防砂工艺设计

防砂工艺设计
防砂工艺设计

新井防砂工程设计2010年09月19日

井底部挤压充填防砂工程设计(以此方案为准) 一、基本数据:

表1、井基本数据表

表2、曙4-H108射孔井段数据

表3、井生产数据表

二、生产现状

该井去年7月检泵开井后初期日产液13.9吨左右,日产油5.6吨左右,含水60%左右,进入去年12月含水开始上升,产油量开始下降,到本月8日,含水上升到86%,日产油下降到1.8吨,分析砂埋底部出油层,要求作业冲砂测压检泵。该井无地层压力资料。产液性质为:油、天然气、水混合液。该井09年6月取样化验原油粘度为316.8mPa.S。硫化氢含量为0,投产以来历次作业都没有硫化氢显示。临井不含硫化氢。该井与注水井曙4-9-更4井和曙4-9-003井油层连通较好,曙4-9-更4井和曙4-9-003井目前均停注,油套压均0MPa。其邻井地层压力为:曙4-9-003井01年9月测17.7MPa,曙4-9-3井93年12月测8.28MPa。曙4-9-更4井、曙4-9-4井、曙4-9-04井均无地层压力资料。其相邻井油气水层段为:曙4-9-003井1026.9-1062.8m、曙4-9-3井922.6-952.8m。曙4-9-更4井980.2-1017m,曙4-9-4井980.4-1027.8m、曙4-9-04井973.8-1017.6m,距井东100米有厂房,西60米有高压线、稻田,南50米有稻田,北100米有住宅。

三、方案设计

该井投产以来已小修作业7次,造成作业频率较高的原因为地层出砂,建议该井下精密复合滤砂管进行管内逆向砾石挤压充填防砂。

该井2010年9月20日作业冲砂190m,发现1183.56米套管变形,为恢复该井产能,对井段1094.6-1183.56m选用逆向砾石挤压充填防砂。

四、施工目的和工艺

1、施工目的:为防止地层出砂,增加油井产能,对水平段进行砾石充填防砂施工。利用管内高压底部充填防砂工艺,防止地层出砂,获得该防砂井段的合理产能,取得各项施工资料。

2、施工工艺:

管内高压逆向砾石挤压充填防砂工艺。

五、针对措施

1、高压底部充填防砂,用大排量高砂比携砂液,将地层和井筒环空用0.4-0.8mm 石英砂一次充填压实,形成连续稳定的高强度砂体,阻止地层砂向井筒运移,从而解决出砂问题;

2、应用高压底部充填防砂能重新改造油层结构,从而达到防砂增产的目的;

3、使用防膨剂消除油层内粘土膨胀,防止地层砂运移,提高防砂效果;

4、底部挤压充填防砂,共准备高粘度携砂液270 m3,0.4-0.8mm石英砂80吨。

六、施工步骤:

1、起原井:起出原井生产管柱,仔细检查丈量原井油管,做好检泵分析。

2、探冲砂:下冲砂管柱,底下笔尖,球座位于1180m。下探砂面后冲砂至1189.0米,无砂洗井。

3、试压:正投Φ38mm钢球,沉球后对油管试压25.0MPa,30min不降0.5MPa合格起出。

4、通井:下Φ116*1500mm通井规通至1189.0m,无阻起出。

5、套管试压:下Y211-115F,下至井深1085.0米,上提下放管柱座封,套管反试压20Mpa,稳压15min压力不降0.5MPa合格,起出试压管柱。

6、下模拟管柱

下导锥+Φ89mm油管,下至井深1183.56米,进行反洗井2周,起出模拟管柱,起管柱时要边起边灌注压井液。

7、下防砂管柱(如图): 下入丝堵(倒角)+沉砂短接+底部充填防砂工具+Φ76mm×0.5m油管短节+扶正器+Φ95mm滤砂管86m(中间每隔20米加扶正器一个)+扶正器+Φ76mm光管18m+Φ95mm信号筛管2m+Φ76mm油管36m+悬挂空心桥塞+0.5m油管短节+Φ73mm油管至井口。

8、座封:下至设计深度,从油管内投入Φ35mm钢球,15min后用小排量正打压座封:8.0MPa稳压3min,12.0MPa稳压3min,14.0MPa稳压2.0min,完成座封,丢手后起出丢封管柱。

9、下防砂服务管柱:下入底部充填服务器+中心管168米+Φ73mm油管至井口,加压2-3吨,打开充填通道,调整施工管柱,装高压充填防砂井口。

10、防砂施工:

①、试压:接地面管线,单车试压25MPa,稳压15min不刺不漏为合格。

②、地层预处理:用优质完井液正循环,出口见液后,关套管闸门,正挤防膨抑砂剂12吨和本区块温度80℃以上热污水40m3。

③、用270方清洁型压裂液,均匀加入粒度0.4-0.8mm石英砂80吨进行挤压充填,根据现场施工压力情况,慢慢提升施工排量,由2.0-2.5m3/min进行充填,砂比控制在5%-40%进行防砂施工。当压力上升至23MPa时,施工结束。

充填过程中,控制施工排量2000L/min左右,随时观察施工压力变化情况,根据现场施工压力情况调整施工参数。

④、反洗井:上提管柱1-2米,接好水泥车管线,反洗出油管内的余砂,洗净为止。

11、下完井:按照甲方设计要求,下泵完井。

七、注意事项

1、井内施工管柱上的油管必须保证完好、通畅、连接密封,井口法兰、卡箍、螺丝必须上全上紧,所有闸门灵活好用、性能可靠;

2、施工管柱丝扣要上紧,且丈量准确;

3、下防砂管柱要平稳操作,严禁猛提猛放,以防中途座封,油管下放速度控制在每根60秒,进入水平段的油管要采用倒角油管;

4、地面高压管线、井口15m范围内严禁有人走动或停留;

