高三文科数学模拟试题含答案知识分享

合集下载

高三模拟考试数学试题(文科)附答案

高三模拟考试数学试题(文科)附答案

高三年级第二次模拟考试数学试题(文科)总分:100分 考试时间:100分一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合A=},21log |{21≥x x 则=A C R ( )A .),22(]0,(+∞⋃-∞ B.),22(+∞C. ),22[]0,(+∞⋃-∞D. ),22[+∞2.函数f(x)=23xx +的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)3.已知集合},lg |{x y R x M =∈= },1|{2+=∈=x y R y N 则集合M ∪N 等于( )),0.(+∞A ),1.[+∞B C.),(+∞-∞ ]1,0.(D4.函数()()2log 31xf x =+的值域为( )A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ 5. 已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-, 则使该生产厂家获得最大年利润的年产量为( )(A )13万件 (B)11万件 (C) 9万件 (D)7万件6.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=( )(A) -12 (B)1 4- (C)14 (D)127. 下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )·f (y )”的是( )(A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数8.若a,b 是非零向量,且b a ⊥,||||b a ≠,则函数))(()(a b x b a x x f -+=是( )(A )一次函数且是奇函数 (B )一次函数但不是奇函数(C )二次函数且是偶函数 (D )二次函数但不是偶函数9.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ( ) (A )一定是锐角三角形. (B )一定是直角三角形.(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 10.设0abc >,二次函数()2f x ax bx c =++的图象可能是( )二、填空题(本大题共5小题,每小题4分,共20分.)11. 已知函数f (x )=232,1,,1,x x x ax x +<⎧⎨+≥⎩若f (f (0))=4a ,则实数a = .12.函数)12(log )(5+=x x f 的单调增区间是__________。

高三下学期数学(文科)模拟考试卷(带参考答案与解析)

高三下学期数学(文科)模拟考试卷(带参考答案与解析)

高三下学期数学(文科)模拟考试卷(带参考答案与解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答选择题时,则选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,则将答案写在答题卡上。

写在本试卷上无效。

3.本试卷共22题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中只有一项是符合题目要求的。

1.已知向量(2,1)a =和(3,2)b =,则()a a b ⋅-=( ) A .-5 B .-3C .3D .52.不等式312x >+的解集为( ) A .{1,2}x x x <≠- B .{1}x x >C .{21}x x -<<D .{21}x x x <->或3.直线x +ay -3=0与直线(a +1)x +2y -6=0平行,则a =( )A .-2B .1C .-2或1D .-1或24.古希腊科学家阿基米德发明了享誉世界的汲水器,称为阿基米德螺旋泵,两千多年后的今天,左图所示的螺旋泵,仍在现代工农业生产中使用,其依据是“阿基米德螺线”.在右图所示的平面直角坐标系xOy 中点A 匀速离开坐标系原点O ,同时又以固定的角速度绕坐标系原点O 逆时针转动,产生的轨迹就是“阿基米德螺线”,该阿基米德螺线与坐标轴交点依次为A 1(-1,0),A 2(0,-2),A 3(3,0),A 4(0,4),A 5(-5,0),…按此规律继续,若四边形123n n n n A A A A +++的面积为220,则n =( )A .7B .8C .9D .105.△ABC 中AC =,BC =和60A =︒,则cos B =( )A .2±B .12±C .12D .26.设函数()f x 满足(1)()0f x f x ++=,当0≤x <1时,则1()2xf x -=,则()0.5log 8f =( ) A .-2B .12-C .12D .27.若cos 0,2(sin 2)1cos2αααα≠+=+,则tan2α=( ) A .43-B .34-C .34D .438.设函数()y f x =由关系式||||1x x y y +=确定,函数(),0,()(),0.f x xg x f x x -≥⎧=⎨-<⎩,则( )A .g (x )为增函数B .g (x )为奇函数C .g (x )值域为[1,)-+∞D .函数()()y f x g x =--没有正零点二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。

高三数学模拟试卷文科答案

高三数学模拟试卷文科答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c之间的关系为()A. a+b+c=0B. a+b+c=1C. 2a+b=0D. 2a+b=1答案:C解析:因为函数f(x) = ax^2 + bx + c在x=1时取得极值,所以f'(1)=0,即2a+b=0。

2. 已知等差数列{an}的公差为d,首项为a1,第n项为an,则an = ()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A解析:等差数列的通项公式为an = a1 + (n-1)d。

3. 下列各式中,等式成立的是()A. sin(α+β) = sinαcosβ + cosαsinβB. cos(α+β) = cosαcosβ - sinαsinβC. tan(α+β) = tanαtanβD. cot(α+β) = cotαcotβ答案:B解析:根据三角函数的和角公式,cos(α+β) = cosαcosβ - sinαsinβ。

4. 已知复数z = a + bi(a,b∈R),若|z| = 1,则复数z的实部a和虚部b之间的关系为()A. a^2 + b^2 = 1B. a^2 - b^2 = 1C. a^2 + b^2 = 0D. a^2 - b^2 = 0答案:A解析:复数z的模|z| = √(a^2 + b^2),由|z| = 1,得a^2 + b^2 = 1。

5. 已知函数f(x) = x^3 - 3x,则f(x)的图像关于点()A. (0,0)B. (1,0)C. (-1,0)D. (0,1)答案:B解析:由f(1) = 1^3 - 31 = -2,f(0) = 0^3 - 30 = 0,得f(x)的图像关于点(1,0)。

6. 下列各式中,正确的是()A. loga(b^2) = 2logabB. loga(b^3) = 3logabC. loga(ab) = 1D. loga(a^2) = 2答案:B解析:根据对数的运算法则,loga(b^3) = 3logab。

高三数学文科模拟试卷答案

高三数学文科模拟试卷答案

一、选择题(每小题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. y = √(x+1)B. y = 1/xC. y = |x|D. y = x^2 - 4x + 4答案:C解析:选项A的定义域为x≥-1,选项B的定义域为x≠0,选项D的定义域为R。

只有选项C的定义域为实数集R。

2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an=()A. 19B. 20C. 21D. 22答案:C解析:根据等差数列的通项公式an = a1 + (n-1)d,代入a1=3,d=2,n=10,得an = 3 + (10-1)×2 = 3 + 18 = 21。

3. 下列命题中,正确的是()A. 函数y = x^2在定义域内单调递增B. 等差数列的任意三项成等比数列C. 函数y = log2x在定义域内单调递减D. 平面向量a与b垂直,则a·b=0答案:D解析:选项A错误,函数y = x^2在x<0时单调递减;选项B错误,等差数列的任意三项不一定成等比数列;选项C错误,函数y = log2x在定义域内单调递增;选项D正确,根据向量点积的性质,a·b=|a||b|cosθ,当a与b垂直时,cosθ=0,故a·b=0。

4. 若复数z满足|z-1|=|z+1|,则z的实部为()A. 0B. 1C. -1D. 不存在答案:A解析:设复数z=a+bi,则|z-1|=|a-1+bi|,|z+1|=|a+1+bi|。

