2023全国乙卷高考文科数学试卷及答案解析
全国乙卷数学试卷2023文科

全国乙卷数学试卷2023文科2023年全国乙卷数学试卷(文科)第一部分:选择题(共50分)1. 设函数f(x) = 2x^3 + 3x^2 - 6x + 1,求f(-1)的值。
2. 已知函数f(x) = 2x + 3和g(x) = x^2 - 5x + 2,求复合函数f(g(x))的表达式。
3. 已知函数y = log2(x),若点(2, y)在图像y = ax^2 + bx + c 上,求a + b + c的值。
4. 若等差数列的第一项为a1,第n项为an,公差为d,已知an = 3n + 1,a1 + a2 + ... + an = 136,求d的值。
5. 已知函数f(x) = ax^2 + bx + c,其中a > 0,若f(1) = 2,f(-1) = 6,求函数f(x)的表达式。
6. 设正方形边长为a,内接圆的半径为r,已知a^2 - r^2 = 18,求a的值。
7. 平面上有一圆心坐标为(-3, 4),通过点(-1, 2),求该圆的方程。
8. 已知函数f(x) = 2x^2 + ax + b的图像过点(1, 3),且切线为y = 2x - 1,求参数a和b的值。
9. 设等差数列的公差为d,已知其前5项的和为10,后5项的和为20,求d的值。
10. 在平面直角坐标系中,直线y = 3x + 1与x轴和y轴分别交于点A和B,点P在直线上,且PA的长度是PB的2倍,求点P的坐标。
11. 设函数f(x) = e^x - ax^2 + 4ax - 4,已知f(0) = 0,f'(0)= 0,求参数a的值。
12. 在△ABC中,AB = 6,AC = 8,BC = 10,点D是边BC上的一点,且AD ⊥ BC,求AD的长度。
13. 已知函数f(x) = a^x,其中a > 1,若f(2) + f(3) = 40,求参数a的值。
14. 设函数f(x) = 2x^2 + 3x + k,在区间[1, 2]上的图像与x轴围成的面积为1,求参数k的值。
2023年高考押题预测卷03卷-文科数学(全国乙卷)(原卷及解析版)

绝密★启用前2023年高考押题预测卷03(全国乙卷)文科数学(考试时间:150分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
评卷人 得分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,2{|60}A x x x =--<,{|ln(1)}B x y x ==-,则()UA B =( )A .[)1,3B .(]1,3C .()1,3D .(]2,1-2.设复数z 的共轭复数为z ,且满足11iz z i+-=-,i 为虚数单位,则复数z 的虚部是( ) A .12B .2C .12-D .2-3.已知函数2()log 164x f x x =-()f x 的定义域为( ) A .(,4]-∞B .(,2]-∞C .(0,2]D .(0,4]4.“湖畔波澜飞,耕耘战鼓催”,合肥一六八中学的一草一木都见证了同学们的成长.某同学为了测量澜飞湖两侧C ,D 两点间的距离,除了观测点C ,D 外,他又选了两个观测点12,P P ,且12PP a =,已经测得两个角1221,PP D P PD αβ∠=∠=,由于条件不足,需要再观测新的角,则利用已知观测数据和下面三组新观测的角的其中一组,就可以求出C ,D 间距离的有( )组①1DPC ∠和1DCP ∠;②12PP C ∠和12PCP ∠;③1PDC ∠和1DCP ∠ A .0B .1C .2D .35.设向量(0,2),(2,2)a b ==,则( ) A .||||a b =B .()//a b b -C .a 与b 的夹角为3πD .()a b a -⊥ 6.已知双曲线22144x y a a -=+-(a >4)的实轴长是虚轴长的3倍,则实数a =( )A .5B .6C .8D .97.在等比数列{}n a 中,若25234535,44a a a a a a =-+++=,则23451111a a a a +++= A .1B .34-C .53-D .43-8.某三棱锥的三视图如图所示,该三棱锥表面上的点M 、N 、P 、Q 在三视图上对应的点分别为A 、B 、C 、D ,且A 、B 、C 、D 均在网格线上,图中网格上的小正方形的边长为1,则几何体MNPQ 的体积为( )A .14B .13C .12D .239.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边经过点A (1,-3),则tan()4πα+=( )A .12B .12-C .1D .-110.2021年电影春节档票房再创新高,其中电影《唐人街探案3》和《你好,李焕英》是今年春节档电影中最火爆的两部电影,这两部电影都是2月12日(大年初一)首映,根据猫眼票房数据得到如下统计图,该图统计了从2月12日到2月18日共计7天的累计票房(单位:亿元),则下列说法中错误的是( )A .这7天电影《你好,李焕英》每天的票房都超过2.5亿元B .这7天两部电影的累计票房的差的绝对值先逐步扩大后逐步缩小C .这7天电影《你好,李焕英》的当日票房占比逐渐增大D .这7天中有4天电影《唐人街探案3》的当日票房占比超过50%11.已知函数()()sin 02f x x πωω⎛⎫=+> ⎪⎝⎭,将()f x 的图象向右平移3ωπ个单位得到函数()g x 的图象,点A ,B ,C 是()f x 与()g x 图象的连续相邻的三个交点,若ABC 是钝角三角形,则ω的取值范围是( ) A .3,⎫+∞⎪⎪⎝⎭B .2,⎫+∞⎪⎪⎝⎭C .2⎛⎫⎪ ⎪⎝⎭ D .3⎛⎫⎪ ⎪⎝⎭12.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,3AB AC ==,120BAC ∠=︒,则球O 的表面积为( )A .48πB .16πC .64πD .36π评卷人 得分二、填空题:本题共4小题,每小题5分,共20分.13.已知1e ,2e 均为单位向量,若123e e -=,则1e 与2e 的夹角为______.14.已知椭圆22221(0)x y a b a b +=>>2,直线l 与椭圆交于A ,B 两点,当AB 的中点为()1,1M 时,直线l 的方程为___________.15.已知锐角ABC 内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC 的面积是__________.16.在四面体ABCD 中,ABC 与ACD △都是边长为3G 为AC 的中点,且2BGD π∠=,则该四面体ABCD 外接球的表面积为___________. 评卷人 得分三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)已知一个由正数组成的数阵,如下图各行依次成等差数列,各列依次成等比数列,且公比都相等,1214332,4,12a a a ===. 第一行111213141,,,n a a a a a 第二行212223242,,,n a a a a a第三行313233343,,,n a a a a a……第n 行1234,,,n n n n nn a a a a a (1)求数列{}2n a 的通项公式; (2)设()()()12122,1,2,3,11n n n n b n a a -+==-⋅-,求数列{}n b 的前n 项和n S .18.(12分)为纪念建党100周年,某校举办党史知识竞赛,现从参加竞赛的同学中,选取200名同学并将其成绩(百分制,均为整数)分成六组:第1组[)40,50,第2组[)50,60,第3组[)60,70,第4组[)70,80,第5组[)80,90,第6组[]90,100.得到如图所示的频率分布直方图.(1)求a 的值,并估计这200名学生成绩的中位数;(2)若先用分层抽样的方法从得分在[)40,50和[)50,60的学生中抽取5人,然后再从抽出的5人中任意选取2人,求此2人得分恰在同一组的概率. 19.(12分)如图,四棱锥E ABCD -中,底面ABCD 为直角梯形,其中AB BC ⊥,//CD AB ,面ABE ⊥面ABCD ,且224AB AE BE BC CD =====,点M 在棱AE 上.(1)若直线//CE 平面BDM ,求:EM AM 的值. (2)当AE ⊥平面MBC 时,求点C 到平面BDM 的距离. 20.