5、施工过程中,要严格按井下作业有关规定执行,高度重视施工安全和环境保护,特别是:

a、井场范围闲杂人员不得进入,严禁烟火;

b、所有用电电缆全部架空,避免短路、触电;

c、做好防喷防火准备;

d、本该井位于住宅、稻田、养虾池、厂房、高压线等重点区域,请施工时注意环境保护及安全。

八、施工准备

1、1000型防砂车组一套。

①、1000型防砂车4台

②、混砂车1辆

③、仪表车1辆

④、罐车22辆

⑤、砂罐4辆

2、作业队准备:15m3水池1个,400型水泥车1台,水罐车2辆,热污水80m3。

防砂施工材料

九、施工流程图:

十、防砂施工管柱图:

曙4-H108井砾石挤压充填防砂工艺设计第 2 页共11 页辽河油田曙光采油厂工艺研究所2010年09月19日

油气田用各种防砂筛管及工艺技术简介

油气田用各种防砂筛管及工艺技术简介 防砂筛管是为了解决油气井开发中油气井出砂问题和水平井组不射孔开发问题而研发的产品。我公司现有激光割缝防砂筛管、打孔筛管、金属棉防砂筛管、TBS防砂筛管、螺旋筛管、V缝自洁防砂筛管以及弹性防砂筛管等各种规格型号的产品,并已批量应用于全国各油田的防砂井和水平井生产中。与目前国内外水平井使用的完井方式相比,各油田水平井产要是以筛管、打孔衬管、射孔三种完井方式为主。由于绝大多数水平井是砂岩油藏和稠油油藏,稠油防砂问题是水平井开发的主要矛盾之一,因此以筛管完井占主导地 位。 用于防砂完井防砂的筛管主要有 金属棉筛管、TBS筛管割缝筛管、弹性筛管、螺旋筛管、V缝自洁防砂筛管 筛管防砂完井的发展历程及性能评价 1、1996年以前 防砂完井技术试验阶段,主要以金属棉筛管完井防砂为主。 金属棉筛管防砂完井后井眼尺寸小,不利于注汽热采、采油生产和后期作业。防砂材料强度不足、不均匀,容易堵塞和损坏(击穿)。 2、1996~2002年间 开发并应用了TBS筛管。TBS筛管是以打孔套管为基管,将金属纤维过滤单元烧结在基管上,单层管结构,内径大,可防细砂,解决了金属棉筛管内径小、堵塞和强度低的问题。 TBS筛管存在问题:过滤单元易脱落、加工工艺性差。 3、2002年以后 由于机械加工工艺的进步,割缝筛管加工成本降低,近几年来在辽河油田应用的最多,主要适用于粗砂、分选性好的油藏。

存在问题:不能防止细砂,缝隙易冲蚀变大、缝型为单一直缝抗压强度低。 4、2005年以后 割缝筛管防砂完井技术推广应用阶段和弹性筛管现场试验阶段 高强度弹性筛管进入现场,显示出明显的优势。 解决了TBS过滤单元脱落的问题,防砂材料采用弹性金属纤维,渗透性能好,抗堵塞性能高,扩大了防砂范围。截止到目前在辽河油田的水平井上应用了32井次。 目前水平井最主要的防砂完井筛管是弹性筛管和割缝筛管。 目前水平井筛管完井方式主要有两种: A、95/8″套管内悬挂7″筛管。 B、7″套管下接7″筛管,上部固井。

第二章 防砂方法原理

第二章防砂方法原理 2.1 防砂方法分类 根据防砂原理及工艺特点,目前主要防砂方法大致可分为机械防砂、化学防砂、复合防砂和其它防砂方法几类。 (1)机械防砂方法 机械防砂方法可以分为两类,第一类是仅下入机械管柱的防砂方法,如绕丝筛管、割缝衬管、各种滤砂管等。这种方法简单易行,施工成本低。缺点是防砂管柱容易被地层砂堵塞,只能阻止地层砂产出到地面而不能阻止地层砂进入井筒,有效期短,只适用于油砂中值大于0.1mm的中、粗砂岩地层。 第二类机械防砂方法为管柱砾石充填,即在井筒内下入绕丝筛管或割缝衬管等机械管柱后,再用砾石或其它类似材料充填在机械管柱与套管的环形空间内,并挤入井筒周围地层,形成多级滤砂屏障,达到挡砂目的。这类方法设计及施工复杂,成本较高;但挡砂效果好,有效期长,成功率高,适用性广,可用于细、中、粗砂岩地层,垂直井,定向井,热采井等复杂条件。砾石充填防砂的缺点主要是施工复杂,一次性投入高;若砾石尺寸选择不当,地层砂侵入砾石层后会增加油流入井的阻力,影响防砂后的油井产能。研究结果表明,砾石充填井筒附过主要压降损失在填有砾石的射孔炮眼内。因施工过程较长,必须注意减少作业过程中对油层的作害。 (2)化学防砂 化学防砂是向地层中挤入一定数量的化学剂或化学剂与砂浆的混合物,达到充填、固结地层、提高地层强度的目的。化学防砂主要分为人工胶结地层和人工井壁两种方法。人工胶结地层是向地层注入树脂或其它化学固砂剂,直接将地层砂固结;人工井壁是将树脂砂浆液、预涂层砾石、水带干灰砂、水泥砂浆、乳化水泥等挤入井筒周围地层中,固结后形成具有一定强度和渗透性的人工井壁。 化学防砂方法适用于薄层短井段,对粉细砂岩地层的防砂效果好,施工后井筒内不留下任何机械装置,便于后期处理。缺点是有机化学剂材料成本高,对油藏温度的适应性较差,易老化,有效期短,固结后地层渗透率明显下降,产能损失大。 (3)焦化防砂

