xA 2
,
xA2
xA1
dxA , 2 (1 xA )
xA2 VR 2 kCA0 dxA 1 2 0.622 V0 (1 xA ) 1 xA
0.622
1 1 250 17.4 103 7.14 4.35 1 xA2 1 0.622 7.14
VR2 kCA0 xA2 xA1 , 2 V0 (1 xA2 )
xA2 0.770 250 17.4 103 7.14 4.35, 2 (1 xA2 ) 7.14 2 解得 xA1 0.8581 4.35xA2 9.7 xA2 5.120 0,
④
V0 2L / min
3-6
CA0
解:①
2 rA kCA , k 17.4mL / (mol min), V0 7.14L / min, 7.14L / mol, 反应在等温下进行,求以下几种反应器的出口转化率。
二级反应
2个0.25 m3 的CSTR串联,VR1= VR2=250L, 根据公式:
P + R, 速率表示式为
rB 8CACB 1.7CPCR , CA0 3.0mol / L, CB0 2.0 mol / L, xBf 0.8 。
解: 两股流体等流量同时加入反应器,总流量是其两倍,使 A V0A B V0B
A、B初始浓度相互稀释至一半, CA0 1.5, CB0 1.0 ,
VRi CA0 ( xAi xAi 1 ) VR1 CA0 ( xA1 xA0 ) xA1 i , 2 2 V0 (rA )i V0 kCA0 (1 xA1 ) kCA0 (1 xA1 )2 xA1 250 , 4.35(1 x )2 x , 3 2 A1 A1 7.14 17.4 10 7.14(1 xA1 ) VR2 ( xA2 xA1 ) 解得 xA1 0.622; 第二个CSTR: V kC (1 x )2 , 0 A0 A2 xA2 0.622 250 , 整理得 4.35(1 x )2 x 0.622 3 2 A2 A2 7.14 17.4 10 7.14(1 xA2 )
第三章理想反应器IDEALREACTOR
3/20/2021
19
单dV位的时A的间摩进尔入数的
单位时间从dV 流出A的摩尔数
单微位元时A的间反在应dV量的
3/20/2021
20
FA (FA dFA ) (rA )dV dFA (rA )dV
dFA d FA0 (1 x A ) FA0d A
FA0d A (rA )dV
Te
R ln
(E2 E1 )
k0C A0 (1 A )
k
' 0
(C
R
0
C A0 A )
( 1 1 ) R ln E2 Topt Te E2 E1 E1
3/20/2021
49
3.6-2复合反应 1.串联反应
A k 1 P k 2 S
C P,max
C A0
k1 k2
k
k2 2 k1
全混流最差。
3/20/2021
42
3/20/2021
43
2.最优操作温度的选定 不可逆反应,尽可能提高温度。 可逆吸热反应,尽可能提高温度。 可逆放热反应,存在最优的操作温度。
3/20/2021
44
对于 一级可逆反应,原料为纯物质A, 恒容。
rA
kCA0 [(1
A)
A
K
]
其中
k
k0
exp[
E kT
3/20/2021
28
解:反应气体的进料体积流速为:
v0
FA0 RT P
1.55 0.082 773 19.66(m3 / h) 5
反应流体在管内的体积流速为:
v
FRT P
F0 (1 A y A0 x A )RT
/P