八年级数学下册《勾股定理的逆定理》学案
勾股定理的逆定理数学教案

勾股定理的逆定理数学教案
标题:勾股定理的逆定理数学教案
一、教学目标
1. 知识与技能目标:理解并掌握勾股定理的逆定理,并能运用它解决实际问题。
2. 过程与方法目标:通过探究、讨论、练习等活动,提高学生的观察力、思维能力和解决问题的能力。
3. 情感态度价值观目标:激发学生对数学的兴趣,培养他们的合作精神和实事求是的科学态度。
二、教学内容与过程
1. 引入新课:通过一些简单的实例,让学生感受到直角三角形中边长之间的关系,引出勾股定理的逆定理。
2. 新课讲解:首先回顾勾股定理的内容,然后提出问题:如果一个三角形的三条边满足a²+b²=c²,那么这个三角形一定是直角三角形吗?引导学生思考这个问题,从而引入勾股定理的逆定理。
3. 例题解析:给出几个具体的例子,让学生通过计算验证勾股定理的逆定理是否成立。
4. 练习巩固:设计一些习题,让学生自己动手计算,进一步理解和掌握勾股定理的逆定理。
三、教学反思
在本节课的教学过程中,要注意引导学生主动思考,积极参与课堂活动。
同时,要注重理论联系实际,使学生能够将所学知识应用到实际生活中去。
八年级数学《勾股定理的逆定理》教案优秀10篇

八年级数学《勾股定理的逆定理》教案优秀10篇、课堂小结1①角为直角、②垂直、③勾股定理的逆定理、能力目标2(1)理解并会证明勾股定理的逆定理;(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;(3)知道什么叫勾股数,记住一些觉见的勾股数。
让学生自己解决问题3判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的`思路。
教学过程4(1)通过自主学习的开展体验获取数学知识的感受;(2)通过知识的纵横迁移感受数学的辩证特征。
让学生主动提出问题5利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。
这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。
所有这些都由学生自己完成,估计学生不会感到困难。
这样设计主要是培养学生善于提出问题的习惯及能力。
重点、难点分析6本节内容的重点是勾股定理的逆定理及其应用。
它可用边的关系判断一个三角形是否为直角三角形。
为判断三角形的形状提供了一个有力的依据。
本节内容的难点是勾股定理的逆定理的应用。
在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后到达一个目标式,这种“转化〞对学生来讲也是一个困难的地方。
判定直角三角形的方法7勾股定理的内容文字表达(投影显示)符号表述图形(画在黑板上)板书设计8(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。
、定理的应用(投影显示题目上9(1)让学生用文字语言将上述定理的逆命题表述出来(2)学生自己证明逆定理:如果三角形的三边长有下面关系:那么这个三角形是直角三角形强调说明:(1)勾股定理及其逆定理的区别勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。
人教版八年级数学下册:17.2勾股定理的逆定理优秀教学案例