海上完井工艺技术和完井理念介绍

海上完井工艺技术和完井理念介绍 1、 序言 海上油气田完井是海上油气田开发中的一个重要环节,它是衔接海上钻井、工程和采油采气工艺,而又相对独立的系统工程。它涉及油藏、钻井、海洋工程、采油采气等诸多专业,涵盖上述各个专业的有关内容。作为油气井投产前的最后一道工序,完井工作的优劣直接影响到海上油气田开发的经济效益。 中国海洋油田的完井自1967年海一平台试采开始,至今已有三十多年的历史。自1982年中国海洋石油总公司成立以来,近海油气田完井技术就伴随着油田开发进入了快速发展阶段,效果是显而易见的。1986年海上油气年产当量1000×104吨,1997年油气年产当量超过2000×104吨,预计2005年达4000×104吨(见下图),目前近海自营油田和合作油田开发正处于迅速发展阶段。在中国近海已投产的24个油气田的整个开发过程中,总体上说完井是非常成功的,绝大多数油气田的可采储量有较大幅度增长,在高速开采下保持油气产量的稳定和增长,达到了配产要求。根据中海油开发计划,2003-2005年期间,中海油将新增开发井760口,可见完井工作量将是非常大的。 2001年中国海洋石油在海外上市,成立了中海石油(中国)有限公司,提出要争创国际一流能源公司,提高竞争力,公司在多方面加大了科研投入。就完井生产而言,成立了专门的提高采收率项目组,紧密围绕提高采收率和油井产能,按计划尝试了各种完井新工艺,收到了明显的效果;在此过程中,完井理念也在不断发生变化,从开始传统 500 1000 1500 2000 2500 3000 3500 4000 4500 200020012002200320042005 时间(年) 油气当量 ( 万方 )

精密复合滤砂管防砂完井技术

!应用技术# 精密复合滤砂管防砂完井技术 王 毅 杨海波 彭志刚 (胜利石油管理局钻井工艺研究院) 摘要 为了提高防砂效果,解决过高的生产压差带来的底水锥进以及完井管柱冲蚀破坏等系 列问题,研制了精密复合滤砂管,并形成相应的配套防砂工艺技术。该滤砂管主要由中心基管、不锈钢网过滤层、外保护管3部分组成,其防砂能力强,效果好,施工简便,特别适合出砂严重、底水锥进的水平井防砂。改进后的酸洗工艺技术,可有效清洗近井地带的泥饼及其它污染物,改善了井筒附近的油层渗透率。 关键词 精密复合滤砂管 防砂 酸洗 胜利油田河口采油厂沾18区块是典型的疏松砂岩稠油油藏,成岩性差,泥质含量高,渗透率高,出砂严重[1] 。目前,无论是缠绕式金属棉还是镶嵌式金属棉在稀油井、低泥质含量井中防砂都取得良好效果,但在稠油井、高泥质含量井中效果一般,主要是油井液量较低。为提高防砂效果,解决过高的生产压差带来的底水锥进以及完井管柱冲蚀破坏等问题,经过反复筛选及科研攻关,研制出精密复合滤砂管,并形成相应的配套防砂工艺技术。 技 术 分 析 11结构及原理 精密复合滤砂管主要由中心基管、不锈钢网过 滤层、外保护管3部分组成,结构如图1所示 。 图1 精密复合滤砂管整体结构示意图 1—外保护管;2—筛网;3—中心基管;4—过滤器;5—扩散管;6—内保护管 防砂过滤层为不锈钢网组成的微孔复合过滤材料,采用特种焊接工艺,全焊接结构,整体强度高。其防砂机理是:4层不同孔径的过滤层相互叠加,在它们之间形成若干缝隙,利用这些缝隙阻挡底层砂粒通过。通过控制过滤层缝隙的大小达到适 应不同油层粒径的防砂目的[2-4] 。此外,由于不锈钢网富有弹性,在一定的驱动力下,小砂粒可以通过缝隙,避免网孔被填死。砂粒通过后,不锈钢网又可以恢复原状而达到自洁的作用。外保护管也是由优质不锈钢材料制成,耐腐蚀性能好。 21精密复合滤砂管的技术参数及规格 (1)技术参数确定 根据地层砂粒的粒度中值和分选系数来确定精密滤砂管的防砂精度。其中,①粒度中值(M d )是表示碎屑沉积物粒度粗细的参数。它是指累积曲线上与累积含量百分数为50%处相对应的粒径。②分选系数(S D )是用来表征碎屑沉积物颗粒均匀性的参数。根据特拉斯克的主张,分选系数是累积曲线上与累积含量百分数为25%、75%相对应粒径的比值,即S D =D 25/D 75(D 为粒径,mm )。分选性一般分为3个等级:1≤S D ≤215,分选性好;215≤S D ≤415,分选性中等;S D >415,分选性差。 精密复合滤砂管防砂精度的计算如下:①如果1≤S D ≤215,则防砂精度为80%M d ;②如果215≤S D ≤415,则防砂精度为70%M d ;③如果S D >415,则防砂精度为60%M d 。 (2)规格 ①滤砂粒度≥0107mm 地层砂粒;②耐温480℃;③耐酸碱pH =3~13;④管柱内外 — 06— 石 油 机 械 CH I N A PETROLEUM MACH I N ERY 2008年 第36卷 第6期

国内外防砂技术现状与发展趋势

本科生毕业设计(论文) 论文题目:油井防砂工艺技术研究 学生姓名:××× 学号: 系别:石油工程系 专业年级: 指导教师:

目录 第一章绪论 .................... 错误!未定义书签。 1. 研究的目的和意义....................................................................................... 错误!未定义书签。 2. 国内外研究现状........................................................................................... 错误!未定义书签。 3. 研究的目标、技术路线及所完成的工作................................................... 错误!未定义书签。 3.1 研究的目标......................................................................................... 错误!未定义书签。 3.2 技术路线............................................................................................. 错误!未定义书签。 3.3 本文所完成的工作............................................................................. 错误!未定义书签。第二章出砂原因和出砂机理 ...... 错误!未定义书签。 1. 出砂因素....................................................................................................... 错误!未定义书签。 1.1 地质因素............................................................................................. 错误!未定义书签。 1.2 开采因素............................................................................................. 错误!未定义书签。 1.3 完井因素............................................................................................. 错误!未定义书签。 2. 油层出砂机理............................................................................................... 错误!未定义书签。 2.1 剪切破坏机理..................................................................................... 错误!未定义书签。 2.2 拉伸破坏机理..................................................................................... 错误!未定义书签。 2.3 微粒运移............................................................................................. 错误!未定义书签。第三章稠油井防砂及配套工艺技术研究错误!未定义书 签。 1. 孤岛油田稠油热采区块开发概况............................................................... 错误!未定义书签。 2. 稠油热采一次防砂工艺的研究................................................................... 错误!未定义书签。 2.1 稠油热采一次防砂工艺防砂机理..................................................... 错误!未定义书签。 2.2 割缝管防砂工艺的研究..................................................................... 错误!未定义书签。 3. 配套工艺技术研究....................................................................................... 错误!未定义书签。 3.1 高温防砂剂强度及耐温性能的研究................................................. 错误!未定义书签。 3.2 射孔工艺............................................................................................. 错误!未定义书签。 3.3 深部处理油层技术............................................................................. 错误!未定义书签。 4. 现场应用效果分析....................................................................................... 错误!未定义书签。 5. 小结............................................................................................................... 错误!未定义书签。第四章结论及建议 .............. 错误!未定义书签。 1. 结论............................................................................................................... 错误!未定义书签。 2. 建议............................................................................................................... 错误!未定义书签。致谢 ............................ 错误!未定义书签。 参考文献 ........................ 错误!未定义书签。

