七年级数学下册 第8章 整式乘法与因式分解 8.2 单项式与单项式除课件2 沪科版

合集下载

8.2整式乘法课件沪科版七年级下册数学

8.2整式乘法课件沪科版七年级下册数学

已知:xy2=-6,求-xy(x3y7-3x2y5-y)
计算:
(1)0.5ab( 2 ab2 2ab); 3
(2)x(x2 xy y2 ) y(x2 xy y2 );
(3)4ab[2a2b (ab ab2 ) 3b].
求图中物体的体积.
2x
3x
2x 3x
解 :V V黄 V红 V蓝
小试牛刀
计算:
(1) (2n+6)(n–3); (2) (3x–y)(3x+y); (3) (2x+5)2 .
想挑战吗?
计算:
(1) (3a–2)(a–1) +(a+1)(a+2); (2) (3x-5)(2x+3)-(2x-1)(x+1)
温馨提示
1.运用多项式的乘法法则时,必须做到不 重不漏.
b ac aຫໍສະໝຸດ d a如果把它看成三个小长方形,那么它们的 面积可分别表示为____a_b、____a_c、____a_d.
b
c
d
a
如果把它看成一个大长方形,那么它的 面积可表示为_a_(_b_+_c_+_d_)_.
如果把它看成三个小长方形,那么它们的 面积可分别表示为___a__b、___a__c、____a_d.
n
m
a
b
算法一:扩大后菜地的长是a+b,宽是
m+n,所以它的面积是 (a+b)(m+n)
探究与思考
问题3 一块长方形的菜地, 长为 a,宽为m。 现将它的长增加b,宽增加n,求扩大后的菜地 的面积。
n