根据复数的模的定义,有(a-1)^2+b^2=(a+1)^2+b^2,化简得a=0,即z的实部为0。

5. 已知函数f(x) = x^3 - 3x,则f(x)的图像在x轴上交点的个数是()A. 1B. 2C. 3D. 4答案:B解析:令f(x) = 0,得x^3 - 3x = 0,因式分解得x(x^2 - 3) = 0,解得x=0或x=±√3。

高三数学文科模拟考试 (含答案)

高三数学文科模拟考试 (含答案)

高三数学文科模拟考试 (含答案)高三模拟考试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共4页,满分150分,考试时间120分钟。

考生作答时,请将答案涂在答题卡上,不要在试题卷和草稿纸上作答。

考试结束后,请将答题卡交回。

第Ⅰ卷(选择题,共60分)注意事项:请使用2B铅笔在答题卡上涂黑所选答案对应的标号。

第Ⅰ卷共12小题。

1.设集合A={x∈Z|x+1<4},集合B={2,3,4},则A∩B的值为A.{2,4}。

B.{2,3}。

C.{3}。

D.空集2.已知x>y,且x+y=2,则下列不等式成立的是A.x1.D.y<-113.已知向量a=(x-1,2),b=(x,1),且a∥b,则x的值为A.-1.B.0.C.1.D.24.若___(π/2-θ)=2,则tan2θ的值为A.-3.B.3.C.-3/3.D.3/35.某单位规定,每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费。

某职工某月缴水费55元,则该职工这个月实际用水为()立方米。

A.13.B.14.C.15.D.166.已知命题p:“存在实数x使得e^x=1”,命题q:“对于任意实数a和b,如果a-1=b-2,则a-b=-1”,下列命题为真的是A.p。

B.非q。

C.p或q。

D.p且q7.函数f(x)满足f(x+2)=f(x),且当-1≤x≤1时,f(x)=|x|。

若函数y=f(x)的图象与函数y=log_a(x)(a>0且a≠1)的图象有且仅有4个交点,则a的取值集合为A.(4,5)。

B.(4,6)。

C.{5}。

D.{6}8.已知函数f(x)=sin(θx)+3cos(θx)(θ>0),函数y=f(x)的最高点与相邻最低点的距离是17.若将y=f(x)的图象向右平移1个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是A.x=1.B.x=2.C.x=5.D.x=6删除了格式错误的部分,对每段话进行了简单的改写,使其更流畅易懂。

湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析

湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析

湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析班级:___________姓名:___________考号:___________一、单选题1.已知集合{}{}1,0,1,|1A B x N x =-=∈<,则A B ⋃=( ) A .{}0B .{}1,0-C .{1,-0,1}D .(),1-∞2.设m 、n 是两条不同的直线,α和β是两个不同的平面,则下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β且m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β3.已知角α的终边经过点()sin150,cos30A ,则tan α=( )A B .C D .4.在中国传统佳节元宵节中赏花灯是常见的活动.某单位拟举办庆祝元宵的活动,购买了A ,B ,C 三种类型的花灯,其中A 种花灯4个,B 种花灯5个,C 种花灯1个,现从中随机抽取4个花灯,则A ,B ,C 三种花灯各至少被抽取一个的情况种数为( ) A .30B .70C .40D .845.已知函数()32233f x x ax x =-++是定义在R 上的奇函数,则函数()f x 的图像在点()()2,2f --处的切线的斜率为( ) A .27-B .25-C .23-D .21-6.如图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.222:1(0)y C x b b-=>的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周得到的几何体,若P 为C 右支上的一点,F 为C 的左焦点,则PF 与P 到C 的一条渐近线的距离之和的最小值为( )A .2B .3C .4D .57.已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为( )A .3B .4C .5D .68.已知函数()log ,03,40a x x f x x x >⎧=⎨+-≤<⎩(0a >且1a ≠).若函数()f x 的图象上有且只有两个点关于原点对称,则a 的取值范围是( ) A .10,4⎛⎫⎪⎝⎭B .()10,1,4⎛⎫⋃+∞ ⎪⎝⎭C .()1,11,4⎛⎫⋃+∞ ⎪⎝⎭D .()()0,11,4⋃二、多选题9.某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照分成9组,制成了如图所示的频率分布直方图.由直方图推断,下列选项正确的是( ) A .直方图中a 的值为0.38B .由直方图估计本校高三男生100米体能测试成绩的众数为13.75秒C .由直方图估计本校高三男生100米体能测试成绩不大于13秒的人数为54D .由直方图估计本校高三男生100米体能测试成绩的中位数为13.7秒10.已知狄利克雷函数()1,0,x f x x ⎧=⎨⎩是有理数是无理数,则下列结论正确的是( )A .()f x 的值域为[]0,1B .()f x 定义域为RC .()()1f x f x +=D .()f x 是奇函数11.已知拋物线2:2(0)C x py p =>的焦点F 与圆22:(2)1M x y ++=上点的距离的最小值为2,过点F 的动直线l 与抛物线C 交于,A B 两点,以,A B 为切点的抛物线的两条切线的交点为P ,则下列结论正确的是( ) A .2p =B .当l 与M 相切时,则l 的斜率是C .点P 在定直线上D .以AB 为直径的圆与直线1y =-相切12.已知正方体1111ABCD A B C D -的棱长为1,,M N 分别为1,BB AB 的中点.下列说法正确的是( )A .点M 到平面1ANDB .正方体1111ABCD A BCD - C .面1AND 截正方体1111ABCD A B C D -外接球所得圆的面积为34πD .以顶点A三、填空题13.已知角α终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,则化简()()()()sin 3sin sin 2cos 4παπααπαπ+---+--得___________. 14.若512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式的常数项为________.15.若函数21()ln 22f x a x x bx =++在区间[1,2]上单调递增,则4a b +的最小值是__________. 16.定义x 是与实数x 的距离最近的整数(当x 为两相邻整数的算术平均值时,则x 取较大整数),如451,2,22,2.5333====‖‖‖‖,令函数()K x x =,数列{}n a 的通项公式为n a =其前n 项和为n S ,则4S =__________;2023S =__________.四、解答题17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin sin 1sin sin sin sin A b BB C b A c B+=++(1)求角C ;(2)CD 是ACB ∠的角平分线,若CD =,ABC的面积为c 的值. 18.记n S 为数列{}n a 的前n 项和,已知11,(1)n S a n n ⎧⎫=⎨⎬+⎩⎭的公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a ++⋅⋅⋅+< 19.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAD ⊥平面ABCD ,PAD 是斜边PA的长为E ,F 分别是棱PA ,PC 的中点,M 是棱BC 上一点(1)求证:平面DFM ⊥平面PBC ;(2)若直线MF 与平面ABCD EDM 与平面DMF 夹角的余弦值. 20.国家发改委和住建部等六部门发布通知提到:2025年,农村生活垃圾无害化处理水平将明显提升.现阶段我国生活垃圾有填埋、焚烧、堆肥等三种处理方式,随着我国生态文明建设的不断深入,焚烧处理已逐渐成为主要方式.根据国家统计局公布的数据,对2013-2020年全国生活垃圾焚烧无害化处理厂的个数y (单位:座)进行统计,得到如下表格:(1)根据表格中的数据,可用一元线性回归模型刻画变量y 与变量x 之间的线性相关关系,请用相关系数加以说明(精确到0.01);(2)求出y 关于x 的经验回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用(2)所求的经验回归方程预测吗?请简要说明理由.参考公式:相关系数()()niix x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,nii i nii xx y y bay bx xx ==--==--∑∑ 参考数据:88882211112292,204,730348,12041i iii i i i i i y x y x y ========∑∑∑∑257385.84=≈ 21.已知函数()f x ax =(1)当1a =-时,则证明:当1x ≥x .(2)当0a =时,则对任意的1x ≥都有()22x m mf x x -≥-成立,求m 的取值范围.22.已知函数()()ln 1f x x ax =+-在12x =-处的切线的斜率为1.(1)求a 的值及()f x 的最大值. (2)证明:()1111ln 123n n++++>+()*N n ∈ (3)若()()e xg x b x =-,若()()f x g x ≤恒成立,求实数b 的取值范围.参考答案与解析1.C【分析】首先简化集合B ,然后根据并集的定义得结果. 【详解】B={x ∈N|x <1}={0}A ∪B={-1,0,1}∪{0}={-1,0,1}. 故选C .【点睛】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键. 2.B【分析】A. 利用空间直线的位置关系判断;B.利用线面垂直的性质定理判断;C.利用平面与平面的位置关系判断;D.利用平面与平面的位置关系判断.