统计学--抽样与抽样分布

合集下载

统计学1-7章的填空、判断题 4

统计学1-7章的填空、判断题   4

第四章抽样与抽样分布一、单项选择题1.抽样调查的目的在于(a )。

A、了解总体的基本情况B、用样本指标推断总体指标C、对样本进行全面调查D、了解样本的基本情况2.假定10亿人口大国和100万人口小国的居民年龄变异程度相同,现在各自用重复抽.样方法抽取本国的1%人口计算平均年龄,则抽样误差(c)。

A、两者相等B、前者大于后者C、前者小于后者D、不能确定3、抽样调查,随着样本量的增加,调查的误差(a)A、减小B、不变C、扩大D、不确定4、对某单位职工的文化程度进行抽样调查,得知其中80%的人是高中毕业,抽样平均误差为2%,当概率为95.45%(Z=2)时,该单位职工中具有高中文化程度的比重是( c )A、等于78%B、大于84%C、在76%与84%之间D、小于76%5、某银行想知道平均每户活期存款余额和估计其总量,根据存折账号的顺序,每50本存折抽出一本登记其余额。

这样的抽样组织形式是( c )A、类型抽样B、整群抽样C、机械抽样D、纯随机抽样6、农户家计调查中,按地理区域划分所进行的区域抽样,其抽样组织方式属于(d)A、简单随机抽样B、类型抽样C、等距抽样D、整群抽样7、抽样平均误差是指样本平均数或样本成数的( c )A、平均数B、平均差C、标准差D、标准差系数8、在不重复抽样中,抽样单位数从5%增加到25%,抽样平均误差( c )。

A、增加39.7%B、增加约3/5C、减少约3/5D、没有什么变化9、(甲)某高校新生1000人,从理科中随机抽取60人,文科中随机抽取40人,进行英语水平测试;(乙)从麦地总垅长中每3000市尺测竿落点处前后5尺长垅的产量进行实割实测;(丙)为研究城市青年业余时间活动情况,某城市每第10个居委会被抽取,并询问住在那里所有从16岁到30岁的青年人。

上述哪项属于类型抽样?( a )A、甲B、乙C、乙、丙D、甲、乙、丙10、抽样调查所遵循的基本原则是( b )A、准确性原则B、随机性原则C、可靠性原则】D、灵活性原则11、在其它条件不变的情况下,如果允许误差范围缩小为原来的1/2,则样本容量(a )A、扩大为原来的4倍B、扩大为原来的2倍C、缩小为原来的1/2倍D、缩小为原来的1/4倍12、对一批产品按不重复抽样方法抽取200件进行调查,其中废品8件,已知样本容量是产品总量的1/20,当F(Z)=95.45%时,不合格率的抽样极限误差是( d )A、1.35%B、1.39%C、2.70%D、2.78%13、抽样平均误差,确切地说是所有样本指标(样本平均数和样本成数)的( b)。

概率论与数理统计第六章统计量,样本及抽样分布

概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X

2



X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2

统计学第三版第6章 统计量及其抽样分布

统计学第三版第6章  统计量及其抽样分布
R(n) = X(n)- X(1)称为样本极差
中位数、分位数、四分位数都是次序统计量。
6. 1 .4 充分统计量
在统计学中,假如一个统计量能把含在样本中有关总体的 信息一点都不损失地提取出来,则对以后的统计推断质量 具有重要意义。
在统计量加工过程中一点信息都不损失的统计量通常称为
充分统计量。
6. 1 统计量
6. 1. 1统计量的概念
统计量的定义: 定义6.1 设(X1,X2,…Xn)是从总体中抽取的容量为n的一
个样本,如果由此样本构造一个函数 T(X1,X2,…Xn), 不依赖于任何未知参数,则称函数 T(X1,X2,…Xn)是一 个统计量。 对于T(X1,X2,…Xn), 也称样本统计量。当获得样本的一 组具体观测值x1,x2,…xn时,代入T,就是一个具体的统计 量值T(x1,x2,…xn) 。
精确的抽样分布大多是在正态总体的情况下得到的。 在正态总体条件下主要有 2分布、t分布和F分布,常 称为统计的三大分布。
6. 2. 2 渐近分布 当n无限增大时,统计量T(X1,X2,…Xn)的极
限分布常称为统计量的渐近分布。 不少重要的统计方法就是基于渐近分布提出的。
6. 2. 3 随机模拟获得的近似分布
1 n2
n i1
D(
X
i
)
2
n
(6. 10) (6. 11)
中心极限定理(central limit theorem):
设从均值为μ、方差为σ2(有限)的任意 一个总体中抽取样本量为n的样本,当n充 分大时,样本均值的抽样分布近似服从均 值为μ、方差为σ2/n的正态分布。
n充分大,在理论上是指n→+∞,而在经 验上一般要求n≥30时,就比较近似。