(12分)已知椭圆方程为221259y x +=,若抛物线22(0)x py p =>的焦点是椭圆的一个焦点.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于A ,B 两点,分别在点A ,B 处作抛物线的切线,两条切线交于P 点,则PAB △的面积是否存在最小值?若存在,求出这个最小值及此时对应的直线l 的方程;若不存在,请说明理由. 21.(12分)已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(其中t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22cos 40m ρρθ--=(其中m 0>). (1)若点M 的直角坐标为()3,3,且点M 在曲线C 内,求实数m 的取值范围; (2)若3m =,当α变化时,求直线l 被曲线C 截得的弦长的取值范围. 23.[选修4-5:不等式选讲](10分) 已知函数()241f x x x =++-.(1)求不等式()6f x >的解集;(2)设函数()f x 的最小值为m ,正实数a ,b 满足229a b m +=,求证:326a b ab +≥.2023年高考押题预测卷03(全国乙卷)文科数学·全解全析1 2 3 4 5 6 7 8 9 10 11 12 DBACDDBDDDAD1.D解:∵{}12A x x =<<,{}12B x x =≤≤, ∵{}12A B x x ⋂=<<, 故选:D . 2.B因为()()()221i 1i 12i i i 1i 1i 1i 2++++===--+, 所以其共轭复数为i -,则其虚部为1-, 故选:B 3.A 当14a >,0x >时,由基本不等式可知21a ax x a x x +≥⋅=, 故“14a >”是“对任意的正数x ,均有1ax x+≥”的充分条件; 当14a =时,114a a x x x x +≥⋅=成立,14a >不成立, 故“14a >”是“对任意的正数x ,均有1ax x+≥”的不必要条件. 故选:A 4.C解:因为函数()f x 是定义域为R 的偶函数, 所以()()f x f x =-, 又因为()()11f x f x +=-, 所以()()2f x f x -=,则()()2f x f x -=-,即()()2f x f x +=, 所以周期为2T =,因为112f ⎛⎫= ⎪⎝⎭,33121222f f f ⎛⎫⎛⎫⎛⎫-=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:C 5.D对于A :当2a =,4b =-时不成立,故A 错误;对于B :当12a =-,1b =-,所以2ba =,101b a +=+,即11b b a a +>+,故C 错误;对于C :当0c 时不成立,故C 错误;对于D :因为a b >,所以330a b >>,又30b ->,所以33332332b b a b b b ---≥⨯+>+=(等号成立的条件是0b =),故D 正确. 故选:D. 6.D函数的定义域为{x |x ≠0},11()ln ||cos(3)ln ||cos3()22f x x x x x f x -=--==,则f (x )是偶函数,图象关于y 轴对称,排除B ,C ,当06x π<<时,f (x )<0,排除A ,D 符合要求.故选:D. 7.B设AF x =,则3DF x =,BD AF x ==,4AD x =,120ADB ∠=, 在ABD △中,根据余弦定理得,22222212cos 1624212AB AD BD AD BD ABD x x x x x ∠⎛⎫=+-⋅⋅=+-⋅⋅⋅-= ⎪⎝⎭,∵221393sin60(3)24EFDS DF DE x =⋅⋅⋅==, 2213213sin602124ABCSAB BC x =⋅⋅⋅==, ∵73ABC EFDSS=,∵图中阴影部分与空白部分面积之比为34.故选:B. 8.D设2,x a y b =+=,则2,a x b y =-=,故28x y +=,其中2,0x y >>,()2212214226288x y x y a b x y y x ⎛⎫⎛⎫+=++=++ ⎪ ⎪+⎝⎭⎝⎭, 由4242x yy x+≥ 当且仅当(422422x yy x x y x=⇒=⇒=,()821y =时等号成立,此时2x >,0y >满足, 故222a b ++的最小值为(13264284+= 故选:D. 9.D当受血者为B 型血时,供血者可以为B 型或O 型,所以一位供血者能为这位受血者正确输血的概率为41%+24%=65%=0.65. 故选:D 10.D∵等差数列{an }中,a 1,a 6为函数2()914f x x x =-+的两个零点, ∵a 1=2,a 6=7,或a 1=7,a 6=2, 当a 1=2,a 6=7时,61161a a d -==-,a 3=4,a 4=5,所以a 3a 4=20. 当a 1=7,a 6=2时,61161a a d -==--,a 3=5,a 4=4,所以a 3a 4=20. 故选:D . 11.A双曲线22271x y -=,273c =+=, 所以(3,0)F ,3,2122pp ==,所以抛物线2:12C y x =. 设11(,)A x y ,22(,)B x y ,直线l 的方程为()(3)0y k x k =->.联立2(3)12y k x y x =-⎧⎨=⎩消去y ,化简整理得()222261290k x k x k -++=.设()()1122,,,A x y B x y ,则122126x x k +=+,129x x =. ∵||3||AF BF =,()12333x x +=+,∵1236x x -= ∵122126x x k +=+,∵1296x k =+,223x k=,又129x x =,∵23k =, ∵0k >,∵3k =因此直线l 3330x y --=. 故选:A 12.D由0ln 2lne 1x <=<=,10lg 2102y <=<可得2211log e,log 10x y ==,故()22211log e log 10log 10e 1x y +=+=>,即x y xy +>,2221110log 10log e log 1e y x ⎛⎫-=-=> ⎪⎝⎭,即x y xy ->,又(0,)2x π∈时,tan x x >,3022x y π<+<<,故()tan x y x y +>+,综上()tan x y x y x y xy +>+>->. 故选:D. 13.23π因为1e ,2e 均为单位向量,且123e e -=, 所以22212112223e e e e e e -=-⋅+=,即121cos ,2e e =-,因为[]12,0,e e π∈, 所以122,3e e π=, 故答案为:23π 14.230x y +-=由题可知直线AB 的斜率存在;设()()1122,,,A x y B x y ,由于点,A B 都在椭圆上,所以2211221x y a b+=①, 2222221(0)x y a b a b +=>>②,-①②,化简得2221222212y y b a x x --=-;22221b a -所以2212b a =,即()()()()221212122212121212y y y y y y x x x x x x -+-==---+; 又线段AB 的中点为()1,1M ,所以()()()()()()()()121212121212121212121222y y y y y y y y y y x x x x x x x x x x +--+-===-+-+--, 所以直线AB 的斜率为12-,故所求直线l 的方程为()1112y x =--+,即230x y +-=.故答案为:230x y +-=. 1523因为sin sin 4sin sin b C c B a B C +=,所以由正弦定理可得sin sin sin sin 4sin sin sin B C C B A B C +=,由0,0B C ππ<<<<,则1sin 2A =,而三角形ABC为锐角三角形,所以3cos 6A A π=⇒=. 由余弦定理,222383cos 223b c a A bc bc bc +-==11123sin 2223ABCSbc A ===. 