m a
算你
法还

沪科版数学七年级下册8.2整式乘法

沪科版数学七年级下册8.2整式乘法

8.2 整式乘法1.单项式与单项式相乘第1课时 单项式乘以单项式1.复习幂的运算性质,探究并掌握单项式乘以单项式的运算法则;(重点)2.能够熟练运用单项式乘以单项式的运算法则进行计算并解决实际问题.(难点)一、情境导入根据乘法的运算律计算:(1)2x ·3y ;(2)5a 2b ·(-2ab 2).解:(1)2x ·3y =(2×3) ·(x ·y ) =6xy ;(2)5a 2b ·(-2ab 2)= 5×(-2)· (a 2·a )· (b ·b 2)=-10a 3b 3.观察上述运算,你能归纳出单项式乘法的运算法则吗?二、合作探究探究点:单项式乘以单项式 【类型一】 直接利用单项式乘以单项式法则进行计算计算:(1)(-23a 2b )·56ac 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2. 解析:运用幂的运算法则和单项式乘以单项式的法则计算即可.解:(1)(-23a 2b )·56ac 2=-23×56a 3bc 2=-59a 3bc 2; (2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9; (3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5. 方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合已知-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,∴⎩⎪⎨⎪⎧3m +1+n -6=4,2n -3-m =1,解得⎩⎪⎨⎪⎧m =2,n =3.∴m 2+n =7.方法总结:单项式乘以单项式就是把它们的系数和相同字母分别相乘,结合同类项,列出二元一次方程组.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的长方形空地,现在要在这块地中规划一块长35x m ,宽34y m 的长方形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出长方形绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy (m 2),长方形空地绿化的面积是35x ×34y =920xy (m 2),则剩下的面积是xy -920xy =1120xy (m 2). 方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用本课时的重点是让学生理解单项式乘法的法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用第2课时 单项式除以单项式1.复习单项式乘以单项式的运算,探究单项式除以单项式的运算规律;2.能运用单项式除以单项式进行计算并解决问题.(重点、难点)一、情境导入填空:(1)a m ·a n =________;(2)(a m )n =________;(2)a m +n ÷a n =________;(4)a mn ÷a n =________.我们已经学习了单项式乘以单项式的运算,今天我们将要学习它的逆运算.二、合作探究探究点:单项式除以单项式 【类型一】 直接用单项式除以单项式进行计算计算:(1)-x 5y 13÷(-xy 8);(2)-48a 6b 5c ÷(24ab 4)·(-56a 5b 2). 解析:(1)可直接运用公式进行计算;(2)运算顺序与有理数的运算顺序相同,从左到右依次进行运算.解:(1)-x 5y 13÷(-xy 8)=x 5-1·y 13-8=x 4y 5;(2)-48a 6b 5c ÷(24ab 4)·(-56a 5b 2)=[(-48)÷24×(-56)]a 6-1+5·b 5-4+2·c =53a 10b 3c . 方法总结:计算单项式除以单项式时应注意商的系数等于被除式的系数除以除式的系数,同时还要注意系数的符号;整式的运算顺序与有理数的运算顺序相同.【类型二】 已知整式除法的恒等式,求字母的值若a (x m y 4)3÷(3x 2y n )2=4x 2y 2,求a 、m 、n 的值.解析:利用积的乘方的计算法则以及整式的除法运算得出即可.解:∵a (x m y 4)3÷(3x 2y n )2=4x 2y 2,∴ax 3m y 12÷9x 4y 2n =4x 2y 2,∴a ÷9=4,3m -4=2,12-2n =2,解得a =36,m =2,n =5.方法总结:熟练掌握积的乘方的计算法则以及整式的除法运算是解题关键.三、板书设计1.单项式除以单项式的运算法则单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2.单项式除以单项式的相关计算在教学过程中,通过生活中的情景导入,引导学生根据单项式乘以单项式的乘法运算推导出其逆运算的规律,在探究的过程中经历数学概念的生成过程,从而加深印象2.单项式与多项式相乘第1课时 单项式乘以多项式1.能根据乘法分配律和单项式与单项式相乘的法则探究单项式与多项式相乘的法则;2.掌握单项式与多项式相乘的法则并会运用.(重点、难点)一、情境导入计算:(-12)×(12-13-14).我们可以根据有理数乘法的分配律进行计算,那么怎样计算2x ·(3x 2-2x +1)呢?二、合作探究 探究点:单项式乘以多项式 【类型一】 直接利用单项式乘以多项式法则进行计算 计算: (1)(23ab 2-2ab )·12ab ; (2)-2x ·(12x 2y +3y -1). 解析:先去括号,然后计算乘法,再合并同类项即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2; (2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y -(-2x )·1=-x 3y +(-6xy )-(-2x )=-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式与多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米. (1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab (平方米).故防洪堤坝的横断面积为(12a 2+12ab )平方米; (2)堤坝的体积V =Sh =(12a 2+12ab )×100=50a 2+50ab (立方米).故这段防洪堤坝的体积是(50a 2+50ab )立方米.方法总结:通过本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法则是解题的关键.【类型三】 利用单项式乘以多项式化简求值先化简,再求值:5a (2a 2-5a +3)-2a 2(5a +5)+7a 2,其中a =2.解析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解:5a (2a 2-5a +3)-2a 2(5a +5)+7a 2=10a 3-25a 2+15a -10a 3-10a 2+7a 2=-28a 2+15a ,当a =2时,原式=-82.方法总结:本题考查了整式的化简求值.在计算时要注意先化简然后再代值计算.整式的加减运算实际上就是去括号与合并同类项.三、板书设计1.单项式与多项式的乘法法则单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.2.单项式与多项式的乘法的应用本节课在已学过的单项式乘单项式的基础上,学习单项式乘多项式.教学中注意发挥学生的主体作用,让学生积极参与课堂活动,并通过不断纠错而提高自主学习能力第2课时 多项式除以单项式1.复习单项式乘以多项式的运算,探究多项式除以单项式的运算规律;2.能运用多项式除以单项式进行计算并解决问题.(重点、难点)一、情境导入1.计算:(1)-6x 3y 4z 2÷(-23x 2y 2); (2)9mn ÷(-6mn )2·(13n 2); (3)6(a -b )3c 5÷[-35(a -b )2c ]·[-2(a -b )3c 4]. 2.m (a +b +c )=am +bm +cm ,(am +bm +cm )÷m =am ÷m +bm ÷m +cm ÷m =a +b +c .你能根据多项式乘以单项式的运算归纳出多项式除以单项式的运算法则吗?二、合作探究探究点:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x 3y 4-36x 2y 3+9xy 2)÷(-9xy 2).解析:根据多项式除以单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x 3y 4÷(-9xy 2)+(-36x 2y 3)÷(-9xy 2)+9xy 2÷(-9xy 2)=-8x 2y 2+4xy -1.方法总结:多项式除以单项式的实质是单项式除以单项式,计算时先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.【类型二】 被除式、商式和除式的关系已知一个多项式除以2x 2,所得的商是2x 2+1,余式是3x -2,请求出这个多项式.解析:根据被除式、除式、商式、余式之间的关系解答.解:根据题意得2x 2(2x 2+1)+3x -2=4x 4+2x 2+3x -2,则这个多项式为4x 4+2x 2+3x-2.方法总结:“被除式=商×除式+余式”是解题的关键.【类型三】 运用多项式除以单项式化简求值先化简,后求值:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2015,y =2014.解析:利用去括号法则先去括号,再合并同类项,然后根据除法法则进行化简,最后把x 与y 的值代入计算,即可求出答案.解:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y =[2x 3y -2x 2y 2+x 2y 2-x 3y ]÷x 2y =x -y ,把x =2015,y=2014代入上式得原式=x -y =2015-2014=1.方法总结:熟练掌握去括号,合并同类项,整式的除法的法则.变式三、板书设计1.多项式除以单项式的运算法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2.多项式除以单项式的计算在教学过程中,通过类比单项式除以单项式的学习,引导学生归纳出多项式除以单项式的运算法则,通过练习加深学生的理解,并及时反馈信息.教师可引导学生解决问题,培养学生的思维能力3.多项式与多项式相乘1.理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算;(重点)2.掌握多项式与多项式的乘法法则的应用.(难点)一、情境导入某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.学生积极思考,教师引导学生分析,学生发现:这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)平方米.另外:如图,这块地由四小块组成,它们的面积分别为ma平方米,mb平方米、na平方米,nb平方米,故这块地的面积为(ma+mb+na+nb)平方米.由此可得(m+n)(a+b)=ma+mb+na+nb.今天我们就学习多项式乘以多项式.二、合作探究探究点一:多项式与多项式相乘【类型一】直接利用多项式乘多项式进行计算计算:(1)(3x+2)(x+2); (2)(4y-1)(5-y).解析:利用多项式乘多项式法则计算,即可得到结果.解:(1)原式=3x2+6x+2x+4=3x2+8x+4;(2)原式=20y-4y2-5+y=-4y2+21y-5.方法总结:多项式乘以多项式,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积. 【类型二】 多项式乘以多项式的混合运算计算:(3a +1)(2a -3)-(6a -5)(a -4).解析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可. 解:(3a +1)(2a -3)-(6a -5)(a -4)=6a 2-9a +2a -3-6a 2+24a +5a -20=22a -23. 方法总结:在计算时要注意混合运算的顺序和法则以及运算结果的符号.探究点二:多项式与多项式相乘的化简求值及应用【类型一】 多项式乘以多项式的化简求值先化简,再求值:(a -2b )(a 2+2ab +4b 2)-a (a -5b )(a +3b ),其中a =-1,b =1. 解析:先将式子利用整式乘法展开,合并同类项化简,再代入计算. 解:(a -2b )(a 2+2ab +4b 2)-a (a -5b )(a +3b )=a 3-8b 3-(a 2-5ab )(a +3b )=a 3-8b 3-a 3-3a 2b +5a 2b +15ab 2=-8b 3+2a 2b +15ab 2.当a =-1,b =1时,原式=-8+2-15=-21.方法总结:化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.【类型二】 多项式乘以多项式与方程的综合解方程:(x -3)(x -2)=(x +9)(x +1)+4.解析:方程两边利用多项式乘以多项式法则计算,移项合并同类项,将x 系数化为1,即可求出解.解:去括号,得x 2-5x +6=x 2+10x +9+4,移项,合并同类项,得-15x =7,解得x =-715. 方法总结:解答本题就是利用多项式的乘法,将原方程转化为已学过的方程解答.【类型三】 多项式乘以多项式的实际应用千年古镇杨家滩的某小区的内坝是一块长为(3a +b )米,宽为(2a +b )米的长方形地块,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.解析:根据长方形的面积公式,可得内坝、景点的面积,根据面积的和差,可得答案. 解:由题意,得(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab ,当a =3,b =2时,5a 2+3ab =5×32+3×3×2=63.故绿化的面积是63m 2.方法总结:用代数式表示图形的长和宽,再利用面积(或体积)公式求面积(或体积)是解决问题的关键.【类型四】 根据多项式乘以多项式求待定系数的值已知ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a 、b 的值. 解析:首先利用多项式乘法法则计算出(ax 2+bx +1)(3x -2),再根据积不含x 2项,也不含x 项,可得含x 2项和含x 项的系数等于零,即可求出a 与b 的值.解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2.∵积不含x 2项,也不含x 项,∴-2a +3b =0,-2b +3=0,解得b =32,a =94.∴系数a 、b 的值分别是94,32. 方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础。

