高速铁路接触网悬挂形式及其主要技术参数(详细)
接触网课程设计 高速电气化铁路接触网悬挂模式设计

接触网工程课程设计专 业: 电气工程及其自动化 班 级: 电气09 姓 名: 学 号: 200909 指导教师:兰州交通大学自动化与电气工程学院2012 年 7月 13日指导教师评语平时(30)报告(30)修改(40)总成绩1基本题目1.1题目高速电气化铁路接触网悬挂模式设计。
1.2题目分析现代高速铁路绝大多数都采用电力牵引方式,作为牵引供电系统的主体——接触网,其性能的优劣直接决定着电力机车受电弓的受流质量,最终影响列车的运行速度与安全。
目前,世界各国为满足高速受流的要求,都根据自己国家高速铁路规划的动力装置和受电弓的结构及性能的不同,而采用了不同的悬挂类型。
悬挂类型是高速铁路接触网设计和施工的最基本参数。
高速铁路接触网对悬挂类型的要求,是能够提供良好的受流质量、寿命长、少维修、故障率低,同时应该有较高的性能价格比。
目前国外高速铁路接触网大体有三种悬挂类型:以日本为代表的复链型悬挂、以德国为代表的弹性链型悬挂和以法国为代表的简单链型悬挂。
本报告结合所学高速电气化铁路接触网课程参考国外高速接触网的发展状况,运营经验以及不同国家的弓网受流质量评价标准,对上述三种链型悬挂类型进行了较为全面的技术经济比较,并简单分析了我国高速(以京沪高铁为例)宜采用简单链型悬挂方式的原因。
另外,对张力补偿装置的选择也略作阐述。
2 高速电气化铁路悬挂类型设计2.1不同类型接触网悬挂的分析比较日本于1964年开通的世界上第一条高速铁路—东京至新大阪的东海道新干线,采用的是复链型悬挂,复链型悬挂图如图1所示。
九十年代以前,日本的高速铁路接触网都采用复链型悬挂。
但是这种悬挂类型一次性投资太大,而且因为结构复杂、组成零部件太多,导致接触网运营的维修费用高昂,发生事故时抢修难度大、运输中断时间长。
承力索吊悬接触线图1复链型悬挂图德国高速铁路接触网一直采用弹性链型悬挂,如图2所示。
在总结Re75,Re100,Re160三种标准的基础上,形成了Re200,Re250和Re330标准系列。
高速铁路接触悬挂

高速铁路接触悬挂接触悬挂包括接触线、吊弦、承力索及连接零件和绝缘子。
接触悬挂通过支持装置架设在支柱上,其功用是将从牵引变电所获得的电能输送给动车组列车。
接触悬挂的种类较多,一般根据其结构的不同分成简单接触悬挂、弹性接触悬挂和链型接触悬挂。
简单接触悬挂是指无连续承力索、结构非常简单的系统。
与链型接触悬挂相比,简单接触悬挂的接触线弛度较大,支柱间距离较小以使接触高度尽可能接近一致。
弹性接触悬挂是将接触线通过呈三角形状的吊索(跨接线)与支持装置相连接的接触悬挂设计。
链型接触悬挂的特点是在接触线上方悬挂一根或两根承力索,承力索通过吊弦悬挂接触线。
由于其相对简单的设计和良好的运行特性,带承力索的架空接触网已在世界范围内广泛使用。
链型接触悬挂的支持装置距离比简单接触悬挂大,并减少了接触部件的磨损,因此在城市公共交通运输系统中得到普遍使用。
1.接触线接触线是接触网中重要的组成部分之一。
电力机车运行时,受电弓滑板直接与接触线摩擦,并从接触线上获得电能,接触线截面积的选择应满足牵引供电运行的要求。
接触线一般制成两侧带沟槽的圆柱状,沟槽的设置是为了便于安装线夹并按技术要求悬吊固定接触线而又不影响受电弓滑板的滑行取流。
接触线下面与受电弓滑板接触的部分呈圆弧状,称为接触线的工作面。
我国采用的铜接触线多为TCG110和TCG85两种型号,其字母T表示铜材,C表示电车线,G 表示带沟槽形式,后面的数字表示该型铜接触线的截面积。
近年来,我国也研制和使用了钢铝接触线。
钢铝接触线以铝和钢两种金属压接制成,以铝面作为导电部分,与受电弓滑板接触摩擦的面是钢面,既保证了导电性能又提高了工作面的耐磨性。
我国采用的钢铝接触线有GLCA100/215和GLCB80/173两种型号。
字母GLC表示钢铝电车线,A、B表示线型。
2.吊弦在链型接触悬挂中,接触线通过吊弦悬挂在承力索上。
吊弦按使用位置的不同(在跨距中、软横跨上或隧道内)有不同的类型。