故选:B 3.C【分析】根据三角函数的定义直接求得答案.【详解】由题意可知12A ⎛ ⎝⎭则tan 2α=故选:C. 4.B【解析】由题可得,,A B C 三种花灯各至少被抽取一个的情况共有两种,列式计算即可. 【详解】由题意可知,,A B C 三种花灯各至少被抽取一个的情况共有两种:A 种花灯选2个,B 种花灯选1个,C 种花灯选1个; A 种花灯选1个,B 种花灯选2个,C 种花灯选1个.故不同的抽取方法有211121451451304070C C C C C C +=+=(种).故选:B. 5.D【分析】先由奇函数的性质求a ,再由导数的几何意义求切线的斜率.【详解】因为函数()32233f x x ax x =-++是定义在R 上的奇函数所以()()f x f x -=-,即()()()3232233233x a x x x ax x -+-+=----所以3232233233x ax x x ax x -+--= 所以0a =所以()323f x x x =-+,故()263f x x '=-+所以()221f '=-所以函数()f x 的图像在点()()2,2f --处的切线的斜率为21-. 故选:D. 6.C【分析】根据双曲线的离心率求得双曲线C 的方程,求得双曲线右焦点到渐近线的距离,结合双曲线的定义求得所求的最小值.【详解】由题意可知1,ca e c a====2224,2b c a b =-=∴= 双曲线方程为22:14y C x -=,一条渐近线方程为20x y -=焦点)2F 到渐近线20x y -=的距离为2==d 22PF a PF =+,2PF 与P 到C 的一条渐近线的距离之和的最小值为2d =所以PF 与P 到C 的一条渐近线的距离之和的最小值为224a +=. 故选:C 7.C【分析】根据三角函数的性质,利用整体思想,由单调区间与周期的关系,根据零点与对称轴之间的距离,表示所求参数,逐个检验取值,可得答案.【详解】由f (x )在186ππ⎛⎫⎪⎝⎭,上单调,即12618T ππ≥-,可得29T π≥,则ω≤9;∵4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴根据三角函数的图象可知零点与对称轴之间距离为:()1214T k ⨯-,k ∈N *.要求ω最大,则周期最小,∴()12142k T π-⨯=,则T 221k π=-;∴ω=2k ﹣1;当9ω=时,则由2πϕ≤,则4πϕ=-,可得()cos 94f x x π⎛⎫=- ⎪⎝⎭易知()f x 在5,1836ππ⎛⎫ ⎪⎝⎭上单减,在5,366ππ⎛⎫⎪⎝⎭上递增,不合题意; 当7ω=时,则由2πϕ≤,则4πϕ=,可得()cos 74f x x π⎛⎫=+ ⎪⎝⎭易知()f x 在3,1828ππ⎛⎫⎪⎝⎭上单减,在3,286ππ⎛⎫ ⎪⎝⎭上递增,不合题意;当5ω=时,则由2πϕ≤,则4πϕ=-,可得()cos 54f x x π⎛⎫=- ⎪⎝⎭易知()f x 在,186ππ⎛⎫⎪⎝⎭上单减,符合题意;故选:C . 8.C【分析】根据原点对称的性质,求出当40x -≤<时函数关于原点对称的函数,条件转化为函数()log a f x x =与|3|,(04)y x x =--+≤≤只有一个交点,作出两个函数的图象,利用数形结合的方法,再结合对数函数的性质进行求解即可【详解】当40x -≤<时,则函数|3|y x =+关于原点对称的函数为|3|y x -=-+,即|3|,(04)y x x =--+≤≤ 若函数()f x 的图象上有且只有两个点关于原点对称,则等价于函数()log a f x x =与|3|,(04)y x x =--+≤≤只有一个交点,作出两个函数的图象如图:若1a >时,则()log a f x x =与函数|3|,(04)y x x =--+≤≤有唯一的交点,满足条件; 当4x =时,则|43|1y =--+=-若01a <<时,则要使()log a f x x =与函数|3|,(04)y x x =--+≤≤有唯一的交点则要满足(4)1f <-,即1log 41log a a a -<-=解得故114a <<; 综上a 的取值范围是()1,11,4⎛⎫⋃+∞ ⎪⎝⎭故选:C 9.BC【分析】A :根据频率直方图中,所有小矩形的面积之和为1,进行求解判断即可; B :根据众数的定义,结合频率直方图进行判断即可; C :根据直方图,结合题意进行判断即可;D :根据中位数的定义,结合结合频率直方图进行判断即可. 【详解】A :因为频率直方图中,所有小矩形的面积之和为1所以(0.080.160.30.520.30.120.080.04)0.510.4a a ++++++++⨯=⇒= 因此本选项说法不正确;B :分布在[)13.5,14小组的矩形面积最大,因此众数出现在这个小组内,因此估计众数为13.51413.752+=,因此本选项说法正确; C :高三男生100米体能测试成绩不大于13秒的小组有:频率之和为:(0.080.160.3)0.50.27++⨯=因此估计估计本校高三男生100米体能测试成绩不大于13秒的人数为0.2720054⨯=,所以本选项说法正确;D :设中位数为b ,因此有(0.080.160.30.4)0.50.52(13.5)0.513.56b b +++⨯+-=⇒≈ 所以本选项说法不正确 故选:BC 10.BC【分析】根据函数的解析式逐个判定即可. 【详解】对A, ()f x 的值域为{}0,1,故A 错误. 对B, ()f x 定义域为R .故B 正确.对C,当x 是有理数时1x +也为有理数,当x 是无理数时1x +也为无理数故()()1f x f x +=成立.故C 正确. 对D, 因为()01f =,故D 错误. 故选:BC【点睛】本题主要考查了新定义函数性质的判定,属于基础题. 11.ACD【分析】根据题意求出p 的值,判断A ;根据直线和圆相切求出直线的斜率,判断B ;设直线方程,联立抛物线方程,可得根与系数的关系,求出以,A B 为切点的抛物线的两条切线的方程,结合根与系数的关系求得点P 坐标,判断C ;求出弦AB 的长以及弦AB 的中点到抛物线准线的距离,即可判断D.【详解】对于A ,由题意拋物线2:2(0)C x py p =>的焦点F 与圆22:(2)1M x y ++=上点的距离的最小值为2 即F 与圆上的点(0,1)-的距离为2,则||1,2OF p =∴=,A 正确;对于B ,过点(0,1)F 的动直线l 与M 相切时,则斜率必存在,设l 的方程为1y kx =+1=,解得k =B 错误;对于C ,设1122,,(()A x y B x y ),,由24x y =可得12y x '=联立214y kx x y =+⎧⎨=⎩ 消掉x 得2440x kx --= 216(1)0k ∆=+>所以12124,4x x k x x +==-设在点,A B 的切线斜率分别为12,k k ,则1212,22x x k k == 所以抛物线在点A 点的切线方程为111()2x y y x x -=-,即21124x x y x =-①同理可得在点B 的切线方程为 22224x x y x =-②由①②可得1222P x x x k +==,将122P x x x +=代入①得1214p x xy ==-所以P 点坐标为(21)k -,,即点P 在定直线1y =-上,C 正确;对于D ,由题意知12||42AB x x p k =++=+ AB 的中点的横坐标为124222x x kk +== 可得AB 的中点到抛物线准线1y =-的距离为121||2k AB +=则以线段AB 为直径的圆与抛物线C 的准线相切,故D 正确 故选:ACD 12.BCD【分析】A 选项由等体积法11M AND D AMN V V --=求得点M 到平面1AND 的距离即可;B 选项由外接球的直径为体对角线即可判断;C 选项由面1AND 经过外接球球心求得其外接圆圆心,即可求解;D 选项将球面与正方体的表面相交所得的曲线分为两类,按照弧长公式计算即可.【详解】1111211112,2242228AND ANM AD S S =⨯⨯==⨯⨯=,设M 到平面1AND 的距离为d ,由11M AND D AMN V V --=,即1111133AND ANM d S D A S ⨯⨯=⨯⨯,解得4d =,故A 错误;正方体1111ABCD A B C D -=外接球的体积为343π⨯=⎝⎭故B 正确;易得面1AND 经过正方体1111ABCD A B C D -其圆的面积为34π,故C 正确; 如图球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A 所在的三个面上,即面11AA B B 、面ABCD 和面11AA D D 上;另一类在不过顶点A 的三个面上,即面11BB C C 、面11CC D D 和面1111D C B A 上.