2316.28π过点D 作DE ∵BG ,易得DE ∵平面ABC , 记ABC 的中心为O 1,几何体的球心为O , 连接OO 1,过点O 作OF //O 1E 交DE 于点F ,如图所示,由题可得BG =DG =3,∵DGB =23π, 333,2EG DE ==,111,2,O G O A == 设1OO x =,外接球的半径为R ,所以2221222R O A x R DF OF ⎧=+⎨=+⎩,即2222222335()2R xR x ⎧=+⎪⎨⎛⎫=-+⎪ ⎪⎝⎭⎩, 解得73R x ⎧=⎪⎨=⎪⎩ 所以该四面体外接球的表面积为28π. 17.(1)解:由题意,设第一行的公差为1d ,第三列的公比为q , 则由122a =,144a =,可得1141222d a a =-=, ∵11d =,∵133a =,又3312a =,∵331324a a q ==,∵2q ,∵11212222n n nn a a q --=⋅=⨯=;(2)解:∵()()()()()()()()()11111212121212222121212111n nn n n n n n n n n b a a +--+++⎡⎤---⎣⎦===------111122121n n +⎡⎤=-⎢⎥--⎣⎦. ∵121223111111112212121212121n n n n S b b b +⎡⎤=++⋅⋅⋅+=-+-+⋅⋅⋅+-⎢⎥------⎣⎦1121111122121222n n ++⎡⎤=-=-⎢⎥---⎣⎦. 18.(1)由频率分布直方图可得:()0.028 2 0.0232 0.0156 0.004101a +⨯+++⨯=,解得0.006a =;由频率分布的直方图可得设中位数为m ,故可得()()0.004 0.006 0.023210 700.0280.5m ++⨯+-⨯=,解得76m =,所以这200名学生成绩中位数的估计值为76; (2)由频率分布直方图可知:得分在[40,50)和[50,60)内的频率分别为0.04和0.06, 采用分层抽样知,抽取的5人,在[40,50)内的人数为2人,在[50,60)内的人数为3人. 设分数在[ 40,50 )内的2人为12,a a ,分数在[ 50,60 )内的3人为123,,b b b ,则在这5人中抽取2人的情况有:()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b ,共有10种情况,其中分数在同一组的2人有()12,a a ,()12,b b ,()13,b b ,()23,b b ,有4种情况, 所以概率为42105P ==. 19. (1)连接AC 与BD 交于点N ,连接MN ,//AB CD ,24AB CD ==,CND ANB ∴△∽△,12CD CN AB AN ∴==, 又//CE 平面BDM ,CE ⊂平面ACE ,且平面ACE 平面BDM MN =//CE MN ∴12EM CN MA AN ∴==.(2)AE 平面MBC ,BM ⊂平面MBC ,AE BM ∴⊥,AB AE BE ==,M ∴是AE 的中点,面ABE ⊥面ABCD ,∴点E 到面ABCD 的距离为3423d ==∴点M 到面ABCD 的距离为32dh ==11123223332C BDM M BCD BCD V V S h --∴==⋅=⋅⋅⋅△ BDM 中,22BD =,22DM =23BM =1235152BDM S ⋅∴==△∴点C 到平面BDM 的距离满足123153h =,所以距离25h =20. (1)由椭圆221259y x +=,知222594c a b --.又抛物线22(0)x py p =>的焦点是椭圆的一个焦点. 所以42p=,则8p =. 所以抛物线的方程为216x y =. (2)由抛物线方程216x y =知,焦点(0,4)F .易知直线l 的斜率存在,则设直线l 的方程为4y kx =+.由2416y kx x y =+⎧⎨=⎩消去y 并整理,得216640x kx --=.22(16)4(64)2562560k k ∆=---=+>. 设11(,)A x y ,22(,)B x y ,则1216x x k +=,1264x x =-.对216x y =求导,得8x y '=,∵直线AP 的斜率18AP x k =, 则直线AP 的方程为111()8x y y x x -=-,即211816x x y x =-.同理得直线BP 的方程为222816x x y x =-.设点00(,)P x y ,联立直线AP 与BP 的方程,()012120182416x x x k x x y ⎧=+=⎪⎪⎨⎪==-⎪⎩即(8,4)P k -. 2222121212||11()41AB k x k x x x x k +-=++-+22(16)256161()k k +=+,点P到直线AB 的距离22288811k d k k +==++所以PAB △的面积32222116(1)164(1)642S k k k =⨯+⨯+=+,当且仅当0k =时等号成立.所以PAB △面积的最小值为64,此时直线l 的方程为4y =. 21.(1)()1e x f x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增, 由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <, ∵1e x a x-=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∵()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e22g =,0x →,()g x ∞→+, ∵e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x ,即证()()211e xg x g -<即证()()212ex g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∵()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0xx ϕ'=-恒成立,所以()e e x x x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∵e e x x >,∵11e xx-<,∵()0h x '> ∵()h x 在()1,2上递增,∵()()10h x h >>,∵1e ln 10x x -+-> ∵121x x a>. 22. 试题解析:(1)由cos sin x y ρθρθ=⎧⎨=⎩得曲线C 对应的直⻆角坐标⽅方程为:()2224x m y m -+=+由点M 在曲线C 的内部,()22394m m ∴-+<+, 求得实数m 的取值范围为7,3⎛⎫+∞ ⎪⎝⎭.(2)直线l 的极坐标⽅方程为θα=,代入曲线C 的极坐标⽅方程整理理得26cos 40ρρα--=,设直线l 与曲线C 的两个交点对应的极径分别为1212126cos 4ρρρραρρ+==-,,,, 则直线l 截得曲线C 的弦长为:()22121212436cos 164,213ρρρρρρα⎡⎤-=+-+⎣⎦. 即直线l 与曲线C 截得的弦长的取值范围是4,213⎡⎣.23. (1)由条件可知原不等式可化为①12416x x x ≥⎧⎨++->⎩,②()212416x x x -<<⎧⎨+-->⎩,③()()22416x x x ≤-⎧⎨-+-->⎩,解①得1x >;解②得x ∈∅;解③得3x <-, 所以原不等式的解集为()(),31,-∞-⋃+∞. (2)因()33,12415,2133,2x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,所以当2x =-时,函数()f x 的最小值为3m =,于是2293a b +=,∵a >0,b >0而2239236a b a b ab=+≥⨯=,于是1 02ab<≤.∵313326 a bab b a ab≥+=+≥∵326a b ab+≥,原不等式得证。
2023年全国统一高考数学试卷(新高考I ) (解析版)