高速铁路接触网参数

全补偿简单链形悬挂
6450
CTAH-120/15KN
JTMH95/15KN
合宁客专
弹性链形悬挂
6450
CTSH120/25KN
JTMH120/15KN
甬台温客专
全补偿简单直链形悬挂
6450
CTS 120/20KN
JTMH120/15KN
时速300公里
京沪高铁
弹性链形悬挂
5300
CTMH150/31.5KN
JTMH120/15KN
甬台温客专
全补偿简单直链形悬挂
6450
1600
CTS 120/20KN
JTMH120/15KN
时速300公里
京沪高铁
弹性链形悬挂
5300
1600
CTMH150/31.5KN
JTMH120/21KN
哈大客专
弹性链形悬挂
5300
1600
CTMH150/30KN
JTMH120/21KN
速度等级
线路名称
接触网主要参数
接触网悬挂方式
接触线悬挂点高度(mm)
接触网结构高度(mm)
正线接触线线材及额定工作张力
正线承力索线材及额定工作张力
时速200公里
胶济客专
全补偿简N
JTMH95/15KN
合宁客专
弹性链形悬挂
6450
1600
CTSH120/25KN
武广客专
弹性链形悬挂
5300
1600
CTMH150/30KN
Bz120/21KN
郑西客专
弹性链形悬挂
5300
1600
CTMH150/28.5KN
JTMH120/23KN
电气化铁路高速接触悬挂技术

三是轻型化,在充分考虑挠度的前提下,选
用铝合金。
五、京沪高速铁路研究推荐方案 3、腕臂结构
我国高速铁路的腕臂结构确定要满足的条件: 1)稳定的三角形结构; 2)避免套管连接形式,防止产生相对滑动;
3)承力索亦至于腕臂上方。
六、高速铁路电气化工程应综合考虑的问题 1、支柱侧面限界
支柱侧面限界的确定必须考虑轨道大型养 路机械作业的需要、贯通电链沟在路基上设置的 位置、信号轨旁设备的位置、电缆过轨形式,支
五、京沪高速铁路研究推荐方案
3、锚段关节及分相
研究的结果显示: 段过渡优于点过渡 段过渡并行段的长短对后跨影响小,对转 换跨的影响较大,
跨中点过渡实际情况是短的段过渡
五、京沪高速铁路研究推荐方案
3、腕臂结构
高速腕臂结构要具备的特点: 一是结构稳定性高,各连接点无相对滑动 二是具备良好的风稳定性和相对大的安全裕 度,
接触线张力有关, ß 与受电弓、接触网悬挂类型、 接触线张力有关。 单弓简单链形悬挂,ß 取0.5~0.8,接触线 张力越大,ß 值可以取得相应大。 在接触网确定后,ß 越小弓网关系越好,离 线越少,适应能力越强。
三、接触网悬挂评判标准
4、接触线寿命
影响导线寿命的有三大因素:
a、机械磨耗、
b、电磨耗、
三、接触网悬挂评判标准
6、动态接触压力Fj
Fj=F±3σF
F: 平均接触压力
σF: 标准偏差
接触线与受电弓之间失去接触或接触力不足, 就会产生电弧。 德国研究结论Fmin不应小于40N,日本建议在 10N以上。
三、接触网悬挂评判标准
7、接触线平均抬高量和定位点抬高量
平均抬高量越大,接触线越容易疲劳,而且 接触网稳定性越差。 定位点处允许抬高量与定位器型式有关。
《高速电气化铁路接触网技术》教学课件—高速接触网的结构特征

2.接触网的线索 (2)载流承力索 a.铜承力索 铜承力索导电性能好,可做牵引电流的通道并 与接触线并联供电,降低压损和能耗,且抗腐蚀 性能高。但铜承力索消耗铜多,造价高且机械强 度低,温度变化时弛度变化较大。
4锚段关节
三跨非绝缘锚段关节
ZF1 200 300
300
QF1 a-100 a a
受电弓中心
100
100
ZF2
承力索
300
200 300 接触线 受电弓中心
接触线
QF2 a a+100
承力索
a
承力索及接触线
4锚段关节
四跨绝缘锚段关节 ZJ1
800 300
300
QJ1
500
ZJ2
ZJ3
250
300
6线岔及其定位
6线岔及其定位
正线通过时
正线进入侧线时 当机车从正线进入侧线时,在线间距126~526mm之间为受电
弓与侧线接触线的始触区。 侧线进入正线时