完井与防砂

完井作业是钻采工程中一项十分重要的工序,也是最后一道工序,是采油工程的开始。近年来人们逐渐认识到完井在油气田开发中的重要作用,国内外开始普遍重视完井技术。而完井工程当中完井方法的优选尤为重要,完井方式的选择是否合理,直接关系到探井能否反映井下情况、油井能否长期稳定生产,并直接关系到油田田开发方案的正确执行和油田或油井的最终经济效益。如果方法选择不对,会伤害地层导致不出油、气,或产能大幅降低,探井不能发现油气,从而引起油、气勘探、开发中的重大损失。对疏松砂岩油藏水平井来说,在石油开采过程中,由于地层各种因素以及生产因素引起的疏松砂岩储层出砂是导致储层损害,附加表皮增大和产能降低的主要原因,严重时导致地层亏空、坍塌,甚至引起套管破裂油井报废。不同完井方式防砂的效果不一样,造成的地层伤害也不一样,进而引起油井的产能也必然不同,最终引起油井的经济效益也不同从这一点上讲,非常有必要进行疏松砂岩水平井完井方式优选的研究,了解各种水平井完井方法的特点、产能预测以及经济评价的方法,为选择合理的完井方式提供依据。 其次,从疏松砂岩的分布和水平井的应用来看,世界上油气资源的分布在疏松砂岩地层中,疏松砂岩油藏的广泛分布决定了其对石油工业的发展起着巨大的作用。疏松砂岩油藏出砂的可能性很大,选择合适的防砂完井方式,不仅关系着疏松砂岩油藏开采的最终经济效益,更关系着我国乃至世界石油工业的发展。水平井完井作为油气藏

的一个重要的完井技术,对具有较好垂直渗透率的薄油层或是厚油层来说已经被证明是比较好的开采方式。与垂直井比较,水平井的优点有增加产能,改善驱替效率,降低水锥或气锥效应,增大泄油面积。自从水平井广泛应用于油气田开发以来,油气产量获得了前所未有的突破,单井产量比以往增加了,整体采收率也提高了。于是,国内外也不断加大水平井的研究开发力度,水平井钻完井、开发技术不断进步。本文正是在这样的趋势下展开对疏松砂岩水平井完井方式优选的研究。 防砂技术发展现状 防砂对于出砂油藏有着重要意义,防砂的成功与否直接关系到油气藏是否能够正常开发。随着新科技和新材料的不断发展和完善,防砂技术也获得了日新月异的进展。我国防砂技术的研究和应用始于20世纪60年代,经过40年的发展形成了机械、化学和复合三大防砂工艺体系。特别是20世纪90年代以来在旧的防砂工艺不断完善的基础上,积极研究开发防砂新工艺、新方法,特别是在机械防砂方面,取得了飞速的发展,各种新的防砂技术在油田现场应用均取得了良好的效果。 目前防砂技术主要以机械防砂为主。国外机械防砂工艺技术研究起步较早,1932年就开始采用砾石充填法防砂,此法目前在国内外防砂方面仍占主要地位,约占防砂作业的90%以上。其中绕丝筛管砾石充填法经过完善和发展,已经成为一项较成熟的技术。如常规砾石

砾石充填防砂井砾石尺寸设计实例

1 砾石充填防砂井砾石尺寸设计实例 砾石充填类防砂是目前主流的防砂工艺,砾石尺寸设计是砾石充填类防砂设计的关键步骤之一,砾石尺寸的大小会影响防砂效果和油气井生产动态。较大的砾石尺寸有利于获得较高的产能,但会导致地层砂侵入砾石层;相反,较小的砾石尺寸挡砂效果好,但对油井产能的影响较大。油气井防砂领域使用的标准砾石尺寸如表1所示。 目前国内外的主要砾石尺寸设计方法为三类: (1) 第一类:设计依据简单,仅依据地层砂某一特征尺寸的设计方法,包括Karpoff、Smith、Tausch&Corley、Saucier等四种设计模型; (2) 第二类:信息依据丰富,基于地层砂筛析曲线的设计方法,主要包括DePriester和Schwartz两种设计模型; (3) 第三类:基于砾石层孔喉结构模拟的砾石尺寸设计方法。 上述砾石尺寸设计方法均已在中国石油大学(华东)研制开发的Sand control Office软件中实现。 我国西部某出砂气田S-14井地层砂为粉细砂,图3中的曲线D为其筛析曲线,经粒度分析,d10= 0.151 mm,d40= 0.082mm,d50=0.065mm,d70=0.032 mm,d90=0.008mm,分选系数2.043,均匀系数10.036,标准偏差系数0.231。 表1 油气井防砂领域使用的标准砾石尺寸 第一类设计方法的设计结果如表2所示。 使用DePriester方法进行砾石尺寸设计结果如图2所示。设计中的取值为:A=5.5,Cmin=1.5,Cmax=3.0,计算得到系数B的取值范围为[25.4,35.9]。图中曲线A、B分别为B取最小值和最大值时的砾石尺寸分布曲线;曲线C为B取平均值时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.227~0.560mm,匹配的砾石标准为0.25~0.42mm。 使用Schwartz方法设计该井的砾石尺寸,设计中的取值为:Cmin=1.2,Cmax=1.5;选择设计点为d70,设计结果如图3所示。曲线A、B分别为Cg= Cmin和为Cg= Cmin和时得到砾石尺寸分布曲线;曲线C为Cg取平均值1.35时得到砾石尺寸范围曲线,对应的设计结果为砾石尺寸范围0.160~0.300mm,匹配表1中的标准砾石尺寸为0.21~0.25mm。