2023年全国统一高考数学试卷(新高考Ⅰ)参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={﹣2,﹣1,0,1,2},N={x|x2﹣x﹣6≥0},则M∩N=( )A.{﹣2,﹣1,0,1}B.{0,1,2}C.{﹣2}D.{2}【答案】C【解答】解:∵x2﹣x﹣6≥0,∴(x﹣3)(x+2)≥0,∴x≥3或x≤﹣2,N=(﹣∞,﹣2]∪[3,+∞),则M∩N={﹣2}.故选:C.2.(5分)已知z=,则z﹣=( )A.﹣i B.i C.0D.1【答案】A【解答】解:z===,则,故=﹣i.故选:A.3.(5分)已知向量=(1,1),=(1,﹣1).若(+λ)⊥(+μ),则( )A.λ+μ=1B.λ+μ=﹣1C.λμ=1D.λμ=﹣1【答案】D【解答】解:∵=(1,1),=(1,﹣1),∴+λ=(λ+1,1﹣λ),+μ=(μ+1,1﹣μ),由(+λ)⊥(+μ),得(λ+1)(μ+1)+(1﹣λ)(1﹣μ)=0,整理得:2λμ+2=0,即λμ=﹣1.故选:D.4.(5分)设函数f(x)=2x(x﹣a)在区间(0,1)单调递减,则a的取值范围是( )A.(﹣∞,﹣2]B.[﹣2,0)C.(0,2]D.[2,+∞)【答案】D【解答】解:设t=x(x﹣a)=x2﹣ax,对称轴为x=,抛物线开口向上,∵y=2t是t的增函数,∴要使f(x)在区间(0,1)单调递减,则t=x2﹣ax在区间(0,1)单调递减,即≥1,即a≥2,故实数a的取值范围是[2,+∞).故选:D.5.(5分)设椭圆C1:+y2=1(a>1),C2:+y2=1的离心率分别为e1,e2.若e2=e1,则a=( )A.B.C.D.【答案】A【解答】解:由椭圆C2:+y2=1可得a2=2,b2=1,∴c2==,∴椭圆C2的离心率为e2=,∵e2=e1,∴e1=,∴=,∴=4=4(﹣)=4(﹣1),∴a=或a=﹣(舍去).故选:A.6.(5分)过点(0,﹣2)与圆x2+y2﹣4x﹣1=0相切的两条直线的夹角为α,则sinα=( )A.1B.C.D.【答案】B【解答】解:圆x2+y2﹣4x﹣1=0可化为(x﹣2)2+y2=5,则圆心C(2,0),半径为r=;设P(0,﹣2),切线为PA、PB,则PC==2,△PAC中,sin=,所以cos==,所以sinα=2sin cos=2××=.故选:B.7.(5分)记S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{}为等差数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【解答】解:若{a n}是等差数列,设数列{a n}的首项为a1,公差为d,则S n=na1+d,即=a1+d=n+a1﹣,故{}为等差数列,即甲是乙的充分条件.反之,若{}为等差数列,则可设﹣=D,则=S1+(n﹣1)D,即S n=nS1+n(n﹣1)D,当n≥2时,有S n﹣1=(n﹣1)S1+(n﹣1)(n﹣2)D,上两式相减得:a n=S n﹣S n﹣1=S1+2(n﹣1)D,当n=1时,上式成立,所以a n=a1+2(n﹣1)D,则a n+1﹣a n=a1+2nD﹣[a1+2(n﹣1)D]=2D(常数),所以数列{a n}为等差数列.即甲是乙的必要条件.综上所述,甲是乙的充要条件.故本题选:C.8.(5分)已知sin(α﹣β)=,cosαsinβ=,则cos(2α+2β)=( )A.B.C.﹣D.﹣【答案】B【解答】解:因为sin(α﹣β)=sinαcosβ﹣sinβcosα=,cosαsinβ=,所以sinαcosβ=,所以sin(α+β)=sinαcosβ+sinβcosα==,则cos(2α+2β)=1﹣2sin2(α+β)=1﹣2×=.故选:B.二、选择题:本题共4小题,每小题5分,共20分。
2023年全国统一高考数学试卷(新高考Ⅰ)含答案解析

绝密★启用前2023年全国统一高考数学试卷(新高考Ⅰ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M={−2,−1,0,1,2},N={x|x2−x−6≥0},则M∩N=( )A. {−2,−1,0,1}B. {0,1,2}C. {−2}D. {2}2.已知z=1−i2+2i,则z−z−=( )A. −iB. iC. 0D. 13.已知向量a⃗=(1,1),b⃗⃗=(1,−1).若(a⃗⃗+λb⃗⃗)⊥(a⃗⃗+μb⃗⃗),则( )A. λ+μ=1B. λ+μ=−1C. λμ=1D. λμ=−14.设函数f(x)=2x(x−a)在区间(0,1)单调递减,则a的取值范围是( )A. (−∞,−2]B. [−2,0)C. (0,2]D. [2,+∞)5.设椭圆C1:x2a2+y2=1(a>1),C2:x24+y2=1的离心率分别为e1,e2.若e2=√ 3e1,则a=( )A. 2√ 33B. √ 2C. √ 3D. √ 66.过点(0,−2)与圆x2+y2−4x−1=0相切的两条直线的夹角为α,则sinα=( )A. 1B. √ 154C. √ 104D. √ 647.记S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{S nn}为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件8.已知sin(α−β)=13,cosαsinβ=16,则cos(2α+2β)=( )A. 79B. 19C. −19D. −79二、多选题:本题共4小题,共20分。
高考数学试卷全国乙卷2023

2023全国乙卷高考数学试卷及答案一、选择题(每题5分,共40分)1. 已知集合A={x|1≤x<4},B={x|x≤2或x≥3},则A∩B=()A. {x|1≤x<3}B. {x|1≤x<4}C. {x|2≤x<4}D. {x|1≤x≤2}答案:A2. 若函数f(x)=2x^3-3x^2+x+1在x=1处的切线斜率为k,则k=()A. -1B. 0C. 1D. 3答案:D3. 已知函数f(x)=ln(x-1),则函数f(x)的单调递增区间为()A. (1, +∞)B. (-∞, 1)C. (0, +∞)D. (-∞, 0)答案:A4. 设等差数列{an}的前n项和为Sn,且S3=9,S6=27,则公差d=()A. 2B. 3C. 4D. 5答案:B5. 若函数y=f(x)的图像关于点(2, 3)对称,则f(3)+f(1)=()A. 6B. 9C. 12D. 15答案:B6. 已知函数f(x)=x^2+bx+c(b、c为常数)的图像上存在两个不同的点A、B,使得∠OAB=90°(O为坐标原点),则b的取值范围是()A. b>1B. b<-1C. b>0D. b<0答案:D7. 若平面直角坐标系xOy中,点A(2, 3)关于直线y=2x-1的对称点为B,则线段AB的中点坐标为()A. (1, 2)B. (2, 1)C. (3, 2)D. (2, 3)答案:A8. 若直线y=kx+1与函数y=x^3-3x的图像有两个不同的交点,则实数k的取值范围是()A. k>1B. k<-1C. -1<k<1D. k>0答案:C二、填空题(每题5分,共30分)9. 若函数y=2x^3-3x^2+x+1在x=2处的切线方程为y=5x+b,则b=________。
答案:-610. 已知等差数列{an}的前n项和为Sn,且S10=100,S20=400,则S30=________。
答案:70011. 若函数y=f(x)的图像关于点(1, -2)对称,则f(0)=________。
2023年全国新高考一卷数学真题及答案解析

2023年全国新高考一卷数学真题及答案解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.答案解析一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。
2023年高三2月大联考(全国乙卷)文科数学试题及参考答案