当机车从侧线进入正线时,在线间距806~1 306 mm之间为 受电弓与正线接触线的始触区。
6线岔及其定位
6线岔及其定位
第三组辅助悬挂式线岔
1.接触线的主要技术要求 (1) 抗拉强度高 (2) 电阻系数低 (3) 耐热性能好 (4) 耐磨性能好 (5) 制造长度长
2.接触线材质性能的综合选型 (1) 增大接触线的张力 (2) 限制接触线横截面 (3) 提高接触线的导电率 (4) 增强耐磨牦性能 (5) 选择铜合金材质
高速铁路接触网施工技术(简版)

2、一次到位的接触悬挂施工技术
腕臂和定位器安装 腕臂安装采用四化一到位的施工方法。 接触网施工的基准点轨面标高、线路中心 线和超高是保证支柱装配质量的关键。 定位装置是弓网受流的关键部件,其安装 质量直接影响接触网的安全运行。其定位 支座的安装高度、拉出值、限位间隙和定 位器斜率或定位器允许抬升量是定位装置 施工安装关键的四要素。
线别 正 线 承力索 接触线 型 号 PH-150mm2 2000Kgf PH-Ag150mm2 GT-CS110mm2 2000Kgf 3300Kgf 3000Kgf 30 分 额定张力 超拉张力 超拉时间
3、接触网检测
德国和西班牙在接触网工程竣工后,先进行临时验 收。临时验收期间要用安装有静态检测设备的车辆 连续测量接触线的静态位置及静态抬升量。 临时验收后,接触网送电开通试运行,一般不超过3 个月。试运行期间,接触网检测车对接触网进行动 态特性检测。其参数主要含有接触线动态几何尺寸、 动态弓网接触压力等。 试运行结束后对接触网工程进行正式验收。
± 30 ± 30 1 .5 ± 50 <20 ±5 0~+100 0 ~ 0 .5 % H + 1 m /-2 m ± 60 无 ± 3º 0~50
0~+50
0 ~ 0 .5 % H + 1 m /-2 m 无 无 ± 3º 0~50
(2 )
0 .3 ° ± 500 ± 150 ± 100 ± 5º ± 50 ± 250
1
法国地中 海线
25kN
12km/h
1.0t
设计咨询
15 kN
10km/h
5~6kN
西门子公 司设计咨 询 BB 意大 利分公司 BB 马德 里分公司 日本建设 公团
高速铁路接触网简介

三、接触网悬挂方式的仿真模拟研究
➢ 模拟软件工具
CATMOS弓网模拟软件:能模拟简链和弹链,由德国 Balfour Beatty公司开发(前Adtranz公司)
架线道弓网模拟软件:能模拟简链和复链,由日本铁技 研开发
CPS弓网模拟软件:能模拟简链、弹链和复链,由我院 自己开发
三、接触网悬挂方式的仿真模拟研究
三、接触网悬挂方式的仿真模拟研究
仿真模拟界面
三、接触网悬挂方式的仿真模拟研究
仿真模拟软件
CATMOS软件 架线道软件 CPS软件
该软件已应用于我国电气化铁路的研究、设计、 试验预测及弓网受流评价等领域
三、接触网悬挂方式的仿真模拟研究
仿真模拟应用
广州至深圳200km/h接触网的研究、设计
现场录像资料(香港地铁机场线)
根据工程数据预测所要进行试验的结果及要注意的事项。 为设计方案的确定提供基础数据,并给予评价。 判断相同条件下不同弓网受流系统的优劣。 找出弓网关系恶化的边界条件,如共振速度、离线速度、接触线
应力、接触力标准偏差等。 选择与接触网相匹配的受电弓,根据特定的受电弓产品的数学模
型可评价其性能。 模拟软件已成为世界各个国家电气化铁路的决策工具。
联盟
➢ 接触网的静态弹性跨中≤0.36mm/N (Re330)
➢ 接触网静态弹性不均度≤8%(Re330) ➢ 最大接触力(N)≤ 250(Re330) ➢ 最小接触力(N)50(Re330) ➢ 接触力标准偏差与平均接触压力的比
值≤ 20% ➢ 离线率5%以下
二、关于弓网受流质量的评价标准
➢日本 ➢法国 ➢德国
200km/h<V 250km/h的运营里程(km) 466 0 577
高速单线铁路隧道的接触网悬挂方案设计

关键词 : 高速 ; 隧道 ; 悬挂 ; 触网 接
中图分类号 - 2 . U2 5 2 文献标识码 : B
引 言