沪科版七年级数学下册第八章8.2.3多项式乘以多项式同步教学课件

沪科版七年级数学下册第八章8.2.3多项式乘以多项式同步教学课件
X2项系数为:c –3b+8 = 0 X3项系数为:b – 3 = 0
∴ b=3 , c=1
拓展新知
例题.小东找来一张挂历画包数学课本.已知课本长
a厘米,宽b厘米,厚c厘米,小东想将课本封面与
封底的每一边都包进去m厘米,问小东应在挂历画
上裁下一块多大面积的长方形?
b
数学 a
七年级(下) 姓名: c ____________
① 不能漏乘: 即单项式要乘遍多项式的每一项
② 去括号时注意符号的确定.
某地区在退耕还林期间,有一块原长m米,宽 为a米的长方形林区增长了n米,加宽了b米, 请你表示这块林区现在的面积.
b
a
m
n
你能用不同的形式表示所拼图的面积吗?
b
mb
nb
a
ma
na
m
n
这块林区现在长为(m+n)米,宽为 (a+b)米. 因而面积为(m+n)(a+b)米2
由于(m+n)(a+b)和(ma+mb+na+nb)表 示同一块地的面积,故有:
(m+n)(a+b)= ma + mb + na+ nb
如何进行多项式与多项式相乘的 运算 ?
新课学习
2
1
1
2
3
4
(a+b)(m+n)=am+an+bm+bn
34
多项式的乘法法则
多项式与多项式相乘,先用一个 多项式的每一项分别乘以另一个多项 式的每一项,再把所得的积相加.
第8章 整式乘法与因式分解
8.2 整式乘法
3.多项式与多项式相乘