油井防砂工艺

龙源期刊网 https://www.360docs.net/doc/ba2748297.html, 油井防砂工艺 作者:崔浩 来源:《环球市场信息导报》2013年第02期 疏松砂岩油藏分布范围广、储量大,这类油藏开采中的主要矛盾之一是油井出砂。因此,油井防砂工艺技术的研究和发展对疏松砂岩油藏的顺利开发至关重要。国内防砂工艺技术的发展已有数十年的历史,辽河油田在油气井防砂方面也作了大量的工作,丰富和提高了国内防砂工艺技术水平。目前已形成机械防砂工艺、化学防砂工艺和复合防砂工艺三大体系的油气水井防砂工艺技术。 各种防砂方法应用概况。辽河油田疏松砂岩油藏储量大、类型多、分布广、防砂工作量大,防砂井次呈上升趋势。随着含水的上升和采液强度的提高,出砂井数越来越多,如何应用更先进的防砂工艺技术,提高防砂效果显得尤为重要。 各种防砂方法的比较。从统计结果分析,目前,在应用规模上,高压挤压砾石充填防砂工艺是2828井次,其次是复合防砂698井次和管内循环充填防砂687井次;对防砂效果来说,由于范围大,井数多,工作量大,大部分采油厂都未做这项工作,许多资料都是临时收集,其准确性及可信度较难把握,很难统计出准确的结果。 通过调研发现,辽河油田防砂工艺技术已实现了由单一的生产维护措施到防砂增产措施的转变;由单项工艺技术到配套集成技术系列的转变;工艺向油藏深入,不断提高工艺与油藏适应性的转变。通过数据统计分析及调研走访,发现了防砂工艺技术在应用实施、质量管理、监督监控、人员素质等方面存在着各种各样的问题。为了进一步提高辽河油田防砂工艺水平,最大程度提高中高渗透疏松砂岩油藏的采出程度,提高该类油藏油井的防砂免修期,降低油田的防砂作业成本,需建立完善的防砂市场监督管理体系,制定科学的技术规范,为辽河油田剩余油开发,挖潜上产,油气当量重上三千万提供有效的保障措施。 高含水油井。主要特点是油井采油强度高、生产压差增大,出砂加剧;注水开发使地层胶结物不断溶失,导致地层骨架破坏,出砂加剧,含水上升,影响油井生产;套变套损井逐年增多,据不完全统计,每年套损套变井按照正常生产井的20%速度递增。 海上油田。海上油田同时射开层数多、井段长、层间物性差异大,多年的高速强采使层间矛盾更加突出,单一的滤砂管防砂工艺和笼统的高压充填已不能满足海上提速提液的开发需求。 难动用区块稠油粉细砂岩油藏防砂难度大。稠油疏松砂岩区块,携砂力强,防砂注汽后,一方面放喷速度过快,易冲蚀挡砂屏障。另一方面粉细砂运移,导致油井产能迅速降低。

防砂处理

一、防砂工艺 1. 出砂的原因 1.1 出砂的地质条件(内因) a. 地层地质年代新(第三系、第四系); b. 埋藏浅(一般小于1500m),压实作用差; c. 地层胶结强度低(可由室内岩芯实验确定); d. 机杂及胶结物含量低; e. 以泥质胶结为主的敏感性(水敏和速敏)储层,遇水后易发生膨胀和运移; f. 高孔(25.0%~30.0%)和高渗(数百到数千 md); g. 往往是稠油油藏,流动阻力大; h. 断块油藏——断层发育,构造应力大; 1.2 出砂的开发因素(外因) a. 地层压力降低,出砂; b. 完井方式与参数; c. 生产压差:避免压力激动和过大压差; d. 油井含水:含水上升,出砂加剧; e. 地层损害:渗透率降低,出砂; f. 钻井/作业:液体漏失、地层损害。

2. Palogue油田的出砂预测 2.1 组合模量法 储层岩石强度是决定油气井是否出砂的主要因素,它与其弹性参数如剪切模量、体积模量有良好的相关性。美国莫尔比石油公司提出的组合模量法能很好的预测油藏是否出砂。组合模量法在墨西哥湾和北海已广泛应用,当Ec大于3×106psi时油气井不出砂。 E c =(9.94×108ρ r )/△t2 c 式中: E c ----岩石组合模量(岩石密度、声波时差函数),×1.4503×106psi ρ r ----岩石密度,g/cm3 t----岩石纵波时差,μs/m 胜利油田通过现场应用,最终得到出砂界限值: E c >3×106psi,在正常生产中油气井不出砂; 2.03×106psi