随着我 国高速客运专线 的推广普及 , 高速列车
成 为我 国铁路 建设 发 展 的趋 势 和潮 流 , 随之 对 机 车
受流质量提出了更高的要求。接触网悬挂方式是影 响列车受流质量的重要方面 , 成为工程技术人员非
网受 流质量 的普 遍评 价标 准为 : () 1 离线 率 / z ( ) 小接 触压 力 F 2最 ( ) 大接 触压 力 F 3最 2 < 5% > 0N 4 < 0 20N
度 目标值要求达到 20 k / 0 m h甚 至更 高, 隧道 内接触 网悬挂 方 式成 为一个 亟待 解决 的问题。介绍 了单线 隧道 内接触 网
160 ) 110
标值 10k / 2 m h以下的普通线路 , 目前铁 路客 运专 线的速 而
建设发展的趋势和潮流。接触 网系统是牵引供 电系 统中主要的供电设备之一 , 它直接与机车相连 , 为机 车输送电力。当列车高速运行 时 , 接触导线与机车 受电弓之间是一种动态稳定的系统 , 受流质量既取 决于弓的参数 , 又取决 于网的参数 。只有两个参数 合理匹配 , 才能实现高质量的取流 , 才能确保列车的 安全运行。对接触 网悬挂 系统来讲 , 就是要在列车 高速行驶且车速变化 的恶劣条件下保证列车的正常 取流。 评价列车的受流质量 , 通常有离线率 、 动态接触 压力、 动态抬升量 、 接触 网的弹性、 电弓的追随特 受 性等多项指标 , 目前世界各国对高速接触 网悬挂 弓
2 对 单线隧道 接触 网悬挂 的要求
进入 2 世纪以来 , 1 高速客运专线成为我国铁路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节高速铁路接触网一、接触悬挂形式及其主要技术参数自1964年日本开通世界上第一条高速铁路至今,世界发达国家已经致力于高速电气化铁路的 研究和发展.经过30多年的 运行、实验,使高速电气化铁路的 车速不断提高,运营速度 由220 千米/h 提高到270 千米/h,正向300 千米/h 进.法国是目前轮轨系列车时速的 世界记录保持者,它于 2007年 4月4日进行的 实验运行速度 达到574.8 千米/h,在激烈竞争的 市场经济条件下,各种交通工具之间为争夺市场运输份额,不断开发和引进高新技术,而提高铁路车速将给铁路参与市场竞争带来机遇.接触网结构在机车高速运行情况下,发生了 许多重大 变化,需要进行一系列的 改革,采取什么样的 悬挂类型来适应高速铁路,一直是各发达国家研究的 课题.根据国外高速电气化铁路运行经验,高速滑行的 受电弓,其抬升力在空气动力和自身惯性作用下,以列车速度 平方的 比例大 幅度 增加,因而使接触线产生较大 的 抬升量,当驶过等距支柱甚至在跨距中的 等距吊弦时,会周期性激发接触线振动,它会使接触线弯曲应力增加,容易引发疲劳断线事故,同时这种振动可沿导线以一定速度 传播,在遇到吊弦线夹和悬挂点时,会将波反射放大 引起导线振荡,这是引起受电弓离线的 主要原因,离线产生的 电弧会烧伤接触线使磨耗增加,即电磨耗.当导线弯曲刚度 小 而张力大 时,其波动速度 可由下式求出: ρTC =式中 T ——接触线张力(N);ρ——线密度 .为了 减少导线抬升量,可提高其张力,减少接触网弹性不均匀性,同时也提高了 接触线波动传播速度 ,不引起导线共振使受电弓取流状态更好.接触悬挂形式是指接触网的 基本结构形式,它反映了 接触网的 空间结构和几何尺寸.不同的 悬挂形式,在工程造价、受流性能、安全性能上均有差别,另外,对接触网的 设计、施工和运营维护也有不同的 要求.对高速接触网悬挂形式的 要求是:受流性能满足高速铁路的 运营要求、安全可靠、结构简单、维修方便、工程造价低.世界上发展高速铁路的 主要国家如:日本、德国、法国的 高速接触网悬挂形式是在不断改进中发展起来的 ,主要有三种悬挂形式:简单链形悬挂、弹性链形悬挂、复链形悬挂.各国对这三种悬挂形式有不同的 认识和侧重,根据各自的 国情发展自己的 悬挂形式.