七年级数学下册第8章8.2整式乘法讲解与例题(新版)沪科版

七年级数学下册第8章8.2整式乘法讲解与例题(新版)沪科版

七年级数学下册第8章8.2整式乘法讲解与例题(新版)沪科版8.2 整式乘法1.掌握单项式与单项式相乘、单项式的除法、单项式与多项式相乘、多项式除以单项式、多项式与多项式相乘的法则,并体会单项式与多项式相乘、多项式与多项式相乘的⼏何意义.2.会利⽤法则进⾏整式的基本运算.3.理解整式乘法运算的算理,发展有条理地思考能⼒和语⾔表达能⼒.4.提倡多样化的算法,培养创新精神与能⼒.1.单项式与单项式相乘(1)单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在⼀个单项式⾥含有的字母,则连同它的指数作为积的⼀个因式.如:(-5a2b3)(-3a)=[(-5)×(-3)](a2·a)·b3=15a3b3.⼜如,(-3ab)(-a2c)2·6ab(c2)3=(-3ab)·a4c2·6abc6=[(-3)×6]a6b2c8=-18a6b2c8.(2)理解单项式与单项式相乘的法则时的注意事项:①法则的推导是运⽤了同底数幂的乘法性质和乘法的交换律和结合律,是根据已有的知识进⾏计算后再概括得到的,所以,没有必要对法则进⾏死记硬背.②法则包括乘式⾥的系数的运算、同底数幂的运算和不同字母的运算三个部分.系数相乘时,注意符号.相同字母的幂相乘时,底数不变,指数相加.对于只在⼀个单项式中含有的字母,连同它的指数⼀起写在积⾥,作为积的因式.③单项式的乘法在整式乘法中占有重要的地位,熟练地进⾏单项式的乘法运算是学好多项式乘法和多项式的混合运算的关键.④单项式乘以单项式的结果仍是单项式.⑤单项式的乘法法则对于三个或三个以上的单项式相乘同样适⽤.(3)单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式⾥含有的字母,则连同它的指数作为商的⼀个因式.事实上,单项式除以单项式可概括为三步:①系数相除,所得结果作为商的系数;②同底数幂分别相除,所得结果作为商的因式;③只在被除式⾥含有的字母,连同它的指数⼀起也作为商的⼀个因式.例如:计算6a 3b 2x 4÷3ab 2,这是单项式6a 3b 2x 4除以单项式3ab 2,系数相除,得6÷3=2;同底数的幂相除,得a 3÷a =a 2,b 2÷b 2=1;照抄单独底数的幂x 4,最后把2,a 2,1,x 4相乘即得所求的商为2a 2x 4.如果系数相除除不尽,则商的系数不要⽤带分数表⽰.例如:计算8m 5n 3÷6m 3n 2=43m 2n ,注意不要写成113m 2n . (4)单项式除法的注意事项:根据法则可知,单项式相除与单项式相乘计算⽅法类似,也是分成系数、相同字母与不相同字母三部分分别进⾏考虑.因此在运⽤单项式的除法法则进⾏计算时,应注意以下⼏点:①运算中不要忽略原来省写的指数1;⽐如:计算(-a 4b 3c 2)÷a 3bc 2=-ab 2,⽽不是-ab 3;②在运算中不要忽略了仅在被除式⾥单独含有的字母,在商中要⼀并写上;③⾮同底数的幂相除时,要先化为同底数的幂后再相除.例如:计算(-a 4)÷(-a )2=-a 4÷a 2=-a 2;或(-a 4)÷(-a )2=-(-a )4÷(-a )2=-(-a )2=-a 2;这⾥不要以为(-a 4)÷(-a )2=(-a )2=a 2,因为(-a 4)与(-a )2不是同底数的幂.④计算时应先系数相除,再同底数幂相除,最后再单独的字母与1相除.【例1-1】填空:(1)-a m b 2·(-3a 3b n )=__________.(2)(7×102)·(2×106)=__________.解析:(1)综合运⽤有理数的乘法、幂的运算性质、单项式与单项式相乘的法则求解.-a m b 2·(-3a 3b n )=[-1×(-3)]·(a m ·a 3)·(b 2·b n )=3a m +3b n +2.(2)利⽤单项式与单项式相乘的法则计算,结果要⽤科学记数法来表⽰.(7×102)·(2×106)=(7×2)×(102×106)=14×108=1.4×109.答案:(1)3a m +3b n +2 (2)1.4×109单项式乘以单项式的结果仍是单项式,只是系数和指数发⽣了变化,不能将系数和指数混淆.【例1-2】计算:(-3xy )·(-2x )·(-xy 2)2.分析:本题是单项式的乘法运算,且含有积的乘⽅运算,在运算时应先确定积的符号,因为前两个单项式的系数为负,第三个单项式的系数为正,所以积的结果为正.解:(-3xy )·(-2x )·(-xy 2)2=(3xy )·(2x )·(x 2y 4)=6x 4y 5.当多个单项式相乘时,应先确定积的符号,然后再按照法则进⾏计算.在单项式的乘法中,凡是在单项式⾥出现过的字母,在结果中应该全有,不能漏掉.⼀般情况下,积中字母的排列顺序按英⽂字母顺序排列,这样不会漏乘字母.【例1-3】计算:(1)(-0.5a 2bc 2)÷? ??-25ac 2; (2)(6×108)÷(3×105);(3)(6x 2y 3)2÷(-3xy 2)2.解:(1)(-0.5a 2bc 2)÷? ??-25ac 2=??????? ????-12×? ????-52a 2-1bc 2-2 =54ab ; (2)(6×108)÷(3×105)=(6÷3)×108-5=2×103;(3)(6x 2y 3)2÷(-3xy 2)2=36x 4y 6÷9x 2y 4=(36÷9)x 4-2y 6-4=4x 2y 2.2.单项式与多项式相乘(1)单项式与多项式的乘法法则:单项式与多项式相乘,⽤单项式和多项式的每⼀项分别相乘,再把所得的积相加.即:n (a +b +c )=na +nb +nC .(2)单项式与多项式相乘的⼏何意义如图,⼤长⽅形是由三个⼩长⽅形组成的,其长是a +b +c ,宽是n ,那么,⼤长⽅形的⾯积S =n (a +b +c ),同时这个⼤长⽅形的⾯积等于三个⼩长⽅形的⾯积和,于是这个⼤长⽅形的⾯积也可以表⽰成:S =S Ⅰ+S Ⅱ+S Ⅲ=na +nb +nc ;于是有n (a +b +c )=na +nb +nC .