压裂防砂工艺参数优化及应用

压裂防砂工艺参数优化及应用 发表时间:2014-09-03T16:05:40.030Z 来源:《科学与技术》2014年第6期下供稿作者:武梅英 [导读] 通过多方面探究与应用,形成了自己特有的压裂防砂参数优化理论和优化模板,为压裂防砂设计提供了理论指导。 中石化胜利油田纯梁采油厂工艺所武梅英 随着我厂稠油开发的不断深入,油井出砂日益严重;目前的稠油井层薄、夹层多,储层非均质性强,渗透率低,注汽压力高,敏感性强,粘土含量高;众多的开发难点使得储层的动用程度难以达到理想的要求。但是随着压裂防砂工艺的不断发展,压裂防砂可以产生高导流能力的裂缝、突破地层伤害带、缓解岩石骨架的破坏、减轻冲刷和携带能力、对地层砂产生桥堵等作用,这可以从根本上解决上述稠油井中存在的开发问题,起到增产和防砂的双重目的。从2011 年开始引进实施压裂防砂以来,压裂防砂井数直线增加,2013 年压裂防砂井突破47 口井。虽然我厂在压裂防砂技术方面取得显著成绩,创立了“两少、两大、一高、三优”的防砂模式——即前置少、交联少,加砂量大、排量大,砂比高,优化携砂液、优化裂缝形态、优化施工模式。但是在压裂防砂的设计优化、模拟方面一直没有得到突破,设计施工所采用的参数理论大多依靠现场施工经验总结,没有严格的理论基础,压裂防砂裂缝预测困难,施工参数无法优化,新区块新井压裂防砂优化设计依靠外单位,这都严重限制了我厂在压裂防砂技术方向的深入发展。2013 年下半年,引入“meyer 压裂防砂软件”进行攻关研究,突破压裂防砂软件优化模拟的技术瓶颈,冲出相关科研单位对压裂防砂优化模拟技术的封锁。研究初始,为对摩阻、渗流等基本参数进行设定,我们首选了T38-201 井进行了模拟分析,因为该井有完整的测井数据、压裂防砂采用示踪陶粒、施工过程采用裂缝检测技术,各种数据完善齐全,能对裂缝的模拟起到校正和比对的作用;因此我们首先从测井数据下手,通过地应力计算软件对储层的地应力、泊松比、断裂韧性等参数进行计算分析,建立储层地应力模型之后,将压裂防砂的实际泵注程序导入到软件中进行模拟计算分析,得出模拟裂缝数 据(如图:) 之后将得到的数据跟实际数据进行比对分析:通过多次设定参数进行比对分析,终于在该区块设定合适渗流、摩阻等参数,在该系列参数下,产量的模拟裂缝半缝长126.01m,缝高24.64m,实际裂缝左边134.5m,右边129.8m,缝高26m,模拟数据跟实际数据基本吻合,为下步在T38-10 块的压裂防砂设计施工中打下坚定的基础。为使在下步施工过程中对参数的优化能更直接方便,我们以T38-201 模型为基础进行了深入的分析研究,成功创立了压裂防砂参数优化理论体系,其中主要包括:(1)优化前置控缝长技术;(2)合理排量控缝高技术;(3)变排量施工提缝宽技术;(4)快提排量增缝高,缓提排量延缝长技术等一系列理论基础,成功的指导了压裂防砂施工中参数的合理调整。即压裂防砂工艺参数优化主要是从缝长、缝高、缝宽三方面入手,其中缝长主要与前置液用量、提排量的速度有直接关系,缝宽主要与施工排量、提排量的速度有相关关系,缝宽主要与加砂量、变排量施工参数有相关关系。根据优化理论及现场施工的统计分析,目前压裂防砂工艺的模拟优化主要用在以下几个方面:(1)优化前置液用量(2)预防水窜(3)压开薄互层(4)确定是否采用分层压裂防砂。(1)优化前置液用量…2013 年下半年T38-10 块产能建设的井全部采用“meyer压裂防砂优化模拟软件”进行优化设计施工。其中:前置液用量从上半年23.9 方降低到19.5 方,平均单井前置液降低4.4 方;加砂量从24.5 方增加到37.6 方,平均单井增加13.1 方;最高砂比从81.4%增加到86.2%,施工的合理性与成功率明显增加.(2)预防水窜。通过对储层改造进行模拟预测,及时调整施工参数,避免了窜通水层;如:J29-1 井等上下存在水层的井,采用限排量压裂控缝高技术及变排量提缝宽技术,避免了压窜水层。(3)压开薄互层。T38X429 井,上部存在一较大厚度油层,施工过程中为尽可能多的沟通油层,首先通过模拟施工排量压裂模拟,发现在排量2 方/min 的时候,并不能成功沟通上部油层,在排量2.6 方/min 的时候,可以正好连通道上部油层的顶部,因此施工过程中采用了大排量2.6 方/min 的压裂防砂施工,最终根据裂缝检测数据发现,成功沟通上部油层,在保证施工安全的前提下,合理优化调整施工参数,使得压裂防砂的质量得以大幅度提升。(4)确定是否采用分层压裂防砂。(图2) T38X421 井上下储层物性差距较大,通过模拟优化发现,上下储层同时改造难度较大,如果采用笼统压裂防砂的方式,上层的半缝长在达到65.23m 的时候,下层只有30.54m,下层达不到充分改造的目的,因此准备在该层采用分层压裂防砂设计施工改造储层。经过这一年努力,我厂全年完成压裂防砂47 口井,模拟设计优化20 口井,避免压窜水层4 口井,设计与实际情况符合率达到92.3%,压裂防砂工艺稳居先进水平。 通过多方面探究与应用,形成了自己特有的压裂防砂参数优化理论和优化模板,为压裂防砂设计提供了理论指导。下步将以T38-10 块二砂组生物灰岩油藏为基础,进行裂缝模型改造,建立“酸化+压裂防砂”双重改造裂缝模型;运用“meyer 压裂防砂软件”进行了储层酸化压