在面11AA B B 上,交线为弧EF 且在过球心A 的大圆上因为1A E ==,则16A AE π∠=,同理6BAF π∠=,所以6EAF π∠=,故弧EF 的长为6π=,而这样的弧共有三条. 在面11BB C C 上,交线为弧FG 且在距球心为1的平面与球面相交所得的小圆上,此时,则小圆的圆心为B ,半径为1BF A E ==所以弧FG 2π=,这样的弧也有三条.于是,所得的曲线长33=D 正确. 故选:BCD. 13.34-##0.75-【分析】根据任意角三角函数的概念,可得3tan 4α=-,再利用诱导公式对原式化简,可得原式等于tan α,由此即可求出结果.【详解】因为角α终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,所以3tan 4α=-又()()()()()()()()sin 2sin sin 3sin sin 2cos 4sin 2cos 4ππαπαπαπααπαπαπαπ⎡⎤⎡⎤++-++--⎣⎦⎣⎦=-+---++()()sin sin sin sin tan sin cos sin cos πααααααααα+-===--所以()()()()sin 3sin 3sin 2cos 44παπααπαπ+--=--+--.故答案为:34-14.40【分析】由1()(2)n a x x x x +-的展开式中的各项系数的和为2,令x =1,求得1a =,写出51(2)x x-的展开式的通项,分别乘以x ,1x再令x 的指数为0求得r 值,则展开式中的常数项可求. 【详解】解:由1()(2)n a x x xx+-的展开式中的各项系数的和为2 令1x =,得5(1)12a +=,得1a =. ∴5111()(2)()(2)n a x x x x xxxx+-=+-51(2)x x-的通项55521551(2)()(1)2,0,1,2,3,4,5r r r r r r r r T C x C x x r ---+=-=-⋅⋅⋅=.∴511()(2)x x x x+-的展开式中的通项有5625(1)2r r r r C x ---⋅⋅⋅和5425(1)2r r r r C x ---⋅⋅⋅.令420r -=,得2r =,则展开式中的常数项为2325(1)280C -⋅⋅=; 令620r -=,得3r =,则展开式中的常数项为3235(1)240C -⋅⋅=- 所以该展开式的常数项为80-40=40. 故答案为:40. 15.-4【分析】对函数求导可得:22()x bx af x x++'=,函数()f x 在区间[1,2]上单调递增等价于()f x '在区间[1,2]上大于等于零恒成立,即220x bx a ++≥在区间[1,2]上恒成立,利用二次函数的图像讨论出a ,b 的关系,再结合线性规划即可得到4a b +的最小值. 【详解】 函数21()ln 22f x a x x bx =++在区间[1,2]上单调递增 ∴22()20a x bx af x x b x x ++'=++=≥在区间[1,2]上恒成立,即220x bx a ++≥在区间[1,2]上恒成立,令2()2h x x bx a =++,其对称轴:x b =-当1b -≤,即1b ≥-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:1(1)210b h a b ≥-⎧⎨=++≥⎩ 由线性规划可得:min (4)14(1)3a b +=+⨯-=-当2b -≥,即2b ≤-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:2(2)440b h a b ≤-⎧⎨=++≥⎩ 由线性规划可得:min (4)44(2)4a b +=+⨯-=-当12b <-<,即21b -<<-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:221()0b h b a b -<<-⎧⎨-=-≥⎩ 则244a b b b +≥+,由于24b b +在21b -<<-上的范围为(4,3)--,则443a b -<+<-综上所述4a b +的最小值是-4.【点睛】本题考查导数与函数单调性、线性规划、函数与不等式等知识,考查学生综合运用数学知识的能力,运算能力以及逻辑思维能力,属于难题. 16. 3400345【分析】根据数列新定义可知数列n a =()11111111111111,1,(,,,),(,,,,,),,(,,,)2222333333n nn,且满足第n 组有2n 个数,且每组中所有数之和为122n n⨯=,即可求解. 【详解】因为()()123411111,1,,,2122a a a a K K ======== 所以41111322S =+++=;根据()K x x =以此类推,将n a =()11111111111111,1,(,,,),(,,,,,),,(,,,)2222333333n nn第n 组有2n 个数,且每组中所有数之和为122n n⨯=设2023a =1n +组中则(22)20232n n+≤,可得(1)2023n n +≤解得44n ≤ 所以(20231140032444345452023S K=+=⨯+⨯=故答案为:3 40034517.(1)3C π=;(2)c =【分析】(1)先由正弦定理得21a b b c ba cb+=++,化简整理得222a b c ab +-=,再由余弦定理求得cos C ,即可求解;(2)先由面积求得8ab =,再由角平分线得AD b BD a=,结合平面向量得a bCD CA CB a b a b =+++,平方整理求得6a b +=,再由(1)中222a b c ab +-=即可求出c 的值.【详解】(1)由正弦定理得21a b b c ba cb+=++,即1a b b c a c +=++,整理得()()()()a a c b b c a c b c +++=++ 化简得222a b c ab +-=,由余弦定理得2221cos 22a b c C ab +-==,又()0,C π∈,则3C π=;(2)由面积公式得11sin 22ab C ab ==,解得8ab =,又CD 是ACB ∠的角平分线,则1sin261sin 26ACD BCDCA CD SCA AD SCB BD CB CD ππ⋅⋅⋅===⋅⋅⋅ 即AD b BD a =,则()b b a b CD CA AD CA AB CA CB CA CA CB a b a b a b a b=+=+=+-=+++++ 所以()()()2222222222a b a ab b CD CA CB CA CA CB CB a b a b a b a b a b ⎛⎫=+=+⋅+ ⎪++⎝⎭+++,即()()()2222222162132a b ab a b ab a b a b a b =+⋅⋅++++ 整理得()2221633a b a b =+,又8ab =,解得6a b +=,则()222220a b a b ab +=+-= 由(1)知22220812c a b ab =+-=-=,则c =.18.(1)2n a n =;(2)证明见解析.【分析】(1)利用题意建立等式求出n S ,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出通项即可;(2)先将2221111123n+++⋅⋅⋅+放大为11111223(1)n n +++⋅⋅⋅+⨯⨯-,然后裂项求和即可. 【详解】(1)因为11a =,所以11122S =⨯ 又因为(1)n S n n ⎧⎫⎨⎬+⎩⎭是公差为13的等差数列,所以11(1)(1)23n S n n n =+-+ 所以1(1)(21)6n S n n n =++.当2n ≥时,则21,1n n n a S S n n -=-==时,则11a =也满足上式.所以{}n a 的通项公式是2n a n =;(2)当1n =时,则1112a =<,不等式成立; 当2n ≥时,则22212111111111111231223(1)n a a a n n n++⋅⋅⋅+=+++⋅⋅⋅+<+++⋅⋅⋅+⨯⨯- 11111111222231n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.19.