从⽽验证了单项式与多项式相乘的法则.(3)理解单项式与多项式相乘的法则时的注意事项:①根据分配律将单项式分别乘以多项式的各项,可归结为单项式的乘法;②单项式与多项式相乘的结果是⼀个多项式,其项数与因式中多项式的项数相同.如,-3a 2b (3ab 2c -2b 2c +cb )=(-3a 2b )×3ab 2c +(-3a 2b )×(-2b 2c )+(-3a 2b )×cb=-9a 3b 3c +6a 2b 3c -3a 2b 2C .③混合运算中,应注意运算顺序,结果有同类项时要合并同类项,从⽽得到最简结果.④积的符号问题是易错点,运算时应注意积的符号,多项式的每⼀项都包括它前⾯的符号,要认真观察,尤其是存在负号的情形.(4)多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每⼀项除以这个单项式,再把所得的商相加.即(a +b +c )÷m =a ÷m +b ÷m +c ÷m .此式表明:多项式除以单项式,⽤多项式的每⼀项分别与这个单项式相除,再把结果相加.可见,多项式除以单项式,最终要化归为单项式除以单项式的计算.多项式除以单项式,注意多项式各项都包括前⾯的符号.例如:计算(12a 3b 2-6a 2b -3ab )÷(-3ab )时,运⽤法则先把原式化为:12a 3b 2÷(-3ab )-6a 2b ÷(-3ab )-3ab ÷(-3ab ),然后分别计算,得原式=-4a 2b +2a +1.(5)多项式除以单项式运算的注意事项:当多项式中的某⼀项被全部除掉后,该项的商是1,⽽不是0.如上述的例⼦(12a 3b 2-6a 2b-3ab )÷(-3ab )=-4a 2b +2a +1.不要错误地以为是-4a 2b +2A .【例2-1】计算:(1)(-3ab )(2a 2b -ab +2);(2)x (x -2)-2x (x +1)-3x (x -5).解:(1)(-3ab )(2a 2b -ab +2)=(-3ab )(2a 2b )+(-3ab )(-ab )+(-3ab )×2=-6a 3b 2+3a 2b 2-6ab ;(2)x (x -2)-2x (x +1)-3x (x -5)=x ·x +x ·(-2)+(-2x )x +(-2x )·1+(-3x )·x +(-3x )·(-5)=-4x 2+11x .【例2-2】计算:(1)(-2a 3m +2n +3a 2m +n b 2n -5a 2m )÷(-a 2m );(2)[(a +b )5-(a +b )3]÷(a +b )3.分析:(1)利⽤多项式除以单项式法则计算即可;(2)把a +b 看成⼀个整体,那么此式可以看做多项式除以单项式,因此仍可运⽤多项式除以单项式的法则计算.解:(1)(-2a 3m +2n +3a 2m +n b 2n -5a 2m )÷(-a 2m )=(-2a 3m +2n )÷(-a 2m )+3a 2m +n b 2n ÷(-a 2m )+(-5a 2m )÷(-a 2m )=2a 3m +2n -2m -3a 2m +n -2m b 2n +5a 2m -2m =2a m +2n -3a n b 2n +5.(2)原式=(a +b )5÷(a +b )3-(a +b )3÷(a +b )3=(a +b )2-1=a 2+2ab +b 2-1.3.多项式与多项式相乘(1)多项式与多项式的乘法法则:多项式与多项式相乘,先⽤⼀个多项式的每⼀项与另⼀个多项式的每⼀项相乘,再把所得的积相加.即:(a +b )(m +n )=am +bm +an +bn .(2)多项式与多项式相乘的⼏何意义如图,⼤长⽅形是由四个⼩长⽅形组成的,其长是m +n ,宽是a +b ,那么⼤长⽅形的⾯积可以表⽰成(a +b )(m +n ),同时这个⼤长⽅形的⾯积也可以表⽰成S =S Ⅰ+S Ⅱ+S Ⅲ+SⅣ=am +bm +an +bn ;于是有(a +b )(m +n )=am +bm +an +bn .从⽽验证了多项式与多项式相乘的法则.(3)理解和运⽤多项式与多项式相乘的法则时的注意事项:①要防⽌两个多项式相乘,直接写出结果时“漏项”.检查的⽅法是:两个多项式相乘,在没有合并同类项之前,积的项数应该是这两个多项式项数的积.如:(a +b )(m +n ),积的项数应是2×2=4,即有4项.当然,若有同类项,则应合并同类项,得出最简结果.②多项式是单项式的和,每⼀项都包括前⾯的符号,在计算时⼀定要注意确定积中各项的符号.③对于含有同⼀个字母的⼀次项系数是1的两个⼀次⼆项式相乘时,可以运⽤下⾯的公式简化运算:(x +a )(x +b )=x 2+(a +b )x +aB .【例3】计算:(1)(3x +1)(x -1);(2)(x +y )(x 2-xy -1).分析:多项式乘以多项式,按照多项式乘以多项式的法则计算.(1)先⽤3x 分别与x ,-1相乘,再⽤1分别与x ,-1相乘,然后把所得的积相加;(2)分别⽤x ,y 与第⼆个多项式的每⼀项相乘,再把所得的积相加,注意不要漏项、丢符号.解:(1)(3x +1)(x -1)=3x 2-3x +x -1=3x 2-2x -1.(2)(x +y )(x 2-xy -1)=x 3-x 2y -x +x 2y -xy 2-y =x 3-x -y -xy 2.多项式与多项式相乘,必须做到不重不漏.相乘时,要按⼀定的顺序进⾏,即⼀个多项式的每⼀项乘以另⼀个多项式的每⼀项.在未合并同类项之前,积的项数等于两个多项式项数的积.多项式的每⼀项都包含它前⾯的符号,确定积中每⼀项的符号时应⽤“同号得正,异号得负”.运算结果中有同类项的要合并同类项.4.整式的乘法运算及混合运算整式的乘法运算包括单项式与单项式相乘,单项式与多项式相乘以及多项式与多项式相乘.进⾏整式的乘法运算应注意以下⼏点:把握分配律的使⽤;把握多项式与多项式相乘。