2023届高三2月大联考(全国乙卷)文科数学试题及参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数i z -=2,则=+i z 1()A .i 4141+B .i 2121+C .i 2121-D .i 4141-2.若集合⎭⎬⎫⎩⎨⎧<+-∈=024x x Nx A ,{}4,3,2,0,1-=B ,则=B A ()A .{}4,3,2,1,0,1-B .{}3,2,0,1-C .{}32,0,D .{}3,23.已知命题p :1>∀x ,()01≥-x x ,则p ⌝为()A .1>∀x ,()01<-x xB .1>∃x ,()01<-x xC .1<∀x ,()01≥-x x D .1>∃x ,()01≥-x x 4.下列函数中,既是奇函数又在()∞+,0上单调递增的为()A .xy tan =B .()()x x y --+=1ln 1ln C .xx y 12+=D .xe e y x x 2--=-5.如图,已知正三棱柱111C B A ABC -的棱长都相等,D 为棱AB 的中点,则CD 与1AC 所成角的正弦值为()A .46B .410C .42D .436.已知数列{}n a 的前n 项和为n S ,且n n a S 263=-,则55a S 的值为()A .1611B .1633C .211D .4831-7.将函数()x x x x f 22sin cos 62sin -+⎪⎭⎫ ⎝⎛-=π的图象向右平移ϕ⎪⎭⎫ ⎝⎛<<20πϕ个单位长度后得到函数()x g 的图象.若3π=x 是函数()x g 的一个极值点,则ϕ的值为()A .6πB .4πC .3πD .125π8.已知函数()x f 是偶函数,当0>x 时,()xax x f +=2.若曲线()x f y =在点()()1,1--f 处的切线方程为a x y +-=,则实数a 的值为()A .4B .2C .1D .219.克罗狄斯·托勒密是古希腊著名数学家、天文学家和地理学家,他在所著的《天文集》中讲述了制作弦表的原理,其中涉及如下定理:任意凸四边形中,两条对角线的乘积小于或等于两组对边乘积之和,当且仅当凸四边形的对角互补时取等号,后人称之为托勒密定理的推论.如图,四边形ABCD 内接于半径为32的圆,︒=∠120A ,︒=∠45B ,AD AB =,则四边形ABCD 的周长为()A .2634+B .310C .2434+D .2534+10.如图,已知线段AD 的长为3,C B ,是线段AD 上的两点,则线段CD BC AB ,,能够成三角形的概率为()A .81B .41C .31D .2111.已知O 为坐标原点,F 是椭圆C :()012222>>=+b a by a x 的左焦点.若椭圆C 上存在两点B A ,满足FB F A ⊥,且O B A ,,三点共线,则椭圆C 的离心率的取值范围为()A .()1,0B .⎥⎦⎤⎝⎛220,C .⎪⎪⎭⎫⎢⎣⎡122,D .⎦⎤⎢⎣⎡2322,12.已知1.1ln =a ,1112ln=b ,111=c ,则下列判断正确的是()A .c b a <<B .c a b <<C .ab c <<D .ac b <<二、填空题:本题共4小题,每小题5分,共20分.13.已知双曲线E :()0,012222>>=-b a by a x 上一点到两个焦点的距离之差为-2,且双曲线E 的离心率为2,则双曲线E 的方程为.14.已知0>m ,平面向量()m m a ,22+= ,()1,λ=b .若b a ∥,则实数λ的取值范围是.15.已知ABC ∆的内角A,B,C 的对边分别为c b a ,,,2=a ,422=-+bc c b ,-B b sin AC c sin 2sin =,则ABC ∆的面积等于.16.在四面体ABCD 中,CA BC AB ==,BD AB ⊥,CD AC ⊥.若四面体ABCD 的体积为38,则四面体ABCD 外接球的表面积的最小值.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)某种植大户购买了一种新品种蔬菜种子,种植后从收获的蔬菜果实中随机选取了一个容量为20的样本,得到果实长度数据如下边:(单位:cm)(1)估计该种植大户收获的果实长度的平均数x 和方差2s ;(2)判断说明书标明的“蔬菜果实的平均长度为11.5cm”的说法是否成立.(记()sx n U 0θ-=,其中x 为蔬菜果实长度的平均数,s 为蔬菜果实长度的标准差,n 是选取蔬菜果实的个数.当20=n 时,5.110=θ.若96.1>U ,则说明标明的“蔬菜果实的平均长度为11.5cm”的说法不成立)参考数据:∑==2016.3133i ix,074.23.4≈,557.643≈,236.25≈.18.已知数列{}n a 满足对任意*,N n m ∈都有m n m n a a a +=+,数列{}n b 是等比数列,且11a b =,022=-a b ,133=-a b .(1)求数列{}n a ,{}n b 的通项公式;(2)设nnn b a c =,求数列{}n c 的前n 项和n T .19.(12分)如图,多面体ABCDEF 的面ABCD 是正方体,其中心为M .平面⊥ADE 平面ABCD ,AE BF ∥,BF AE 2=,2===AE DE AD .(1)求证:CF ⊥平面AEFB ;(2)在CADE 内(包括边界)是否存在一点N ,使得MN ∥平面CEF ?若存在,求点N 的轨迹,并求其长度;若不存在,请说明理由.20.(12分)已知抛物线C :()022>=p px y ,圆E :()12422=+-y x 与抛物线C 有且只有两个公共点.(1)求抛物线C 的方程;(2)设O 为坐标原点,过圆心E 的直线与圆E 交于点B A ,,直线OB OA ,分别交抛物线C 于点Q P ,(点Q P ,不与点O 重合).记OAB ∆的面积为1S ,OPQ ∆的面积为2S ,求21S S 的最大值.21.(12分)已知函数()()1ln +=x e x f x,()x f '是()x f 的导函数.(1)讨论函数()x f 的单调性;(2)设0≤a ,若函数()()()11--+⋅'=-x a e x f x F x在()2,0上存在小于1的极小值,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧==t y t x sin 2cos (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为04cos 2=+⎪⎭⎫ ⎝⎛-m πθρ.(1)写出直线l 的直角坐标方程;(2)设曲线C 与x 轴的交点为B A ,(点A 在点B 的左侧),若直线l 上存在点M ,满足MB MA 3=,求实数m 的取值范围.23.(10分)【选修4-5:不等式选讲】已知函数()()R a x ax x f ∈---=22.(1)当2=a 时,求不等式()2>x f 的解集;(2)若存在[]4,2∈x ,使得()0≤x f ,求a 的取值范围.参考答案一、选择题1.C解析:∵i z -=2,∴i z +=2,∴()i i i i z 4141411211-=-=+=+.2.C解析:∵{}{}3,2,1,042024=<<-∈=⎭⎬⎫⎩⎨⎧<+-∈=x N x x x Nx A ,{}4,3,2,0,1-=B ∴{}3,2,0=B A .3.B 解析:根据全程命题的否定为特称命题,可知p ⌝为1>∃x ,()01<-x x .4.D解析:对于A,函数x y tan =在()∞+,0上不是单调函数,A 错误;对于B,由题得⎩⎨⎧>->+0101x x ,解得11<<-x ,∴()()x x y --+=1ln 1ln 的定义域为()1,1-,不符合题意,B 错误;对于C,根据对勾函数单调性可知:函数xx x x y 112+=+=在()1,0上单调递减,C 错误;对于D,令()x ee xf xx2--=-,则()x f 的定义域为R,且()()x f x e ex f x x-=+-=--2,因此x e e y x x 2--=-是奇函数,又0222=-⋅≥-+='--x x xxe e ee y ,当且仅当0=x 时等号成立,则函数x e e y xx2--=-在R 上单调递增,D 正确.5.B解析:取11B A 的中点E ,连接DE E C AE ,,1,设正三棱柱111C B A ABC -的棱长为2,如图所示:∵11BB AA ∥,∴四边形B B AA 11为平行四边形,∴11B A AB ∥且11B A AB =,又∵E D 、分别为11B A AB 、的中点,则E A AD 1∥且E A AD 1=,∴四边形ED AA 1为平行四边形,则DE AA ∥1且DE AA =1,又∵11CC AA ∥,∴11CC AA =,∴1CC DE ∥且1CC DE =,∴四边形ED CC 1为平行四边形,∴E C CD 1∥,∴CD 与1AC 所成的角即为E C 1与1AC 所成的角,E AC 1∠或其补角即为所求.在E AC 1∆中,222121=+=CC AC AC ,52121=+=E A AA AE ,31=E C .