(1)证明见解析【分析】(1)根据面面垂直的性质定理可得PD ⊥平面ABCD ,从而PD BC ⊥,又BC CD ⊥,由线面垂直的判定定理得BC ⊥平面PCD ,则BC DF ⊥,又DF ⊥PC ,得DF ⊥平面PBC ,根据面面垂直的判定定理即可证得结论;(2)取CD 的中点N ,则//NF PD ,112NF PD ==结合(1)得NF ⊥平面ABCD ,结合线面角的定义得FMN ∠是直线MF 与平面ABCD 所成角,求得MN ,MC ,建立空间直角坐标系,分别求出平面EDM 、DMF 的法向量,利用空间向量夹角公式进行求解即可.【详解】(1)因为PAD 是斜边PA的长为PD DA ⊥ 2PD DA == 又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD DA =,PD ⊂平面PAD ∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD BC ⊥又BC CD ⊥,PD CD D ⋂=和,PD CD ⊂平面PCD ,∴BC ⊥平面PCD 因为DF ⊂平面PCD ,∴BC DF ⊥∵PD DC =,F 是棱PC 的中点,∴DF ⊥PC又⋂=PC CB C ,,PC CB ⊂平面PBC ,∴DF ⊥平面PBC . 又DF ⊂平面DFM ,∴平面DFM ⊥平面PBC . (2)如图,取CD 的中点N ,连接MN ,NF则//NF PD 112NF PD == 由(1)知PD ⊥平面ABCD ,∴NF ⊥平面ABCD ∴FMN ∠是直线MF 与平面ABCD 所成角 ∴1tan FMN MN ∠==∴MN 23MC =以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立空间直角坐标系设平面EDM 的法向量为(),,m a b c =,平面DMF 的法向量为(),,n x y z = 则02023DE m a cDM m a b⎧=⋅=+⎪⎨=⋅=+⎪⎩,令3a =-,则()3,1,3m =- 有02023DF n y zDM n x y ⎧=⋅=+⎪⎨=⋅=+⎪⎩,令3x =-,则()3,1,1n =--∴cos 19m n m n m n⋅⋅===⋅∴平面EDM 与平面DMF . 20.(1)答案见解析(2)ˆ41.12101.46yx =+ 513 (3)答案见解析【分析】(1)根据相关系数的公式,即可代入求值,根据相关系数的大小即可作出判断 (2)利用最小二乘法即可计算求解(3)根据相关关系不是确定的函数关系,而受多因素影响,即可求解. 【详解】(1)1234567892292573,8282x y +++++++====相关系数()()88niii ix x y y x y x yr ---⋅==∑∑957312041817270.9820.585.84-⨯⨯=≈≈⨯因为y 与x 的相关系数0.98r =,接近1,所以y 与x 的线性相关程度很高,可用线性回归模型拟合y 与x 的关系.(2)()()()8118222118ˆ8n iii ii i niii i x x y y x y x ybx x xx====---⋅==--∑∑∑∑957312041817272241.12814220484-⨯⨯==≈-⨯ 5739ˆˆ41.12101.4622ay bx =-≈-⨯= 所以y 与x 的线性回归方程为ˆ41.12101.46yx =+ 又2022年对应的年份代码10x =,当10x =时,则41.1210101.46512.6513ˆ6y=⨯+=≈ 所以预测2022年全国生活垃圾焚烧无害化处理厂的个数为513.(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,不能由(2)所求的线性回归方程预测,理由如下(说出一点即可):①线性回归方程具有时效性,不能预测较远情况;②全国生活垃圾焚烧无害化处理厂的个数有可能达到上限,一段时间内不再新建; ③受国家政策的影响,可能产生新的生活垃圾无害化处理方式. 21.(1)证明见解析. (2)[2,1]-【分析】(1)方法1:由分析法可证得结果. 方法2:换元法求()f x 的最大值即可证得结果.(2)设出不等号两边的函数,转化为对任意的1x ≥都有()()g x h x ≥成立,对参数分类讨论,分别研究两个函数的单调性、最值即可. 【详解】(1)方法1:∵1x ≥ ∴2(1)0x -≥ ∴原命题得证. 方法2:对称轴1t =,()h t 在[1,)+∞上单调递减 ∴max ()(1)0h t h ==∴()0h t ≤,即:当1x ≥时,则()0f x ≤恒成立即:当1x ≥x .(2)当0a =时,则()f x =即:对任意的1x ≥都有22x m x -≥成立令22()g x x m =-, ()h x x = 即:对任意的1x ≥都有()()g x h x ≥成立 当1x =时,则211m m -≥-,故21m -≤≤. ①当20m -≤≤时,则()g x 在[1,)+∞上单调递增∴2min ()(1)1g x g m ==-,∴2()1g x m ≥-()h x 在[1,)+∞上单调递减,∴max ()(1)1h x h m ==-,∴()1h x m ≤-此时2min max ()()20g x h x m m -=--≥∴min max ()()g x h x ≥即()()g x h x ≥,故20m -≤≤符合.②当01m <≤时,则由(1)知1x ∀≥x ≤恒成立∴1x ∀≥ mx x ≤∴1x ∀≥,0x ≤ 即:1x ∀≥ ()0≤h x又∵()g x 在[1,)+∞上单调递增,∴2min ()(1)1g x g m ==-,∴2()10g x m ≥-≥∴1x ∀≥ ()()g x h x ≥ ∴01m <≤符合. 综述:21m -≤≤【点睛】对于x D ∀∈,()()f x g x ≥恒成立求参数,可以先取特殊值确定参数的初步范围,再利用下面的两种方法.方法1:当x D ∈时,则min [()()]0f x g x -≥; 方法2:当x D ∈时,则min max ()()f x g x ≥. 求最值的方法:方法1:分离参数求最值;方法2:分类讨论研究函数的最值.22.(1)1a = max (0)f x =;(2)证明见解析;(3)[)0,∞+【分析】(1)由题意可得112f ⎛⎫'-= ⎪⎝⎭,可求出a 的值,然后利用导数求出函数的单调区间,从而可求出函数的最大值;(2)由(1)得()ln 1x x +≤,令()1N x k k *=∈,则有11ln 1k k ⎛⎫>+ ⎪⎝⎭,然后利用累加法可证得结论; (3)由于()()00,0f g b ==,所以()()f x g x ≤恒成立,则0b ≥,然后分0b =和0b >两种情况讨论即可.【详解】(1)函数的定义域为()()11,,1f x a x'-+∞=-+. 由已知得112f ⎛⎫'-= ⎪⎝⎭,得11112a -=⎛⎫+- ⎪⎝⎭,解得1a =. 此时()()()1ln 1,111x f x x x f x x x-'=+-=-=++. 当10x -<<时,则()0f x '>,当0x <时,则()0f x '<所以()f x 在(1,0)-上单调递增,()f x 在(0,)+∞单调递减所以()max ()00f x f ==;(2)由(1)得()ln 1x x +≤,当且仅当0x =时,则等号成立 令()1N x k k *=∈,则11ln 1k k ⎛⎫>+ ⎪⎝⎭ 所以()()1ln 1ln 1,2,3,,k k k n k >+-=将上述n 个不等式依次相加,得()1111ln 123n n++++>+; (3)因为()()00,0f g b ==,若()()f x g x ≤恒成立,则0b ≥①0b =时,则显然成立②0b >时,则由()()e x g x b x =-,得()()e 1x g x b '=-.当()1,0-时,则()()0,g x g x '<单减,当()0,x ∈+∞时,则()()0,g x g x '>单增所以()g x 在0x =处取得极小值,即最小值()()min ()00g x g b f x ==>≥,即()()f x g x ≤恒成立综合①②可知实数b 的取值范围为[)0,∞+.【点睛】关键点点睛:此题考查导数的综合应用,考查利用导数求函数的最值,考查利用导数证明不等式,考查利用导数解决不等式恒成立问题,第(3)问解题的关键是先由()()00,0f g b ==,从而可得0b ≥,然后分情况讨论即可得答案,考查数转化思想,属于较难题.。