8.整式乘法-----单项式与单项式相乘课件数学沪科版七年级下册

8.整式乘法-----单项式与单项式相乘课件数学沪科版七年级下册

=29×0.25×(-217)×(a²·a²)·(b²·b²·b³)·(c·c6)
=- 1 a4b7c7.
24
例1 计算:
(2)5ab·(-2a)-(-b2)·1ab+10a2·(-2b).
2
5
解:(2)5ab·(-2a)-(-b2)·1ab+10a2·(-2b)
2
5
①注意系数前面的符号, 不要漏掉“-”.
根据题意,可得3m=3,3n=6,解得m=1,n=2.
1.(202X贵港中考)下列计算正确的是( C )
A.a2+a2=a4
B.2a-a=1
C.2a·(-3a)=-6a2
D.(a2)3=a5
2.(202X临沂中考)计算2a3·5a3的结果是( A )
A.10a6
B.10a9
C.7a3
D.7a6
3.计算: (1)2x2y·3xy;
5.已知a2m=2,b3n=3,求(b2n)3-a3m·b3n·a5m的值.
解:因为a2m=2,b3n=3, 所以(b2n)3-a3m·b3n·a5m =(b3n)2-a8m·b3n =32-(a2m)4×3 =32-24×3 =-39.
单项式乘单项式的运算法则
单项式相乘,把系数、同底数幂分别相乘,作为积的因 式;对于只在一个单项式里含有的字母,则连同它的指 数作为积的一个因式.
1.上面的Leabharlann 算应用了哪些性质?(3×105)×(4×3×107)=4×3×3×105×107=36×1012
=3.6×1013(km).
乘法交换律
乘法结合律
科学记数法
2.如果把上面算式中的数字换成字母,例如bc5×abc7,该如何计算呢?