∵21221E C AE AC +=,∴E AC 1∆为直角三角形,且︒=∠901AEC ,∴410225sin 11===∠AC AE E AC .6.A解析:当1=n 时,得11263a a =-,解得61=a ;由n n a S 263=-得11263++=-n n a S ,两式相减得:11223++-=n n n a a a ,整理得n n a a 21-=+,故数列{}n a 是以6为首项,-2为公比的等比数列,∴()126--⨯=n n a ,()[]()()[]n nn S 21221216--⨯=----⨯=,则()()1611262124555=-⨯+⨯=a S .7.A解析:由()x x x x f 22sin cos 62sin -+⎪⎭⎫ ⎝⎛-=π,化简得()⎪⎭⎫ ⎝⎛+=62sin πx x f ,∴()⎪⎭⎫⎝⎛-+=ϕπ262sin x x g .又3π=x 是函数()x g 的一个极值点,∴当3π=x 时,函数()x g 取得最值,∴()Z k k ∈+=-+⨯22632ππϕππ,解得()Z k k ∈+⋅-=62ππϕ,∵20πϕ<<,∴6πϕ=.8.C 解析:当0<x 时,0>-x ,∴()x a x x a x x f -=-+=-22,又()x f 是偶函数,∴当0<x 时,()x a x x f -=2,则()22xa x x f +=',∴()a f +-=-'21.又()a f +=-11,∴曲线()x f y =在点()()1,1--f 处的切线方程为()()121+-=--x a a y ,即()122-+-=a x a y ,∴12-=-a ,a a =-12,解得1=a .9.A解析:连接BD AC ,.由︒=∠120A ,︒=∠45B 及正弦定理,得34sin sin =∠=∠ABCACBAD BD ,解得626==AC BD ,.在ABD ∆中,︒=∠120BAD ,AD AB =,6=BD ,∴32==AD AB .∵四边形ABCD 内接于半径为32的圆,它的对角互补,∴BC AD DC AB BD AC ⋅+⋅=⋅,∴()CD BC +=32612.∴26=+CD BC .∴四边形ABCD 的周长为2634+.10.B 解析:设x AB =,y BC =,则y x CD --=3,且⎪⎩⎪⎨⎧<--<<<<<3303030y x y x ,即⎪⎩⎪⎨⎧<+<<<<<303030y x y x .作出不等式组表示的平面区域,如图中OMN ∆(不含边界),其面积为293321=⨯⨯=∆OMN S .若线段CD BC AB ,,能构成三角形,则还要满足:()()⎪⎩⎪⎨⎧>--+>--+-->+xy x y y y x x y x y x 333,即⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+232323x y y x .作出不等式组表示的平面区域,如图中GEF ∆(不含边界),其面积为89232321=⨯⨯=∆GEF S .由几何概型概率计算公式得,线段CD BC AB ,,能够成三角形的概率为412989==P .11.C 解析:设椭圆C 的右焦点为F ',连接F A '.由椭圆的性质得:BF F A ∥',2π='∠F F A ,即以F F '为直径的圆与椭圆有公共点.设椭圆C 的半焦距为c ()0>c ,∴只需b c ≥,∴222c a c -≥,即122<≤e ,∴椭圆C 的离心率的取值范围为⎪⎪⎭⎫⎢⎣⎡122,.12.D 解析:(1)比较b a ,的大小:∵11121.1>,∴1112ln 1.1ln >,∴b a >.(2)比较c b ,的大小:令()()1ln --=x x x f ,则()xxx x f -=-='111.当10<<x 时,()0>'x f ;当1>x 时,()0<'x f ,∴当0>x 时,()()01=≤f x f ,即1ln -≤x x ,∴1111112ln <,即c b <.(3)比较c a ,大小:∵1ln -≤x x ,∴111ln -≤x x ,即xx 11ln -≥,∴111111011011ln 1.1ln =->=,即c a >.综上,a c b <<二、填空题13.1322=-y x 解析:由题意知,22=a ,1=a .又∵2==a c e ,∴2=c ,∴3=b ,∴双曲线E 的方程为1322=-y x .14.[)∞+,22解析:由()m m a ,22+= ,()1,λ=b ,b a ∥,得22+=m m λ,∵0>m ,∴22222≥+=+=mm m m λ,当且仅当2=m 时等号成立,∴实数λ的取值范围是[)∞+,22.15.332解析:由2=a ,422=-+bc c b ①知,222a bc c b =-+,由余弦定理得212cos 222=-+=bc a c b A.又π<<A 0,∴3π=A .由-B b sin AC c sin 2sin =及正弦定理得4222-=-a c b ②.联立①②得3342==c b ,∴ABC ∆的面积为3322333233421sin 21=⨯⨯⨯==A bc S .16.π48解析:由BD AB ⊥,CD AC ⊥知,四面体ABCD 外接球的球心O 是AD 的中点,连接OC OB ,,则OC OB OA ==.∵CA BC AB ==,∴ABC ∆为等边三角形,∴ABC ∆的外接圆的圆心为ABC ∆的中心H .连接AH OH ,,则OH ⊥平面ABC .设a CA BC AB ===,h OH =,则点D 到平面ABC 的距离为h 2,∴四面体ABCD 的体积为226343231ha a h V =⋅⋅=,即38632=ha ,482=ha .设四面体ABCD 外接球O 的半径为R ,则222AH OH OA +=,即h h a h a h R 16312332222222+=+=⎪⎪⎭⎫⎝⎛⋅+=.设()()0162>+=x x x x m ,则()232162162xx x x x m -=-=',令01923=-x ,则2=x ,当20<<x 时,()0<'x m ;当2>x 时,()0>'x m ,∴()x m 在()2,0上单调递减,在()∞+,2上单调递增,∴()x m 在2=x 处取得极小值,即最小值,∴当2=h 时,R 取得最小值为32,∴四面体ABCD 外接球O 的表面积的最小值为πππ4812442=⨯=R .三、解答题(一)必考题:共60分17.解:(1)由题意知,2.138.129.124.124.137.125.118.120.128.118.120.136.11++++++++++++0.2500.122.138.128.116.122.115.13=+++++++,∴5.1220250==x ,()()()[]22022212201x x x x x x S -++-+-=()[]43.020120220120122220212202221=-=++++-+++=∑=i i x x x x x x x x x x ∴估计该种植大户收获的蔬菜果实长度的平均数和方差分别为5.12,43.0.(2)结合已知,由(1)得,()()96.182.643.05.115.12200>≈-⨯=-=sx n U θ,∴说明书标明的“蔬菜果实的平均长度为11.5cm”的说法不正确.18.解:(1)∵对任意*,N n m ∈,m n m n a a a +=+,∴11a a a n n +=+,∴数列{}n a 是公差1a d =的等差数列,1na a n =.设等比数列{}n b 的公比为q ,∵11a b =,022=-a b ,133=-a b ,∴⎩⎨⎧=-=-130212111a q a a q a .又∵011≠=a b ,解得111==a b ,2=q ,∴n a n =,12-=n n b .(2)∵n n n b a c =,∴12102232221-++++=n n n T ,n n nT 22322212321++++= ,两式相减得nn nn n n n n n T 222221121112212121212132+-=--⎪⎭⎫⎝⎛-⨯=-⎪⎭⎫ ⎝⎛++++=- ,∴1224-+-=n n n T .19.解:(1)如图,取AE 的中点G ,连接DG GF ,.∵AE BF ∥,BF AE 2=∴AG BF AG BF =,∥.