高三数学模考文科试卷答案

高三数学模考文科试卷答案

一、选择题(每题5分,共50分)1. 【答案】C解析:根据函数的定义,当x=0时,f(x)=0,因此C选项正确。

2. 【答案】A解析:由等差数列的性质可知,第n项an=a1+(n-1)d,其中d为公差。

代入题目中的数据,得a5=a1+4d=10,a10=a1+9d=30,解得a1=2,d=4,因此a1+a5=2+10=12,A选项正确。

3. 【答案】D解析:根据复数的性质,实部相同,虚部相反的两个复数互为共轭复数。

因此,-1-2i的共轭复数为-1+2i,D选项正确。

4. 【答案】B解析:由三角函数的性质可知,sin(π/2-x)=cosx,因此B选项正确。

5. 【答案】C解析:根据向量的数量积公式,a·b=|a||b|cosθ,其中θ为a和b的夹角。

由题意可知,|a|=|b|=2,且a和b的夹角θ=π/3,代入公式得a·b=2×2×cos(π/3)=2,C选项正确。

二、填空题(每题5分,共25分)6. 【答案】x=1解析:由一元二次方程的定义可知,x=1是方程x^2-3x+2=0的解。

7. 【答案】a=-2,b=1解析:根据韦达定理,一元二次方程ax^2+bx+c=0的根满足x1+x2=-b/a,x1x2=c/a。

代入题目中的数据,得x1+x2=-b/a=-1/2,x1x2=c/a=-1/2,解得a=-2,b=1。

8. 【答案】π解析:由三角函数的性质可知,sin(π/2)=1,因此π/2的对应角是π。

9. 【答案】3解析:由等比数列的性质可知,an=a1q^(n-1),其中q为公比。

代入题目中的数据,得a5=a1q^4=80,a1q^2=20,解得q=√(80/20)=2,因此a1=20/q=10,所以a1+a5=10+80=90。

10. 【答案】1/2解析:由复数的性质可知,|z|=√(a^2+b^2),其中z=a+bi。

代入题目中的数据,得|z|=√(1^2+1^2)=√2,因此z的模为√2。

高三数学模拟试题(文科)及答案

高三数学模拟试题(文科)及答案

高三数学模拟试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.1.已知x x x f 2)(2-=,且{}0)(<=x f x A ,{}0)(>'=x f x B ,则B A 为( ) A .φB .{}10<<x xC .{}21<<x xD .{}2>x x2.若0<<b a ,则下列不等式中不能成立....的是 ( )A .22b a > B .b a >C .a b a 11>-D .ba 11> 3.已知α是平面,b a ,是两条不重合的直线,下列说法正确的是( ) A .“若αα⊥⊥b a b a 则,,//”是随机事件 B .“若αα//,,//b a b a 则⊂”是必然事件 C .“若βαγβγα⊥⊥⊥则,,”是必然事件D .“若αα⊥=⊥b P b a a 则,, ”是不可能事件4.若0x 是方程x x=)21(的解,则0x 属于区间( )A .(23,1) B .(12,23) C .(13,12) D .(0,13) 5.一个几何体按比例绘制的三视图如图所示(单位:m ),则该几何体的体积为( )A .349m B .337mC .327mD .329m 6.若i 为虚数单位,已知),(12R b a iibi a ∈-+=+,则点),(b a 与圆222=+y x 的关系为( )A .在圆外B .在圆上C .在圆内D .不能确定7.在ABC ∆中,角A 、B 、C 所对的边长分别为a 、b 、c ,设命题p :AcC b B a sin sin sin ==,命题q : ABC ∆是等边三角形,那么命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件.C .充要条件D .既不充分也不必要条件8.已知函数12++=bx ax y 在(]+∞,0单调,则b ax y +=的图象不可能...是( )A .B .C .D .9.如图是网络工作者用来解释网络运作的蛇形模型:数字1出现在第一行;数字2,3出现在第二行;数字6,5,4(从左到右)出现在第三行;数字7,8,9,10出现在第四行,依此类推2011出现在( )A .第63行,从左到右第5个数B .第63行,从左到右第6个数C .第63行,从左到右第57个数D .第63行,从左到右第58个数10.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 引它到渐进线的垂线,垂足为M ,延长FM 交y 轴于E ,若FM 2=,则该双曲线离心率为( )A .23B .26C .3D .3二、填空题:本大题共7小题,每小题4分,共28分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三文科数学模拟试题满分:150分 考试时间:120分钟第Ⅰ卷(选择题 满分50分一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数31ii++(i 是虚数单位)的虚部是( )A .2B .1-C .2iD .i -2.已知集合{3,2,0,1,2}A =--,集合{|20}B x x =+<,则()R A C B ⋂=( ) A .{3,2,0}-- B .{0,1,2} C . {2,0,1,2}- D .{3,2,0,1,2}-- 3.已知向量(2,1),(1,)x ==a b ,若23-+a b a b 与共线,则x =( ) A .2 B .12 C .12- D .2- 4.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( )A .4πB .32π C .3π D .2π 5.将函数()sin 2f x x =的图象向右平移6π个单位,得到函数()y g x =的图象,则它的一个对称中心是( )A .(,0)2π-B . (,0)6π-C . (,0)6πD . (,0)3π6.执行如图所示的程序框图,输出的s 值为( )A .10-B .3-C . 4D .57. 已知圆22:20C x x y ++=的一条斜率为1的切线1l ,若 与1l 垂直的直线2l 平分该圆,则直线2l 的方程为( ) A. 10x y -+= B. 10x y --= C. 10x y +-= D. 10x y ++=8.在等差数列{}n a 中,0>n a ,且301021=+++a a a Λ, 则65a a ⋅的最大值是( ) A .94B .6C .9D .36正视图 侧视图俯视图1k k =+结束开始1,1k s ==5?k <2s s k =-输出s否 是9.已知变量,x y 满足约束条件102210x y x y x y +-≥⎧⎪-≤⎨⎪-+≥⎩,设22z x y =+,则z 的最小值是( )A.12B. 2C. 1D. 1310. 定义在R 上的奇函数()f x ,当0≥x 时,⎪⎩⎪⎨⎧+∞∈--∈+=),1[|,3|1)1,0[),1(log )(21x x x x x f ,则函数)10()()(<<-=a a x f x F 的所有零点之和为( )A .12-aB .12--aC .a --21D .a 21-第Ⅱ卷(非选择题 满分100分)二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置)11. 命题“若12<x ,则11<<-x ”的逆否命题是_______________________. 12.函数()f x =的定义域是 . 13.抛物线22y x =-的焦点坐标是__________.14.若23mx m ≥-恒成立,则实数m 的取值范围为__________. 15.某学生对函数()cos f x x x =的性质进行研究,得出如下的结论: ①函数()f x 在[,0]π-上单调递增,在[0,]π上单调递减; ②点(,0)2π是函数()y f x =图象的一个对称中心;③函数()y f x =图象关于直线x π=对称;④存在常数0M >,使|()|||f x M x ≤对一切实数x 均成立;⑤设函数()y f x =在(0,)+∞内的全部极值点按从小到大的顺序排列为12,,x x L 则212x x ππ<-<.其中正确的结论是__________.三、解答题:(本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

解答写在答题卡上的指定区域内)16.(本小题满分12分)在ABC ∆中,c ,b ,a 分别是角A 、B 、C 的对边,且满足:AcA b sin 2sin 2=(1)求C ;(2)当]0,3[π-∈x 时,求函数()()x B x A y -++=sin sin 3的值域.17. (本小题满分13分)某中学举行了一次“交通安全知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:(1)写出,,,a b x y 的值; (2)若现在需要采用分层抽样的方式从5个小组中抽取25人去参加市里的抽测考试,则第1,2,3组应分别抽取多少人?(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加交通安全知识的志愿宣传活动.求所抽取的2名同学中至少有1名同学来自第5组的概率.18. (本小题满分12分)已知函数2()1x e f x ax =+,其中a 为正实数,12x =是()f x 的一个极值点(1)求a 的值; (2)当12b >时,求函数()f x 在[,)b +∞上的最小值.19. (本小题满分13分)如图,矩形11A B BA 和矩形11A ADD 所在的平面与梯形ABCD 所在的平面分别相交于直线AB 、CD ,其中AB ∥CD ,1112AB BC BB CD ====,60ABC ∠=o 组别 分组 频数 频率 第1组 [50,60) 8 0.16第2组 [60,70) a ▓第3组 [70,80) 20 0.40第4组 [80,90) ▓ 0.08第5组 [90,100] 2 b合计 ▓ ▓ 50 60 70 80 90 100 成绩(分)0.040 xy0.008频率组距D 1B (1) 证明:平面1BBC 与平面1DD C 的交线平行于平面11A B BA ; (2) 证明:AD ⊥平面1AA C ; (3) 求几何体111A B D ABCD -的体积.20. (本小题满分12分)设等比数列{}n a 的前n 项和为n S ,已知122()n n a S n N *+=+∈(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列,求数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T .21.(本小题满分13分)已知椭圆22221(0)x y a ba b+=>>(0,1)(1)求此椭圆的方程;(2)已知定点)0,1(-E ,直线2y kx =+与此椭圆交于C 、D 两点.是否存在实数k ,使得以线段CD 为直径的圆过E 点.如果存在,求出k 的值;如果不存在,请说明理由.高考模拟数学(文科)试卷参考答案一、选择题:(本大题共10小题,每小题5分,共50分)1. B2. C3. B4. B5. C6. A7. D8. C9. A 10. D 解析: 1. 经计算得321ii i+=-+,故虚部为1-,选B. 2.{|2}R C B x x =≥-,因此(){2,0,1,2}R A C B ⋂=-,选C.3. 2(3,2),3(5,13)x x -=-+=+a b a b ,由向量共线的条件得3(13)5(2)x x +=-,解得12x =,选B. 4. 根据三视图可知这是一个圆柱体,易知选B. 5. 由已知得()sin 2()6g x x π=-,易知(,0)6π为其一个对称中心,选C.6. 经过计算易知选A.7. 由已知得直线2l 的斜率为1-,且直线2l 过圆C 的圆心(1,0)-,根据直线的点斜式可计算得选D. 8. 1101210()10302a a a a a ++++=⨯=K ,于是1106a a +=,即566a a +=,又0n a >所以25656()92a a a a +⋅≤=,当且仅当563a a ==时等号成立,故选C. 9. 由约束条件可作出可行域可知,z 的最小值就是原点到直线10x y +-=距离的平方,经计算可得选A. 10. 作出()y f x =的图像如下所示,则()()F x f x a =-的零点即为函数()y f x =与y a =图像交点的横坐标,由图可知共有五个零点,不妨设为12345,,,,x x x x x 且12345x x x x x <<<<,从图中可看出1x 与2x 关于直线3x =-对称,4x 与5x 关于直线3x =对称,故12452(3)230x x x x +++=⨯-+⨯=,当(1,0)x ∈-时12()log (1)f x x =--+,因此由12log (1)x a --+=解得312a x =-,故1234512ax x x x x ++++=-二、填空题:(本大题共5小题,每小题5分,共25分)11. 若1x ≥或1x ≤-,则21x ≥ 12. {|221}x x x -≤≤≠且13. 108-(,) 14. 5(,]12m ∈-∞解析:由题意得(2)3x m -≥恒成立,又22x -≤≤,当2x =时03≥-恒成立;当22x -≤<时20x -<只需m ≤即可,令k =,则只需min m k ≤.若设y =,则32y k x -=-,其表示两点(,),(2,3)x y 之间连线的斜率,其中点(,)x y 在半圆224(0)x y y +=≥上,则当过点(2,3)的直线与圆相切时斜率k 有最值,易知其中一条切线为:2x =,不妨设另一条切线方程为3(2)y k x -=-,即230kx y k --+=2=得512k =为最小值,故512m ≤. 15. ④⑤ 解析:()cos f x x x =为奇函数,则函数()f x 在[,0]π-和[0,]π上单调性相同,所以①错.由于(0)0f =,()f ππ=-,所以②错.再由(0)0f =,(2)2f ππ=,所以③错. |()||cos ||||cos |||f x x x x x x ==≤g ,令1M =,则||()|||f x M x ≤对一切实数x 均成立,所以④对.由()cos sin 0f x x x x '=-=得cos sin 0x x x -=,显0x ≠所以1tan x x =,易知方程1tan x x=的实根就是()f x (,)22ππ-外的正切函数的每一个周期内1tan y y x x===与得125(,),(,)424x x ππππ∈∈,故212x x ππ<-<三、解答题:(本大题共6小题,共75分。