抽样分布的概念及重要性

抽样分布的概念及重要性

抽样分布的概念及重要性抽样分布是统计学中一个重要的概念,它描述了从总体中抽取样本的过程中,统计量的分布情况。

在统计学中,我们通常无法对整个总体进行研究,而是通过抽取样本来推断总体的特征。

抽样分布的概念帮助我们理解样本统计量的变异性,并为统计推断提供了理论基础。

本文将介绍抽样分布的概念及其重要性。

一、抽样分布的概念抽样分布是指在相同条件下,重复从总体中抽取样本,并计算样本统计量的分布情况。

在抽样分布中,样本统计量可以是样本均值、样本比例、样本方差等。

抽样分布的特点是,当样本容量足够大时,样本统计量的分布会趋近于一个稳定的形态,即抽样分布的形状不会随着样本的变化而变化。

抽样分布的形态通常可以用正态分布来近似描述。

中心极限定理是支持抽样分布近似为正态分布的重要理论基础。

根据中心极限定理,当样本容量足够大时,无论总体分布是什么形态,样本均值的抽样分布都会近似于正态分布。

这使得我们可以利用正态分布的性质进行统计推断。

二、抽样分布的重要性抽样分布在统计学中具有重要的意义和应用价值。

以下是抽样分布的几个重要方面:1. 参数估计:抽样分布为参数估计提供了理论基础。

通过从总体中抽取样本,我们可以计算样本统计量,并利用抽样分布的性质来估计总体参数。

例如,通过计算样本均值来估计总体均值,通过计算样本比例来估计总体比例等。

2. 假设检验:抽样分布为假设检验提供了理论依据。

在假设检验中,我们需要根据样本数据来判断总体参数是否符合某个假设。

抽样分布的性质可以帮助我们计算出假设检验的统计量,并进行显著性检验。

3. 置信区间:抽样分布为置信区间的构建提供了理论基础。

置信区间是用来估计总体参数的范围,它可以告诉我们总体参数的估计结果的可信程度。

抽样分布的性质可以帮助我们计算出置信区间,并确定置信水平。

4. 抽样方法选择:抽样分布的性质可以帮助我们选择合适的抽样方法。

不同的抽样方法会对样本统计量的抽样分布产生不同的影响。

通过了解抽样分布的性质,我们可以选择适合的抽样方法,以提高统计推断的准确性。

第六章 统计量及其抽样分布

第六章 统计量及其抽样分布

样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下

第 一
16个样本的均值(x)

第二个观察值
观 察值1 2
3
4
11
1.
20.

52. 0.
5
21
2.
25.

03. 5.
0
23
2.
30.

53. 0.
5
24
3.
35.

04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)

常用的三种抽样分布

常用的三种抽样分布

常用的三种抽样分布
概述
在统计学中,抽样分布是指从总体中抽取一定数量的样本,并计算样本统计量的分布。

根据中心极限定理,当样本数足够大时,样本的均值和标准差会呈正态分布。

然而,并非所有的抽样分布都符合正态分布。

本文将介绍统计学中常用的三种抽样分布,包括正态分布、t分布和χ²(卡方)分布。

1. 正态分布(Normal Distribution)
正态分布是最常见的一种抽样分布,也被称为高斯分布。

它具有以下特点: - 均值为μ,标准差为σ; - 对称分布,其曲线呈钟型,两侧尾部逐渐下降; - 总体分布和抽样分布均为正态分布; - 标准正态分布
的均值为 0,标准差为 1。