∴四边形ABFG 是平行四边形,∴AB FG ∥,AB FG =又∵CD BA ∥,CD BA =,∴CD FG ∥,CD FG =,∴四边形CDGF 是平行四边形,∴DG CF ∥,∵AD BA ⊥,平面ADE ⊥平面ABCD ,⊂BA 平面ABCD ,平面ADE ∩平面ABCD AD =,∴⊥BA 平面ADE ,又⊂DG 平面ADE ,∴DGBA ⊥∵AE DE AD ==,G 为AE 的中点,∴AE DG ⊥,又⊂BA AE ,平面AEFB ,且A BA AE = ,∴⊥DG 平面AEFB ,∴⊥CF 平面AEFB (2)如图,连接BG BD ,,由(1)知,AG BF ∥,AG BF =,∴EG BF ∥,EG BF =,∴四边形BGEF 是平行四边形,∴EF BG ∥,∵⊂EF 平面CEF ,⊄BG 平面CEF ,∴∥BG 平面CEF ,又由(1)知,DG CF ∥,⊂CF 平面CEF ,⊄DG 平面CEF ,∴∥DG 平面CEF ,∵⊂BG DG ,平面BDG ,且G BG DG = ,∴平面BDG ∥平面CEF ,设点N 为线段DG 上任意一点,则⊂MN 平面BDG ,MN ∥平面CEF ,∴点N 的轨迹为线段DG ,长度为3.20.解:(1)由()⎪⎩⎪⎨⎧=+-=1242222y x px y 整理得()04282=+--x p x .由对称性可得关于x 的方程有两个相等的正的实数根,∴()016282=--=∆p ,且028>-p ,解得2=p ,∴抛物线C 的方程为x y 42=.(2)由题意,知直线AB 的斜率不为0,故设直线AB 的方程为4+=my x ,如图,设()()()()44332211,,,,y x Q y x P y x B y x A ,,,.将直线AB 的方程代入圆E 的方程中,消去x ,得()12122=+y m,∴11222+=m y ,∴12y y -=,且11222221+==m y y .直线OA 的方程为x x y y 11=,代入抛物线方程x y 42=,消去x ,得y y x y 1124=,解得114y x y =或0=y ,∴1134y xy =.同理得2244y x y =,∴22211142312144sin 21sin 21y x y y x y y y y y OQ OP OB OA POQ OQ OP AOB OB OA S S ⋅=⋅=⋅⋅=∠⋅∠⋅=()()()()()()16416441616212122212122121221+++=++==y y m y y m y y my my y y x x y y ()()()9254941491611216112161622222222212221-⎪⎭⎫ ⎝⎛+=++=+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=+=m m m m m m y y m y y ∴当0=m 时,21S S 取得最大值为169.21.解:(1)由题意知()x f 的定义域为()∞+,0,()⎪⎭⎫ ⎝⎛++='11ln x x e x f x,令()x x x g 1ln +=,则()21x x x g -=',∴()01='g ,且当()1,0∈x 时,()0<'x g ;当()+∞∈,1x 时,()0>'x g ,∴()x g 在()1,0上单调递减,在()∞+,1上单调递增,∴()+∞∈∀,0x ,()()11=≥g x g ,从而()+∞∈∀,0x ,()0>'x f ,∴()x f 在()∞+,0上单调递增.(2)由题意,得()()11ln -++=x a x x x F ,()2,0∈x ,()221x x ax x F -+='.①当0=a 时,()()x g xx x F =+=1ln ,()()x g x F '=',由(1)知,()01='F ,且当()1,0∈x 时,()0<'x F ;当()2,1∈x 时,()0>'x F ,∴()x F 仅在1=x 处取得极小值,且极小值为()11=F ,不符合题意.②当0<a 时,令()12++=x ax x h ,则a 41+=∆.(ⅰ)若041≤+=∆a ,即41-≤a ,则()2,0∈∀x ,()0≤x h ,∴()0≤'x F 恒成立,此时()x F 无极值,不符合题意.(ⅱ)若041>+=∆a ,即041<<-a ,则()x h 图象的对称轴为221>-=ax ,∴()x h 在()2,0上单调递增.∵()01<=a h ,()0142>+=a h ,由函数单调性和零点存在性定理得,在()2,1上存在唯一的实数1x ,使得()01=x h ,从而()01='x F ,且当()1,0x x ∈时,()0<x h ,从而()0<'x F ;当()2,1x x ∈时,()0>x h ,从而()0>'x F .∴()x F 在()1,0x 上单调递减,在()2,1x 上单调递增,∴()x F 仅在1x x =处取得极小值,极小值为()1x F .∵()x F 在()1,0x 上单调递减,且211<<x ,∴()()111=<F x F ,符合题意.综上,实数a 的取值范围为⎪⎭⎫ ⎝⎛-041.(二)选考题22.解:(1)∵04cos 2=+⎪⎭⎫⎝⎛-m πθρ,∴0sin 22cos 222=+⎪⎪⎭⎫ ⎝⎛+⋅m θθρ,即0cos sin =++m θρθρ.又y =θρsin ,x =θρcos ,∴0=++m y x ,即直线l 的直角坐标方程为0=++m y x .(2)由⎪⎩⎪⎨⎧==2sin cos y t xt ,且1sin cos 22=+t t ,则曲线C 的普通方程为1422=+y x ,其与x 轴的交点分别为()()0,101B A ,,-.设点()y x M ,,由MB MA 3=,得()()[]2222131y x y x +-=++,即01422=+-+x y x ,∴()3222=+-y x ,它表示圆心为()02,E ,半径为3的圆.∵点()y x M ,既在直线l 上,又在圆E 上,∴322≤+m ,即62≤+m ,∴6262+-≤≤--m ,即实数m 的取值范围为[]6262+---,.23.解:(1)当2=a 时,原不等式可化为2212>---x x .当2≥x 时,原不等式可化为()()2212>---x x ,整理得2>x ,∴2>x .当21<<x 时,原不等式可化为()()2212>-+-x x ,整理得2>x ,∴此时不等式的解集为空集..当1≤x 时,原不等式可化为()()2212>-+--x x ,整理得2-<x ,∴2-<x .综上,当2=a 时,不等式()2>x f 的解集为()()∞+-∞-,,22 .(2)若存在[]4,2∈x ,使得()0≤x f ,即存在[]4,2∈x ,使得22-≤-x ax ①①式可转化为()22-≤--ax x ,即⎩⎨⎧-≤--≤+-2222x ax ax x ②∵[]4,2∈x ,∴②式可化为()⎪⎩⎪⎨⎧≤--≥0114x a xa ③若存在[]4,2∈x 使得③式成立,则⎪⎩⎪⎨⎧≤-⎪⎭⎫⎝⎛-≥0114min a x a ,即⎩⎨⎧≤≥10a a ,∴10≤≤a ,即a 的取值范围为[]1,0.。
2023年全国新课标I卷高考数学真题及答案(Word版)

2023年全国新课标I卷高考数学真题及答案本试卷共 4 页,22 小题,满分150 分。
考试用时120 分钟注意事项:1.答卷前,考生务必用黑色字迹笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答卡上用2 笔试(A)在答卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