)16. (本小题满分12分) 解:(1)由已知A c A b sin 2sin 2=得sin cos sin b cA A A=根据正弦定理得:sin sin cos B C A =,而sin sin()sin cos cos sin B A C A C A C =+=+ 由此可得 sin cos 0A C =,又因为三角形中sin 0A ≠ 所以cos 0C =,得2C π∠= …………6分(2)由(1)知2A B π+=,所以sin()sin()sin[()]cos()22B x A x A x A x ππ-=--=-+=+()()()()sin cos 2sin 6y A x B x A x A x A x π=++-=+++⎛⎫=++ ⎪⎝⎭因为]0,3[π-∈x ,[0,]2A π∈,故2(,)663A x πππ++∈- 所以2sin (1,2]6y A x π⎛⎫=++∈- ⎪⎝⎭,即值域为(1,2]-…………12分 17.(本小题满分13分)解:(1)由题意可知,样本总人数为,5016.08=,04.0502==∴b16,0.04,0.032,0.004a b x y ====.…………4分(2)第1,2,3组应分别抽取4,8,10人…………8分(3)由题意可知,第4组共有4人,记为,,,A B C D ,第5组共有2人,记为,X Y .从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学有,,,,,,,AB AC AD BC BD CD AX AY ,,,,,,,BX BY CX CY DX DY XY共15种情况. 设“随机抽取的2名同学中至少有1名同学来自第5组”为事件E , 有,AX AY ,,,,,,,BX BY CX CY DX DY XY 共9种情况. 所以93()155P E ==. 答:随机抽取的2名同学中至少有1名同学来自第5组的概率35…………13分 18. (本小题满分12分)解:222(-21)()(1)xax ax e f x ax +'=+ (1)因为12x =是函数()y f x =的一个极值点, 所以1()02f '=因此1104a a -+= 解得43a =经检验,当34=a 时,21=x 是)(x f y =的一个极值点,故所求a 的值为34.………………………5分(2)由(1)可知,D 1B 22248(1)33()4(1)3xx x e f x x -+'=+ 令()0f x '=,得1213,22x x ==()f x 与'()f x 的变化情况如下:所以,()f x 的单调递增区间是(,),(,),22-∞+∞ 单调递减区间是(,)22当1322b <<时,()f x 在3[,)2b 上单调递减,在3(,)2+∞上单调递增所以()f x 在[,)b +∞上的最小值为3()2f = 当32b ≥时,()f x 在[,)b +∞上单调递增, 所以()f x 在[,)b +∞上的最小值为223()134b be ef b ab b==++ ………………………………12分19. (本小题满分13分)(1)证明:在矩形11A B BA 和矩形11A ADD 中1AA ∥1BB ,1AA ∥1DD ∴1BB ∥1DD又1BB ⊄平面1DD C ,1DD ⊂平面1DD C∴1BB ∥平面1DD C不妨设平面1BB C 与平面1DD C 的交线为l ,平行的性质定理知1BB ∥l又 l ⊄平面11A B BA ,1BB ⊂平面11A B BA∴l ∥平面11A B BA …………4分(2)在矩形11A B BA 和矩形11A ADD 中11,AA AB AA AD ⊥⊥且AB AD A =I ∴1AA ⊥平面ABCD在ABC ∆中1AB BC ==,60ABC ∠=o∴ABC ∆为正三角形且1AC =又梯形ABCD 中AB ∥CD∴120BCD ∠=o ,故60ACD ∠=o又∵2CD =,在ACD ∆中由余弦定理可求得AD =∴222AC AD CD +=,故AC AD ⊥ 又∵1AA ⊥平面ABCD ∴1AA AD ⊥,而1AA AC A =I ∴AD ⊥平面1AA C …………9分 (3)11111111113232C AA B B C AAD D V V V --=+=⨯⨯⨯+⨯⨯=…………13分 20. (本小题满分12分)解:(1)由122(n n a S n +=+∈Z *)得*122(n n a S n N -=+∈,2n ≥), 两式相减得:12n n n a a a +-=, 即*13(n n a a n N +=∈,2n ≥),∵{}n a 是等比数列,所以213a a =,又2122,a a =+ 则11223a a +=,∴12a =,∴123n n a -=g . …………………………………6分 (2)由(1)知123n n a +=g ,123n n a -=g∵1(1)n n n a a n d +=++ ,∴1431n n d n -⨯=+,………8分令123111n T d d d =+++…1n d +,则012234434343n T =++⨯⨯⨯+ (11)43n n -++g ① +⋅+⋅=2134334231n T …114343n n n n -+++g g ②①-②得01222113434343n T =+++g g g (111)4343n n n -++-g g 111(1)111525331244388313n n nn n --++=+⨯-=--g g 1152516163n n n T -+∴=-g . ………………12分21. 解:(1)根据题意,22222231, 1.2c a a b b a b c c ⎧=⎪⎧=⎪⎪⎪==⎨⎨⎪⎪=+=⎩⎪⎪⎩解得,所以椭圆方程为2213x y +=. ………………………………5分 (2)将2y kx =+代入椭圆方程,得22(13)1290k x kx +++=,由直线与椭圆有两个交点,所以22(12)36(13)0k k ∆=-+>,解得21k >.设),(11y x C 、),(22y x D ,则1221213k x x k +=-+,122913x x k⋅=+,若以CD 为直径的圆过E 点,则0=⋅ED EC ,即0)1)(1(2121=+++y y x x ,而1212(2)(2)y y kx kx =++=212122()4k x x k x x +++,所以212121212(1)(1)1)(21)()5x x y y k x x k x x +++=+++++(2229(1)12(21)501313k k k k k ++=-+=++,解得76k =,满足21k >.所以存在7,6k =使得以线段CD 为直径的圆过E 点. ………………………………13分。

相关文档
最新文档