新型抽砂防砂工艺技术研究与应用_范玉斌

收稿日期:2007 01 20 专利项目:本装置已获国家实用新型专利(ZL 200420040117.4) 作者简介:范玉斌(1970 ),男,山东高唐人,技师,2006年毕业于中国石油大学石油工程专业,主要从事海洋石油工程技 术及管理工作。 文章编号:1001 3482(2008)09 0091 04 新型抽砂防砂工艺技术研究与应用 范玉斌,安茂吉,王 涛,张 乐,吴志民,李新晓,韩宗峰 (胜利石油管理局井下作业公司,山东东营257077) 摘要:从抽砂、防砂的理论研究出发,利用研制的专利产品 冲砂转换装置,初步探索出了抽砂、防砂工艺技术。在冲砂后起钻时依靠单向皮碗的抽汲作用,将聚集在近井地带的地层砂抽出,改善 地层砂砾运移造成的地层堵塞,使井筒附近流体渗流通道增大,起到一定的防砂作用,为后续的防砂提供了良好的防砂环境,使防砂一次成功率和施工进度大大提高。关键词:抽砂防砂;渗流通道;防砂环境;后续防砂中图分类号:T E358.1 文献标识码:B Study of New Sand Washing and Sand Prevention Technology and Its Application FAN Yu bin,AN M ao ji,WANG Tao,ZH ANG Le,WU Zhi min, LI Xin xiao,H AN Zong feng (Sheng li Oilf ield D ow nhole Op er ation Co.,D ongy ing 257077,China) Abstract:T his paper intro duces a new technolog y o f sand w ashing and sand prevention using pa tented sand w ashing cro ssover assembly w hich is based on conventional method.T he sand w hich is accumulated in the near w ellbore area w ill be mo ved by using sw abbing action of the unidir ec tional leather cup.T his action can improve the flow matr ix o f the near w ellbo re ar ea and enhance the sand prev ention effect. Key words:sand w ashing and sand preventio n;flow m atrix ;conditio n o f sand prevention;succee ding sand prevention 油、气井防砂方法很多,但都是在油井出砂后,或者根据区块特性、油井的声波时差等资料来分析判断该油井出砂情况,会出现防砂效果不理想的情况,防砂一次成功率低、有效期短。探索抽砂、防砂工艺的最初目的并不是为了油井防砂,而是为了抽出井筒及近井地带聚集的地层砂,减小地层堵塞,为地层流体更好流入井筒提供新的通道。因此,抽砂防砂工艺不单独作为油井防砂的一种方法,只是作为一种其他防砂方法的前期清理油层通道的方法,但也起到防砂的作用,能延长油井的生产周期,故称 为抽砂防砂。 1 防砂现状及特点 目前,防砂方法可分为砂拱防砂、机械防砂[1] 、化学防砂、热力焦化防砂、复合防砂5大类。其共同特点是防砂都经过2道工序:一是把井筒内的砂子冲出;二是再用各种方法把井筒外的油层重新打开,开辟新的油路通道[2]。没有一种方法是把近井地带聚集砂抽出一部分,以减少油流通道障碍,达到延长油井生产周期的目的。 2008年第37卷 石油矿场机械 第9期第91页 OIL FIELD EQUIPMENT 2008,37(9):91~94

油水井防砂工艺

油水井防砂工艺 一、油水井出砂原因 油水井出砂是由近井地带岩层结构破坏引起的,与地层应力和地层强度有关。地层应力包括地层结构应力(如弹性、塑性应力)、地层孔隙压力、上覆岩层压力流体流动时拖拽力和生产压差。地层被钻穿后,井壁岩石的原始应力平衡状态被破坏,并且在整个采油过程中保持最大应力。因此在一定的外部条件下井壁的岩石首先发生变形和破坏。根据出砂内外因素分为地质因素和开发因素: 地质因素 (一)地层胶结疏松 地层流体在生产压差条件下向井眼方向发生渗流,致使岩石颗粒之间的胶结物发生运移,地层结构破坏,引起地层出砂,当其它条件相同,地层渗透率越高,岩石强度越低,地层越容易出砂。 (二)地层构造变化 地层在构造上发生急剧变化的区域,例如在断层多、裂缝发育、地层倾角大及边水活跃的地区,由于地层岩石原始应力状态被复杂化,容易引起地层出砂。 开发因素 (一)在地层流体渗流过程中,大部分有效压头消耗在井壁附近,因此,井壁岩石渗流冲刷作用最大,也容易变形和破坏。 (二)不恰当的开发速度及采油速度的突然变化、注水井急剧放压等原因造成地层压力梯度发生急剧变化,致使岩层结构破坏引起出砂。 (三)频繁的增产措施会破坏地层岩石的结构,引起地层出砂。 (四)油井出水时,泥质胶结物水化膨胀并分散成细小颗粒,在地层压差作用下随着油水流线向井眼方向运移,造成油水井出砂、出泥。 (五)在油水井生产过程中,油气层孔隙压力总体上是不断下降的,而上覆岩层对地层颗粒即其胶结物的有效应力则是不断增加的,致使颗粒之间的应力平衡被破坏,胶结力下降引起地层出砂。 (六)在注水开发油田时,当油田含水量上升,为维持原油产量必须提高采液速度,加大地层流体对岩石颗粒的拖拽力。引起油层出砂。 (七)当井壁附近的岩石结构破坏到一定程度,就会出现流砂现象,这时即使压差很小,大批沙子也会无控制流出。