作答选择题时,选出每小题等案后,用2B 笔把答卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,符案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准便用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题爷的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题: 本大题共8 小题, 每小题 5 分, 共40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的1. 已知集合, 则A.B.C.D.2. 已知, 则A.B.C. 0D. 13. 已知向量. 若, 则A.B.C.D.4. 设函数在区间单调递减, 则的取值范围是A.B.C.D.5. 设椭圆的离心率分别为. 若,则A.B.C.D.6. 过点与圆相切的两条直线的夹角为, 则A. 1B.C.D.7. 记为数列的前项和, 设甲: 为等差数列; 乙: 为等差数列, 则A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件8. 已知, 则A.B.C.D.二、选择题: 本题共 4 小题, 每小题 5 分, 共20 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 5 分, 部分选对的得 2 分, 有选错的得0 分9. 有一组样本数据, 其中是最小值, 是最大值, 则A. 的平均数等于的平均数B. 的中位数等于的中位数C. 的标准差不小于的标准差D. 的极差不大于的极差10. 噪声污染问题越来越受到重视, 用声压级来度量声音的强弱, 定义声压级, 其中常数是听觉下限阑值, 是实际声压. 下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车处测得实际声压分别为, 则A.B.C.D.11. 已知函数的定义域为, 则A.B.C. 是偶函数D. 为的极小值点12. 下列物体中, 能够被整体放入核长为1 (単位: ) 的正方体容器(容器壁厚度忽略不计)内的有A. 直径为的球体B. 所有棱长均为的四面体C. 底面直径为, 高为的圆柱体D. 底面直径为, 高为的圆柱体三、填空题: 本大题共 4 小题, 每小题 5 分, 共20 分.13. 某学校开设了4 门体育类选修课和4 门艺术类选修课, 学生需从这8 门课中选修2 门或 3 门课, 并且每类选修课至少选修 1 门, 则不同的选课方案共有种(用数字作答).14. 在正四棱台中, , 则该棱台的体积为15. 已知函数在区间有且仅有3 个零点, 则的取值范围是16. 已知双曲线的左、右焦点分别为. 点在上. 点在轴上, , 则的离心率为四、解答题: 本大题共 6 小题, 共70 分. 解答应写出必要的文字说明、证明过程或演算步骤.17. 已知在中, .(1) 求;(2)设, 求边上的高.18. 如图, 在正四棱杜中, . 点分别在棱上, , .(1) 证明: ;(2)点在棱上, 当二面角为时, 求.19. 已知函数.(1) 讨论的単调性;(2)证明: 当时, .20. 设等差数列的公差为, 且, 令, 记分别为数列, 的前项和.(1) 若, 求的通项公式;( 2 ) 若为等差数列, 且, 求.21. 甲乙两人投篮, 每次由其中一人投篮, 规则如下: 若命中则此人继续投篮, 若末命中则换为对方投篮. 无论之前投篮情况如何, 甲每次投篮的命中率均为0.6 , 乙每次投篮的命中率均为0.8 , 由抽签决定第一次投篮的人选, 第一次投篮的人是甲, 乙的概率各为0.5 .( 1 ) 求第2 次投篮的人是乙的概率;( 2 ) 求第次投篮的人是甲的概率;( 3 ) 已知: 若随机变量服从两点分布, 且, 则, 记前次(即从第1 次到第次投篮) 中甲投篮的次数为, 求.22. 在直角坐标系中, 点到轴的距离等于点到点的距离, 记动点的轨迹为.(1) 求的方程;( 2 ) 已知矩形有三个顶点在上, 证明: 矩形的周长大于.参考答案(非官方答案仅供参考)1、C2、A3、D4、D5、A6、B7、C8、B9、BD10、ACD11、ABC12、ABD13、6414、15、[2,3)16、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023全国乙卷高考文科数学试卷及答案解
析
2023年高考全国乙卷数学(文)试题
2023年高考全国乙卷数学(文)试题参考答案
2023高考数学答题技巧有哪些
一、巧解选择、填空题
解数学选择、填空题的基本原则是“小题不可大做”。思路:第一、直接从
题干出发考虑,探求结果;第二、从题干和选择联合考虑;第三、从选择出发探求
满足题干的条件。
解数学填空题基本方法有:直接求解法、图像法、构造法和特殊化法(如特
殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特
殊模型等)。
二、细答解答题
1、数学规范答题很重要,找到解题方法后,书写要简明扼要,快速规范,
不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步
骤。答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。即使过程比
较简单,也要简要地写出基本步骤,否则会被扣分。
经常看到考生的数学卷面出现“会而不对”、“对而不全”的情况,造成考
生自己的估分与实际得分相差很多。尤其是平面几何初步中的“跳步”书写,使
考生丢分,所以考生要尽可能把过程写得详尽、准确。
2、分步列式,尽量避免用综合或连等式。数学高考评分是分步给分,写出
每一个过程对应的式子,只要表达正确都可以得到相应的分数。
有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合
式中有一处错误,就可能丢过程分。对于没有得出最后结果的试题,分步列式也
可以得到相应的过程分,由此增加得分机会。
3、尽量保证证明过程及计算方法大众化。解题时,使用通用符号,不易吃
亏。有些考生为图简便使用一些特殊方法,可一旦结果有错,就会影响得分。
高考注意事项
(1)临时考试不慌
考试中恐慌的表现形式是:考生感到紧张、不安、焦虑、全身颤抖、心跳加
快、头脑发热、呼吸困难、喉咙干燥等。由于高度紧张,通常很容易回答错误的
问题,甚至错误地看到问题,甚至不会做原来的问题。我一离开考场,就突然意
识到,但已经太晚了,后悔也没用。
可见,临时考试恐慌是一种普遍现象,是一种值得考生关注的现象。 那么,
如何才能使临考不慌张呢?这要从三个方面入手:
首先,在平时的学习中,要认真复习,扎实学习知识,这样遇到高考就不会
慌张。
第二,在高考中放松。你可以这样做:闭上眼睛,冷静下来,慢慢深吸气,
吸足,然后呼气,这就是深呼吸。深呼吸不仅能使身心放松,还能给血液充分输
送氧气,使头脑清醒,增强记忆力。
第三,在高考中树立考试的信心。有了信心,精神就会振作起来,头脑就会
非常清晰,就不会出现紧张的现象。信心从何而来?一是来自坚实的基础;二是系
统复习;三是对恐慌和紧张的蔑视。只有蔑视,而不是恐惧,才能产生信心。
(2)认真审题法
因为军考没有认真审题,答案错了,题目漏了。那么如何才能认真审题呢?
我们可以从以下几个方面努力:
①要认真对待答卷,克服粗心大意。有的考生拿到试卷,一看题目并不难,
很快就完成了,连看都不看,就交了头卷。其实上面有很多错误,要么丢了数字,
要么看错题。当然,结果不好。这是粗心大意的结果。这种粗心大意的作风不好。
如果养成习惯,以后上班会误大事。设计高层建筑,如果有一个数字错了,就会
出大事。如果设计人造卫星,稍有错误,就可能使卫星飞不上天,等等。对待粗
心的性格,一定要严格要求自己。
②注意全面排队。一拿到题目,就要全部看一遍,哪些比较容易回答,哪些
比较难做,要全面排队,心里有数。这样,就可以确定哪些问题是先做的,哪些
问题是后做的。一般来说,先做容易,后做难题。因为容易的问题把握大,难的
问题把握不大,可能做不到,也可能做不到。如果你把它们放在前面,客人很容
易浪费时间。
(3)认真回答试卷
认真回答问题的方法是关于如何认真回答问题的一些方法。如何回答问题?
应注意以下问题:
①先易后难。②注意回答问题的进展。现在试题的重量比较重,题目又多又
细。做题的时候要注意速度,不要像平时做作业那么慢。如果你做得慢,你可能
无法完成这个问题。有的考生因为动作慢,慢慢做,结果下课铃响了,还有很多
题没做,结果很遗憾。这是这些考生不了解高考特点造成的。注意进度,只是说
集中精力,掌握时间做题目,不仅快,而且不注意答题质量。
③注意书面清洁。这似乎是一件小事,但事实并非如此。如果你在高考中涂
草,所以考官看不到你的答案,这不是一件大事。其次,任何书面不干净,按规
定扣除不干净的点。第二,书面不干净,如果养成习惯,就会对一个人的生活产
生影响。因此,在答案中必须注意书面清洁,不要乱涂乱画。
④注意全面检查。答案完成后,你应该从头到尾检查一下。主要检查两个内
容:一是检查问题是否完成。二是检查是否有错误的单词,答案的格式是否正确。
如果你不再检查它,匆忙地提交论文,就不容易发现错误。
总之,答卷要准确、快速、整洁,千万不要马虎,千万不要马虎。