日本的 高速线路如:东海道新干线、山阳新干线、东北新于线、上越新干线均采用复链形悬挂,近几年来,日本高速铁路又采用了 简单链形悬挂;法国的 巴黎一里昂的 东南线采用弹性链形悬挂,巴黎一勒芒/图尔的 大 西洋线采用接触导线带预留弛度 的 简单链形悬挂;德国在行车速度 低于160千米/h 的 线路采用简单链形悬挂,在160千米/h 及以上的 线路采用弹性链形悬挂.下面分别介绍简单链形悬挂、弹性链形悬挂和复链形悬挂三种形式的 结构和技术性能.1、简单链形悬挂以法国为代表的 高速铁路采用此种类型,在 1990年开通的 速度 为300 千米/h 的 大 西洋新干线上采用,而且认为该悬挂类型完全可以满足 330—350 千米/h,简单链形悬挂维修简单造价低,有多年成熟的 运行经验.结构形式如图2-1所示.图2-1 带预留驰度的简单链形悬挂性能特点:结构简单、安全可靠、安装调整维修方便,适应于高速受流.定位点处弹性小,跨中弹性大,造成受电弓在跨中抬升量大,跨中采用预留弛度,受电弓在跨中的抬升量可降低;定位点处易形成相对硬点,磨耗大.如果选择结构形式合理、性能优良的定位器,则可消除这方面的不足.2、弹性链形悬挂德国开发的高速接触网普遍采用,并作为德国联邦铁路标准,其主要出发点是降低接触网弹性不均匀度 ,在80年代末修建的曼海姆到斯图加特高速铁路(250 千米/h)上采用,并计划在柏林至汉诺威、法兰克福至科隆间(300~400 千米/h)仍采用.弹性链形悬挂比简单链形悬挂弹性好,但造价较高.弹性链形悬挂的结构形式图如图2-2所示.在结构上,相对于简单链形悬挂在定位点处装设弹性吊索,主要有两种形式:“π”形和“Y”形.弹性吊索的材质一般与承力索相同,其线胀系数与承力索相匹配.性能特点:结构比较简单,改善了定位点处的弹性,使得定位点处的弹性与跨中的弹性趋于一致,图2-2 弹性链形悬挂整个接触网的弹性均匀,受流性能好.其缺点是弹性吊索调整维修比较复杂,定位点处导线抬升量大,对定位器的安装坡度要求也较严格.3、复链形悬挂在 1964年 10月建成的日本东海道新干线上采用,时速为210 千米/h,它是用带弹簧的吊弦合成复链形悬挂.日本研究部门认为它适用于多弓受流情况,在今后300 千米/h高速线路上仍采用.复链形悬挂运行性能好,但造价高、设计复杂,施工和维修难度大 ,复链形悬挂结构形式如图2-3所示.图2-3 复链形悬挂在结构上,承力索和接触导线之间加了一根辅助承力索.性能特点:接触网的张力大,弹性均匀,安装调整复杂、抗风能力强.表2-2-1 三种悬挂类型的定性比较我国高速铁路尚在试运行阶段,已提速的几条干线仍采用原来的接触悬挂类型,目前正在建设的广深高速铁路,采用全补偿简单链形悬挂,根据国外经验和我国铁路路轨现状,通过科技人员论证,普遍认为采用全补偿简单链形悬挂较为合适,特别是在车速不高的情况下,有利于投资少见效快,完全能够适应200 ㎞/h车速的要求.二、高速接触网的主要技术参数1.导线高度:指接触导线距钢轨面的高度.它的确定受多方面的因素制约,如:车辆限界、绝缘距离、车辆和线路振动、施工误差等.一般地,高速铁路接触导线的高度比常规电气化铁路的接触导线低,这主要因为:①高速铁路一般无超级超限列车通过,车辆限界为4 800nl米;②为了减少列车空气阻力及空气动态力对受电弓的影响,受电弓的底座沉于机车车顶顶面,受电弓的工作高度较小.所以,高速铁路接触导线的高度一般在5 300米米左右.2.结构高度:指定位点处承力索距接触导线的距离.它由所确定的最短吊弦长度决定的,吊弦长时,当承力索和导线材质不同时,因温度变化引起的吊弦斜度小,使锚段内的张力差小,有利于改善弓网受流特性;长吊弦的另一个优点是高速行车引起的导线振动时,吊弦弯度小,可以减少疲劳,延长使用寿命.表2-2-2为三种高速悬挂的结构高度.表2-2-2 三种高速接触网悬挂的结构高度法国TGV-A 德国Re330 日本HC 结构高度 1.4米 1.8米 1.5米我国接触网的结构高度为1.1~1.6米.3.跨距及拉出值:取决于线路曲线半径、最大风速和经济因素等.考虑安全因素及对受电弓滑板的磨耗,我国高速铁路一般在保证跨中导线及定位点在最大风速下均不超过距受电弓中心300米米的条件下,确定跨距长度和拉出值的大小 .4.