国内外防砂技术

国内外防砂技术现状与发展趋势 概述 疏松砂岩油藏分布范围广、储量大,这类油藏开采中的主要矛盾之一是油井出砂。因此,油井防砂工艺技术的研究和发展对疏松砂岩油藏的顺利开发至关重要。目前国外在油气井防砂方面主要以机械防砂为主,约占防砂作业的90%,随着油田的进一步开发,现在又相继研究开发各类型的滤砂管、可膨胀性割缝筛管和压裂防砂、过油管防砂等防砂工艺技术。化学防砂六十年代在美国墨西哥湾地区曾占据防砂作业的主导地位,但由于机械防砂的完善和发展,其主导地位逐渐被取代。进入九十年代后,性能较好的固砂剂不断出现,化学防砂的前景又趋看好。 国内防砂工艺技术的发展已有数十年的历史,辽河油田、胜利油田、大港油田在油气井防砂方面也作了大量的工作,丰富和提高了国内防砂工艺技术水平。目前已形成机械防砂工艺、化学防砂工艺和复合防砂工艺三大体系的油气水井防砂工艺技术。其中辽河油田防砂中心,研制开发了复合射孔防砂技术,为国际领先水平。随着辽河油田稠油开发比重的增加,辽河油田的出砂情况变得越来越复杂,防砂治理工作难度也越来越大,辽河油田结合油井出砂特点,开展了防砂基础理论及试验研究,主要包括:出砂机理分析、防砂数据库和出砂预测软件的建立、防砂机具性能评价研究。先后研制开发了机械、化学、复合型防砂工艺技术近20项,主要有TBS筛管防砂技术、MC-Ⅰ组合式筛管防砂技术、塑料筛管防砂技术、激光割缝筛管高压砾石充填深部防砂技术、压裂防砂技术、复合射孔防砂技术、焦碳人工井壁防砂技术、泡沫树脂液防砂技术、乳液树脂固砂技术、桃壳人工井壁防砂技术、高温固砂技术、携砂采液技术、低压井冲砂技术。 一、机械防砂 目前机械防砂主要化分两类:一类是下入防砂管柱挡砂,如割缝衬管、绕丝筛管、胶结成型的滤砂管、双层或多层筛管等。这类防砂方法简单易行,但效果差,寿命短。原因是防砂管柱的缝隙或孔隙易被进入井筒的细地层砂所堵塞。另一类是下入防砂管柱后再进行充填,充填材料多种多样。最常用的是砾石,还可用果壳、果核、塑料颗粒、玻璃球或陶粒等。这种防砂方法能有效地把地层砂限制在地层内,并能使地层保持稳定的力学结构,防砂效果好,寿命长。 相对来说,机械防砂对地层的适应能力强,无论产层厚薄、渗透率高低,夹层多少都能有效的实施;在老油井作业中,还可起到恢复地层应力的作用,从而延长生产周期,使出砂井能得到充分的利用。加上机械防砂成功率高,相对成本较低等优点,目前应用十分广泛。 1国外机械防砂技术 国外油气井防砂工艺技术研究起步较早,最初采用限产的方法来控制油气井出砂,1932年开始采用砾石充填方法。目前国外在油气井防砂方面主要以机械防砂为主,其中绕丝筛管砾石充填经过不断的完善和发展,到八十年代已发展成为一项较成熟的技术。如美国的贝克—休斯公司、道威尔—斯伦贝谢公司、哈里巴顿公司、沙龙公司、雪弗龙公司等都拥有自己专门的防砂器材、施工设备和施工工艺,从砾石充填工具、封隔器、滤砂管、泵送设备到施工液体、化学药剂、技术咨询、现场服务等形式一条龙服务。随着油田的进一步开发,为满足各种类型的油气井防砂需求,现在国外又相继研究开发出各种类型的滤砂管和多种防砂工艺技术。

防砂新工艺的研究及效果讲解

防砂新工艺的研究及效果 目录 第1章前言 (1) 第2章防砂新工艺的探索 (2) 2.1 疏松砂岩油藏出砂机理探讨 (2) 2.1.1 胶结强度的影响 (2) 2.1.2 地应力的影响 (2) 2.1.3 开采条件 (3) 2.2 目前防砂工艺原理及问题 (4) 2.2.1 防砂影响因素 (4) 2.2.2 防砂失败影响因素 (4) 第3章新工艺防砂机理 (6) 3.1 高压预充填 (6) 3.2 涂料砂人工井壁防砂 (6) 3.3 金属绕丝筛管复合防砂 (6) 3.4 射流泵排砂工艺 (6) 第4章防砂新工艺的现场试验及效果 (8) 4.1 选井 (8) 4.2 现场试验情况及效果评价 (8) 第5章排砂采油井的管理应注意的事项 (14) 第6章结论 (15) 致谢 (16)

第一章前言 滨南油区部分油藏胶结疏松,容易出砂。目前的绕丝管内砾石充填防砂投产取得了较好的效果,但是还存在粉细砂防不住、筛管损坏防沙失效和不能进行分层注水、分层测试及分层改造等问题。本课题主要对疏松砂岩油藏的出砂机理和目前的防砂工艺进行研究,探索高压预填砂、涂料防砂、人工井壁防砂、金属绕丝管复合防砂和射流泵排砂等新的防砂工艺机理,优选油井进行了防砂新工艺的现场实验,以注水开发的常规井和注蒸汽吞吐的稠油热采井为导向,在尚林地区和单家寺油田展开实验,取得了较好的效果。

第二章防砂新工艺的探索 2.1 疏松砂岩油藏出砂机理探讨 滨南油区的各个油藏虽然差异很大,但出砂的原因基本类似。油层出砂是由于井底近井地带的岩层结构遭到破坏所引起的,即剪切破坏和拉伸破坏。它与岩石的胶结强度、应力状态和开采条件有关。 2.1.1 胶结强度的影响 岩石的胶结强度取决于胶结物的种类、数量和胶结方式。通常砂岩的胶结物主要为粘土、碳酸盐和硅质三种。其中以硅质胶结物的强度为最大,粘土胶结最差。对于同一类型的胶结物,其数量越多,则胶结强度越大,反之越小。胶结方式不同,岩石的胶结强度也不同,岩石的胶结方式可分为: (1)基底胶结:当胶结物的数量大于岩石颗粒数量时,颗粒完全浸没在胶结物中,彼此互不接触或接触很少。这种砂岩的胶结强度最大,但由于孔隙度、渗透率均很低,所以很难成为好的储油层。 (2)接触胶结:胶结物数量不多,仅存在于颗粒接触的地方。这种砂岩胶结强度最低。 (3)孔隙胶结:胶结物数量介于上述两种胶结类型中间。胶结物不仅在颗粒接触处,还充填于部分孔隙中。胶结强度也处于上述两种方式的强度之间。 滨南易出砂的油层主要以接触胶结方式为主,其胶结物数量少,而且胶结物中粘土含量较高。但这种储油层孔隙大、渗透性好。如单二块油层是以稠油为胶结物,所以油层严重出砂。 2.1.2 地应力的影响 地应力是决定岩石原始应力状态及其变形破坏的主要因素。钻开岩层前,岩石在垂向和侧向地应力作用下处于平衡状态。垂向地应力大小取决于油层深度和岩石比重,侧向地应力除与地层深度有关外,还与岩石的力学性质及岩石中的流体压力有关。钻井后近井地带的应力平衡遭到破坏,射孔使井筒周围岩石产生不同程度的损坏,水泥环松动、炮眼周围地应力作用使岩石剪切破坏,颗粒压碎造成出砂,这与过低的井底压力或过大的生产压差有关在生产过程中,井壁岩石都将保持最大的应力值。以上是影响油层出砂的内在因素。

相关文档
最新文档