沪科版七年级下第8章 8.4.2 因式分解 公式法课件(15张PPT)

沪科版七年级下第8章 8.4.2  因式分解 公式法课件(15张PPT)
满足上述条件就可以用平方差公式
小试牛刀
判断下列各多项式是否可以用平方差公式进 行因式分解,如果可以,指出对应公式中的 a,b分别是什么,如果不能请说明理由。
(1)、a²-2ab+b² (2)、a²+b² (3)、-a²-b² (4)、a²-b (5)、a²-1 (6)、4a²-25b²(7)-16m²+1

3、分解因式:
(1)、4x²+4x+1 (2)、(x-2y)²+8xy
(3)、 1 x2 1 y2 (4)、(x+1)(x-1)-35
16 25
布置作业 课堂小册子
魅力数学
1、用简便方法计算:
1 1 1 1 1 1 1 1 ...1 1 4 9 16 25 10000
因式分解
引出概念
像这样运用公式进行因式分解的方法叫做公式 法
掌握运用
那么,我们如何运用公式法进行因式分解呢? 观察刚才的等式
a²+2ab+b²=(a+b)² a²-2ab+b²=(a-b)² 等式左边的多项式具有什么特点?
特征: 项数 三项式 特点 两项能够写成完全平方数,另外 一项是它们底数积的2倍。 符号 完全平方数的两项符号相同
满足刚才三点要求就可以运用完全平方公式法来 因式分解了。
判断下列各多项式可以运用完全平方法进行分解 因式吗?
(1)x²-2x+1 (2)m²+2mn+n²(3)4a²+6ab+9b² (4)(a-b)²-2(a-b)+1(5)-a²+2ab-b²(6)2a²-b (7)x²-2xy-y ² (8)a²-ab+b²(9)m²+mn+n²

2016七年级数学下册 第8章 整式乘法与因式分解 8.2 多项式除以单项式课件4 (新版)沪科版


三、解答题(共 42 分) 16.(6 分)计算: [x(x2y2-xy)-y(x2-x3y)]÷x2y. 解:原式=(x3y2-x2y-x2y+x3y2)÷x2y=(2x3y2-2x2y)÷x2y= 2xy-2
17.(6 分)已知一个三角形的面积是(4a3b-6a2b2+12ab3),一边长 为 2ab,求该边上的高.
解:2×(4a3b-6a2b2+12ab3)÷(2ab)=4a2-6ab+12b2.答:该 边上的高为(4a2-6ab+12b2)
18.(8 分)已知一长方体水箱可装(3a3b6+6a4b5)m3 的水,水箱高 为 a2b3 m,求水箱的占地面积.(水箱的厚度忽略不计)
解:水箱的底面积=(3a3b6+6a4b5)÷a2b3=(3ab3+6a2b2)(m2). 答:水箱的占地面积为(3ab3+6a2b2)m2
C.-2x2-3x-1 D.2x2-3x-1
11.计算:[2(3x2)3-48x3+6x]÷(-6x)等于( C )
A.3x3-8x
B.-3x3+8x2
C.-3x3+8x2-1 D.-3x3-8x2-1
12.下列运算中结果正确的是( D ) A.(-8x4+32x3)÷(-4x3)=2x+8 B.(4x3y2-x2y3)÷2x2y2=2x-y C.(6a2b3+4ab2)÷2ab2=3ab+2b D.(xy2-x2y)÷xy=y-x
19.(12 分)先化简,再求值: (1)若 2x-y+|y+2|=0,求代数式(2x2-2xy)÷2x 的值. (2)求 a2-b2+(4ab3-8a2b2)÷4ab 的值,其中 a=2,b=1. 解:(1)(2x2-2xy)÷2x=x-y,由 2x-y+|y+2|=0 得 2x- y=0,y+2=0,解得 x=-1,y=-2.把 x=-1,y=-2 代入,原 式=-1-(-2)=1 (2)a2-b2+(4ab3-8a2b2)÷4ab=a2-b2+b2-2ab=a2-2ab, 当 a=2,b=1 时,原式=22-2×2×1=4-4=0