锚段长度:它的确定主要考虑接触导线和承力索的张力增量不宜超过10%,且张力补偿器工作在有效工作范围内.高速铁路接触网的锚段长度与常规电气化铁路基本一样.5.绝缘距离:参照电气化铁路接触网的绝缘配合标准.6.吊弦分布和间距:吊弦间距指一跨内两相邻吊弦之间的距离,吊弦间距对接触网的受流性能有一定的影响,改变吊弦的间距可以调整接触网的弹性均匀度 ,但是,如果吊弦过密,将影响接触导线的波动速度 ,而对弹性改善效果不大 ,所以,确定吊弦间距时,既要考虑改善接触网的弹性,又要考虑经济因素.吊弦分布有等距分布、对数分布、正弦分布等几种形式,为了设计、施工和维护的方便,吊弦分布一般采用最简单的等距分布.7.接触导线预留弛度:指在接触导线安装时,使接触导线在跨内保持一定的弛度 ,以减少受电弓在跨中对接触导线的抬升量,改善弓网的振动.对高速接触网,简单链形悬挂设预留弛度 ,弹性链形悬挂一般不设预留弛度 .8.锚段关节:锚段关节是接触网的张力的机械转换关节,是接触网的薄弱环节,其设计和安装质量对受流影响较大 ,高速接触网一般采用两种形式的锚段关节:①非绝缘锚段关节采用三跨锚段关节;②绝缘锚段关节采用五跨锚段关节.安装处理上,尽量缩短接触导线工作支和非工作支同时接触受电弓滑板的长度 ,提高非工作支的坡度 .9.接触导线的张力:提高接触导线的张力,可以增大波形传播速度 ,改善受流性能,同时增加了接触网的稳定性.导线张力的确定受导线的拉断力,接触网的安全系数等因素影响.10.承力索的张力:受接触网的稳定性、载流容量、结构高度、支柱容量等因素影响,提高承力索的张力可以增加接触网的稳定性,但对弓网受流性能影响不大 .减少承力索的张力,有利于减少反射系数,承力索的张力受接触网的结构高度的限制,也就是在一定的结构高度上,要保持跨内最短吊弦的长度 .三、接触网的主要设备和零部件1、接触网的线材(1).接触导线接触导线是接触网中直接与机车受电弓作摩擦运动传递电能的线材,它对接触网——受电弓系统的受流性能的好坏产生至关重要的作用,受流系统的许多性能指标直接由接触导线决定,如:波动传播速度、接触导线的抬升量、接触导线的磨耗、安全系数.表2-2-3给出了国外高速接触导线的比较.高速铁路对接触导线的基本要求如下:○1机械强度高;○2)单位质量尽量小 ;○3导电性能好;○4良好的耐磨及耐腐蚀性能及高温软化特性,使用寿命长;○5摩擦性能与受电弓滑板相匹配.表2-2-3 国外高速接触导线的比较随着运行速度的提高,为了提高抗拉强度,增大波动传播速度、耐磨性,国外有关国家对高速铁路的接触导线都趋向于研制铜合金导线或复合导线.铜合金导线是在铜中加人其他金属元素,如镁、银,采用合金方法制成的.复合导线是用铜与另一种机械强度高的金属制成的.(2).承力索承力索是接触网承载接触导线,并传输电流的线材.承力索的选用应符合下列条件:承力索的线胀系数与接触导线相匹配;机械强度高;耐疲劳、耐腐蚀性能好,耐温特性好;导电率高.国外高速铁路使用的承力索性能如表2-2-4所示.表2-2-4 国外高速铁路使用的承力索性能表我国电气化铁路接触网的承力索一般采用95米米2和70米米2的铜合金绞线,增加承力索的张力可以增强接触网的稳定性.(3).弹性吊索对弹性链形悬挂,弹性吊索一般选用截面积为35米n2的青铜绞线,张力为2.8~3.5 kN.2、高速铁路接触网的支持装置(1).支柱:由于高速铁路接触网的承力索和接触导线的张力增大,使作为接触网支撑的支柱受到较大的负荷,另外,还要考虑到接触网的稳定性问题.高速铁路接触网支柱的选择,区间一般采用环形等径预应力混凝土支柱;桥上支柱采用热浸镀锌钢柱;软横跨硬横跨支柱;跨度小时用环形等径预应力混凝土支柱,跨度大时选用热浸镀锌钢柱.(2).硬横跨:是用于站场或两股以上线路的接触网支持钢结构,一般用型钢焊接成梁式结构横跨于线路上空,用于支持接触悬挂.这种刚性硬横跨的特点是,各股道上的接触网在机械上和电气上相互独立.接触悬挂在硬横跨上采用吊柱旋转腕臂的支持结构,其结构特性与区间中间柱基本相同,组合定位装置与区间的接触悬挂完全相同.