可以通过标准化计算将任意正态分布转换为标准正态分布。

正态分布在实际应用中非常重要,尤其是在假设检验和置信区间计算中的应用广泛。

2. t分布(Student’s t-Distribution)
t分布是由英国统计学家William Sealy Gosset(也被称为。

抽样分布公式t分布卡方分布F分布

抽样分布公式t分布卡方分布F分布

抽样分布公式t分布卡方分布F分布抽样分布公式:t分布、卡方分布、F分布抽样分布是统计学中的重要概念,用于推断总体参数以及进行假设检验。

本文将重点介绍三种常见的抽样分布公式:t分布、卡方分布和F分布。

一、t分布公式t分布是用于小样本情况下进行参数估计和假设检验的重要分布。

它的定义如下:假设有一个总体,样本容量为n,总体的均值和标准差未知。

如果从该总体中随机抽取一个样本,计算样本均值与总体均值的差异,用t 值来衡量。

那么,t值的概率分布就是t分布。

t分布的公式如下:t = (x - μ) / (s / √n)其中,x为样本均值,μ为总体均值,s为样本标准差,n为样本容量。

t分布的自由度为n-1。

在实际应用中,可以利用t分布表或统计软件来查找不同自由度下的t值对应的概率。

二、卡方分布公式卡方分布是应用于统计推断的重要分布,主要用于分析分类资料或定类变量的相关性。

它的定义如下:假设有一个总体,样本容量为n,比较观察值与理论值之间的差异。

我们将差异的平方进行求和,并除以理论值,得到统计量,称为卡方统计量。

卡方分布的公式如下:χ^2 = Σ((O - E)^2 / E)其中,O为观察值,E为理论值。

卡方分布的自由度取决于总体参数的个数减去估计的参数个数。

在实际应用中,同样可以利用卡方分布表或统计软件来查找不同自由度下的卡方值对应的概率。

三、F分布公式F分布是应用于统计推断的另一重要分布,主要用于比较两个或多个总体方差是否相等。

它的定义如下:假设有两个总体A、B,分别进行抽样,计算两个样本方差的比值,得到F统计量。

F分布的公式如下:F = (s1^2 / σ1^2) / (s2^2 / σ2^2)其中,s1^2和s2^2分别为样本A和样本B的方差,σ1^2和σ2^2分别为总体A和总体B的方差。

F分布的自由度取决于样本容量和总体个数。

在实际应用中,同样可以利用F分布表或统计软件来查找不同自由度下的F值对应的概率。

统计学中的抽样分布理论

统计学中的抽样分布理论

统计学中的抽样分布理论统计学是一门研究数据收集、分析和解释的学科。

在统计学中,抽样分布理论是一个重要的概念。

抽样分布理论是指在特定的抽样方法下,样本统计量的分布情况。

本文将介绍抽样分布理论的基本概念、应用以及与推断统计学的关系。

一、抽样分布理论的基本概念抽样分布理论是统计学的基石之一,它是建立在大数定律和中心极限定理的基础上的。

大数定律指出,当样本容量趋向于无穷大时,样本均值会趋于总体均值。

中心极限定理则指出,当样本容量足够大时,样本均值的分布会接近于正态分布。

基于这些定理,抽样分布理论可以推导出许多重要的统计量的分布情况,如样本均值的分布、样本方差的分布等。

这些分布可以用来进行统计推断和假设检验,帮助我们对总体参数进行估计和推断。

二、抽样分布理论的应用抽样分布理论在实际统计分析中有着广泛的应用。

首先,它可以用来进行参数估计。

在抽样分布理论的指导下,我们可以利用样本统计量对总体参数进行估计。

例如,通过样本均值的抽样分布,我们可以估计总体均值的置信区间。

其次,抽样分布理论可以用于假设检验。

在假设检验中,我们需要根据样本数据判断总体参数的真实值是否在某个范围内。

抽样分布理论提供了关于样本统计量的分布情况,从而帮助我们进行假设检验。

例如,通过样本均值的抽样分布,我们可以判断总体均值是否与某个假设值相等。

此外,抽样分布理论还可以用于确定样本容量。

在实际调查中,我们往往需要确定样本容量以达到一定的置信水平和抽样误差。

通过抽样分布理论,我们可以计算出所需的样本容量,从而保证统计结果的可靠性。

三、抽样分布理论与推断统计学的关系抽样分布理论是推断统计学的基础。

推断统计学是利用样本数据对总体参数进行推断的一种方法。

而抽样分布理论则提供了关于样本统计量的分布情况,为推断统计学提供了理论依据。

推断统计学的核心是利用样本数据来推断总体参数的真实值。

通过抽样分布理论,我们可以得到样本统计量的分布情况,从而对总体参数进行估计和推断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档