沪科版七年级数学下册8.2整式乘法课件


b a
c a
d a
如果把它看成三个小长方形,那么它们的 面积可分别表示为____a_b、____a_c、____a_d.
b
c
d
a
如果把它看成一个大长方形,那么它的 面积可表示为_a_(_b_+_c_+_d_)_.
如果把它看成三个小长方形,那么它们的 面积可分别表示为___a__b、___a__c、____a_d.
乘法分配 率
=(-3a) ·(-2a2)+(-3a) ·(-3a)+(-3a) ·(-2)
=6a3+9a2+6a 单项式乘单项式运算法则
计算:
⑴ a (2a-3)
⑵ a2 (1-3a)
⑶ 3x(x2-2x-1)
⑷ -2x2y(3x2-2x-3)
(5)(2x2-3xy+4y2)(-2xy)
(6) 2a2 (a3 1 a2 a 1) 2
例2:如图: 一块长方形 地用来建造 住宅、广场、 商厦,求这 块地的面积.
4a 3a
3a+2b
2a-b
人民广场 住宅用地
商业用地
解:长方形的长为(3a+2b)+(2a-b),宽为4a, 这块地的面积为:
3a+2b
2a-b
4a 3a
4a[(3a+2b)+(2a-b)] =4a(5a+b) =4a·5a+4a·b =20a2+4ab 答:这块地的面积 为20a2+4ab.
例1 计算:
⑴ (-3a) ·(-2a2-3a-2) 解:(-3a) ·(-2a2-3a-2)
乘法分配 律
=(-3a) ·(-2a2)+(-3a) ·(-3a)+(-3a) ·(-2)

沪科版数学七年级下册整式乘法(第1课时)课件

第8章 整式乘法与因式分解
8.2 整式乘法 (第1课时)
问题引入
求出下列各式的运算结果.
(a5 )(5 1) a25 =__________
(a2b()3 2) a6b3=__________
((32)a)2 (3a2 )3 4a2=_(_2_7_a_6_) ___1_0_8a_8__
(4) ( yn )2 yn1
单项式相乘,把系数、同底数幂分别相乘,作 为积的因式;对于只在一个单项式里含有的字 母,则连同它的指数作为积的一个因式.
简记为: 单项式×单项式 =(系数×系数)(同底数幂相乘)(单独的幂)
例题讲授
例1 计算下面各题: (1)x·2x=x·2·x=2·(_x_x_)=2_x_2. (2)2ab·3a=2·a·b·3·a=(_2_×__3_)·(_a_a_)·b=_6_a_2_b. (3)3x2y·(-4xy)=[__3_×__(_-4_)_]__·_(x_2_x_)_·(_y_y_) _= _-_1_2_x_3_y2_.
5 1 y2
5
(2) 10a4b3c2 5a3bc (10 5)a43b31c21
2ab2c
课堂小结
1.单项式与单项式相乘:
单项式×单项式 =(系数×系数)(同底数幂相乘)(单独的幂)
2.单项式与单项式相除:
商式=系数 • 同底的幂 • 被除式里单独有的幂
被除式的系数 底数不变, 保留在商里
除式的系数 指数是_____.
解析:因为三角形的高为 1 a,所以这个三角形的面积是 3
1 a 1a 1 a2. 23 6
答案:1 a2 6
3.计算: (1) 3 x2 y3 3x2 y
5 (2) 10a4b3c2 5a3bc

七年级数学下册 第8章 整式乘法和因式分解 8.2 整式乘法 8.2.2 单项式与多项式相乘教案 (新版)沪科版

8.2.2 单项式与多项式相乘【教学目标】1、经历探索多项式乘法法则的过程,理解多项式乘法法则。

2、学会用多项式乘法法则进行计算。

3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。

【教学重点、难点】重点是掌握多项式的乘法法则并加以运用。

难点是理解多项式乘法法则的推导过程和运用法则进行计算。

【教学准备】展示课件。

【教学过程】一、回顾与思考教师引导学生复习单项式×多项式运算法则整式的乘法实际上就是单项式×单项式单项式×多项式和今天学多项式×多项式二、创设情景,导入课题展示:节前语和图片。

展示:课本中三图图5-4一间厨房的平面布局如图5-4,试用几种方法表示厨房的总面积。

(师生共同探索,鼓励学生用不同的表示方法完成,然后总结)由图5-5得总面积为(a+n)(b+m)由图5-6得总面积为a(b+m)+n(b+m)或ab+am+nb+nm此时提出问题《多项多的乘法》。

三、探索法则与应用(a+n)(b+m)=a(b+m)+n(b+m)=ab+am+nb+nm根据分配律,我们也能得到下面等式:(a+n)(b+m)=ab+am+nb+nm1、在学生发言的基础上,教师总结多项式×多项式的乘法法则并板书法则。

让学生体会法则的理论依据:乘法对加法的分配律多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

2、例题讲题例1 计算(1)(x+y)(a+2b)(2)(3x-1)(x+3)强调法则的作用。

例2 先化简,再求值:(2a-3)(3a+1)-6a(a-4)其中a=2/17解:(2a-3)(3a+1)-6a(a-4)=6a2+2a-9a-3-6a2+24a=17a-3当a=2/17时,原式=17×2/17-3=-13、课内练习四、归纳小结,充实结构指导学生总结本节课的知识点、学习过程等的自我评价。

主要针对以下两个方面:1、多项式×多项式2、整式的乘法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档