硬横跨的优点是,机械上独立,结构稳定,抗风能力强,寿命长,在受流性能上与区间接触悬挂相同.法国、英国、日本等国家的高速铁路接触网几乎全部采用硬横跨.我国的高速铁路的接触网也趋向使用刚性硬横跨.(3).腕臂支持结构:为了提高接触网的稳定性和安全性,高速铁路接触网采用刚性腕臂支持结构,由水平腕臂和斜腕臂组成的稳定三角形结构,提高了腕臂结构的整体稳定性和抗风能力.(4).组合定位装置:组合定位装置包括:定位器、定位管、支持器,定位防风拉线和定位管防风支撑,这部分零部件对接触导线起定位和支持作用,影响弓网受流性能.在机械结构上它必须满足接触导线温度偏移,保证高速受电弓安全通过及接触导线抬高等要求.对定位器的要求:○1构造简单,安装方便,不形成接触悬挂硬点;○2材质上一般采用铝合金材料,重量轻,耐腐蚀;○3具有较高的强度;○4环路电阻小,不形成电损坏.3、高速接触网的终端锚固类零部件终端锚固类零部件包括:承力索终端锚固线夹、接触导线终端锚固线夹、张力补偿器、坠砣等.(1)张力补偿装置张力补偿装置是调整承力索、接触导线张力,使它们保持恒定的自动装置,是接触网的关键部件.高速铁路接触网一般有两种方式的自动张力补偿装置:①滑轮组自动补偿装置;②棘轮补偿装置.对张力补偿装置的要求是,传动效率高,达到97%以上;安全可靠;耐腐蚀性能好,少维修,寿命长,有断线制动装置.坠砣采用铁坠砣.(2)承力索终端锚固线夹和接触导线终端锚固线夹这两种零件是接触网的主要受力部件,是保障接触网安全的关键零件.在结构上,有锥套式螺纹胀紧结构和楔形胀紧式结构两种.在材质上,整体铝青铜,紧固件采用不锈钢.其工作张力,应满足20~27 kN.4、高速接触网的电连接类零件电连接是保证接触网各导线之间及各股道之间电流畅通的部件.对它的要求是:电连接线夹与接触导线或承力索间的接触电阻小 ,整体电连接导电性能好.在结构上,连接可靠,重量轻,耐腐蚀.在材质上,用纯铜和铝青铜.5、吊弦及吊弦线夹它是接触网的悬吊类零件,在接触网中调节接触导线弛度,又可分流,属于面广量大的零件.正确选用悬吊类零件将有效地保证接触网的受流性能,又能减少其维修工作量.在高速接触网中,一般先经过现场测量,再计算出每跨中每根吊弦的长度.在工厂将吊弦线夹和吊弦制成一体后,到现场直接安装.对吊弦及吊弦线夹的要求为:重量轻,体积小,耐腐蚀,安全可靠.材质上,吊弦采用青铜绞线;吊弦线夹采用铝青铜.6、高速接触网的线岔线岔是两股道接触网交叉处的装置,是接触网上的重要设备,在常速下,一般采用有交叉线岔,运行经验表明它完全能满足要求,但也存在着问题,交叉线岔硬点不易消除,机车无论从正线进入侧线,还是从侧线进入正线,在始触点处受电弓都要接触两条接触线,接触瞬间由于受电弓抬升力的作用,将要接触的导线总是比正在滑行的导线低,如图2-4所示.造成低侧导线,会沿受电弓滑板圆弧导角向上移动到接触板上,这就难免发生钻弓和打弓事故,也给现场施工和维修带来困难.尤其是高速铁路,这种滑动接触对接触线和受电弓危害极大 ,它直接影响着高速受电弓的运行安全,是高速接触网设计和安装中需要特别解决好的环节.高速接触网的线岔应满足下列要求:(1)满足正线高速行车,避免钻弓、打弓.(2)正线进渡线或渡线进正线时,保证受电弓平稳过渡. 图2-4 始触点处导线示意图(3)保证正线高速行车的受流质量,做到离线率低、硬点小 ,导线抬高量满足要求.(4)安装简单,维修调整方便.高速接触网线岔一般有交叉式和无交叉式两种形式,根据两种线岔的工作原理,我国的高速接触网适合采用无交叉式线岔.无交叉线岔平面布置如图2-5所示.由于道岔处钢轨没有超高,所以各自线路中心线与驶入该线的受电弓中心轨迹相重合.从图上看出,接触网道岔柱位于导曲线两内轨轨距666 ㎜处,正线接触线拉出值为333㎜,波线拉出值为距正线线路中心999㎜,渡线导线过岔后抬高下锚,在无交叉线岔区两导线均有坡度 ,渡线向下锚方向抬高3‰,正线坡度与渡线坡度相反为1‰ (沿波线下锚方向降低).图2-5 无交叉线叉平面布置图无交叉线岔应达到以下两点要求:(1)机车受电弓沿正线高速行驶通过线岔时,不与渡线接触线接触,因而不受渡线接触悬挂的影响.(2)机车从正线驶入渡线时(或从渡线驶入正线),要使受电弓平稳过渡,不出现钻弓和打弓现象,且接触良好.无交叉线岔工作原理和技术要求当机车沿正线通过时,考虑受电弓最外端尺寸的半宽为673 ㎜,摆动200㎜,升高后的加宽为100㎜,所以机车受电弓靠渡线侧最外端距正线线路中心为:673十200十100=973㎜而渡线导线距正线线路中心为999㎜,因此受电弓从正线导线上滑过时,不会触及渡线导线与波线接触网无关.当机车由正线驶入渡线时,经过计算和运行实践证明,在线间距126~526㎜之间受电弓与渡线接触线接触此段为始触区,在接触瞬间,因正线导线坡度与渡线坡度相反(即正线导线低,波线导线高),所以受电弓是逐渐的由低侧导线过渡到高侧导线,随着渡线导线坡度的降低使受电弓慢慢脱离正线,形成自然顺滑的平稳过渡.当机车从渡线驶入正线时,在线间距806~1306㎜之间时接触正线导线,而此时波线导线是逐渐升高,受电弓在上述适当位置处与正线导线自然接触,随着正线导线坡度影响,受电弓慢慢脱离渡线而进入正线.由于线岔区两导线有相反坡度的原因,使受电弓避免了在始触点处出现钻弓和打弓的危险,因此无交叉线岔工作状态明显优于交叉线岔.对无交叉线岔的技术要求是:(1)正线拉出值为333㎜,允许误差为±20 ㎜,渡线导线距正线线路中心为999㎜,误差为±20 ㎜.(2)在线间距 126~526 ㎜间,为正线进入渡线时的始触区.线间距 526~806㎜,是正线与渡线导线等高区.在 806~1306㎜为渡线进入正线始触区,如图 2—16—4所示.(3)在等高区内,铁路旁设立道岔柱,可安装定位装置及吊弦等设备,始触区内不允许安装任何悬挂和定位装置.(4)在线间距 126~526㎜间,渡线比正线高 H1,在线间距为 806~1306㎜间,渡线比正线低H2,H1、H2与道岔型号和机车通过速度有关,需另行确定.(5)为了限制道岔定位点处导线的抬高,在定位装置上增加了弹性支撑和限位装置,使定位器的抬升量为100㎜以内.7、高速接触网的分相装置我国既有120千米/h以下的电气化铁道的接触网分相装置均采用分相绝缘器来实现相间隔离.当列车速度超过160千米/h时,这种形式的分相绝缘器存在明显的硬点,对受电弓的滑板撞击很大 ,容易造成弓网事故.高速铁路接触网的分相装置一般采用绝缘锚段关节带中性段方式(锚段关节的跨数应根据中性段的设置长度来确定)来满足高速接触网一受电弓系统的性能要求.机车通过分相锚段关节的方式一般有三种:(1)地面开关切换方式,当机车受电弓在分相的中性段之前和刚进人中性段时,由一相供电,然后在中性段断电0.25~0.35 s后切换到另一相.其优点是列车无操作,停电时间短暂,冲击及失速小 ,但设备复杂,切换过程容易产生很高的过电压.其原理示意图如图2-6所示. 图2-6 地面开关自动过分相示意图(2)机车切换方式:当机车通过分相中性段时,机车接收地面上的信号,控制机车主断路器断开,断电不降弓通过中性段,机车通过中性区后,机车又接收到地面信号,控制机车主断路器合闸受电,完成了机车过分相的全过程.其原理示意图如图2-7所示.这种方式结构简单,地面设备非常简单,投资小 .(3)柱上自动切换方式图2-8 柱上自动切换过分相示意图图2-8为柱上自动切换过分相示意图.图上采用6个分断绝缘器(FD),将接触网分隔成五段,每两个为一组.当机车到达a之前,分断绝缘器a—c中间部分,通过电磁线圈3与a端处于同电位,机车从a点进入b点后,受电弓通过电磁线圈3取流,从而使A开关闭合,c—d区段带电,机车从c进入c—d端后,受电弓通过真空开关A取流,电磁线圈电流为零,使真空开关A断开,机车失电进入滑行阶段.当机车从g点进入分段g—h区段时,受电弓通过电磁线圈4取流,开关B闭合,f—g区段有电(对机车运行无意义).机车驶离i点后,电磁线圈4电流为零,开关B 打开完成一次自动过分相过程.中间一段机车要靠滑行通过,由于d—f间距较小 ,因此当机车时速为200 千米时,机车失压时间仅为0.15 s允许司机无操作满负荷通过分相装置.。