1.引导学生思考:“为什么勾股定理的逆定理成立?”、“证明勾股定理的逆定理有哪些方法?”等问题,激发学生的探究欲望。
2.设计具有梯度的练习题,让学生在解决问题的过程中,运用勾股定理的逆定理,提高学生的实践能力。
3.引导学生总结解题方法,培养学生良好的学习习惯。
(三)小组合作
1.按照“组间同质、组内异质”的原则,对学生进行分组,促进小组成员间的互助与合作。
2.问题导向:教师引导学生思考:“为什么勾股定理的逆定理成立?”、“证明勾股定理的逆定理有哪些方法?”等问题,激发学生的探究欲望。这种问题导向的教学策略,有助于培养学生的思维能力,提高学生的解决问题的能力。
3.小组合作:教师按照“组间同质、组内异质”的原则,对学生进行分组,促进小组成员间的互助与合作。通过设计小组讨论题目,如“探讨勾股定理的逆定理在实际问题中的应用”,让学生在讨论中互相启发,共同进步。这种小组合作的学习方式,既培养了学生的团队合作精神,又提高了学生的实践能力。
2.设计小组讨论题目,如“探讨勾股定理的逆定理在实际问题中的应用”,让学生在讨论中互相启发,共同进步。
3.组织小组竞赛,激发学生的团队精神和竞争意识,提高学生的合作能力。
(四)反思与评价
1.教师引导学生对学习过程进行反思,总结自己在探究、解决问题过程中的优点和不足,提高自我认知。
2.学生互相评价,鼓励优秀,鞭策后进,促进小组成员的共同进步。
3.使学生认识到数学与生活的紧密联系,培养学生的应用意识。
4.引导学生树立正确的价值观,注重培养学生的综合素质。
作为一名特级教师,我深知教学目标的重要性,它不仅是教学活动的出发点和归宿,更是评价教学效果的重要依据。在教学过程中,我将始终关注学生的知识掌握情况、能力提升程度以及情感态度的培养,努力实现本节课的教学目标,为学生的全面发展奠定基础。
17.2勾股定理的逆定理(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理逆定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理逆定理的判断条件和实际应用这两个重点。对于难点部分,如如何从实际问题中提取有效信息,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理逆定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量实际物体的边长,计算并判断是否为直角三角形。
举例:
在讲解勾股定理的逆定理时,教师可以通过具体的直角三角形图形,引导学生观察和总结规律,如3²+4²=5²,得出5-4-3组成的三角形是直角三角形。
2.教学难点
(1)理解逆定理的含义:学生容易混淆勾股定理和逆定理,难以理解逆定理是从一个已知的条件出发,反推三角形类型。
(2)在实际问题中灵活运用逆定理:学生在解决问题时,往往不知道如何将问题转化为勾股定理的逆定理来解决。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理逆定理的基本概念。勾股定理逆定理是指如果一个三角形的两边a、b的平方和等于第三边c的平方,即a²+b²=c²,那么这个三角形是直角三角形。它是判断直角三角形的一个重要方法,在几何学中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量一个三角形两边的长度,计算第三边的长度,并判断这个三角形是否为直角三角形。
勾股定理逆定理教学设计

勾股定理逆定理教学设计勾股定理逆定理教学设计1一、教材分析(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是__的重要内容之一。
课标要求学生必须掌握。
(二)、教学目标1、知识技能:1理解并会证明勾股定理的逆定理;2会应用勾股定理的逆定理判定一个三角形是否为直角三角形;3知道什么叫勾股数,记住一些觉见的勾股数。
2、过程与方法:通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。
3、情感、态度价值观培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。
渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系。
(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样就确定了本节课的重点、难点。
教学重点:勾股定理逆定理的应用教学难点:勾股定理逆定理的证明二、教学过程本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)复习回顾复习回顾与直角三角形、勾股定理有关的内容,建立新旧知识之间的联系。
(二)创设问题情境一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。
17.2勾股定理的逆定理(优质课)教学设计

17.2勾股定理的逆定理(优质课)优秀教学设计1000字教学设计:勾股定理的逆定理教学目标:1. 理解勾股定理的逆定理。
2. 能够使用逆定理解决三角形直角问题。
3. 培养学生自信心和解决问题的能力。
教学过程:一、导入:老师可以让学生回顾一下勾股定理,强调直角三角形的特征和斜边平方等于两条直角边平方和的关系。
二、新知:老师让学生学习勾股定理的逆定理。
首先,老师列出勾股定理的公式:a²+b²=c²。
然后,老师强调因为右边的平方和等于左边的平方和,所以如果c²=a²+b²那么这个三角形是直角三角形。
三、讲解:老师为学生讲解勾股定理的逆定理。
勾股定理的逆定理是:如果一个三角形的三边中,某两边的平方和等于第三边的平方,那么这个三角形就是直角三角形。
四、练习:老师让学生完成以下练习,巩固勾股定理的逆定理的运用能力。
1、在图中,AB=25,BC=24,AC=7,则△ABC是什么三角形?2、在图中,AB=10,AC=6,BC=8,则△ABC是什么三角形?3、在图中,AB=13,AC=12,则BC的值是多少?五、展示:老师通过学生的练习,展示勾股定理的逆定理的应用。
六、总结:老师总结课程,让学生复习并归纳勾股定理和勾股定理的逆定理,以及它们在解决直角三角形问题中的应用。
七、作业:老师布置勾股定理和勾股定理的逆定理的作业,要求学生在完成作业的同时,运用勾股定理和勾股定理的逆定理解决问题。
教学方法:讲解、练习、展示、总结教学工具:黑板、彩色粉笔、PPT评估方法:学生完成的课堂练习和作业,以及他们在课堂上所展示的应用。
教学反思:教师需要注意在讲解中,既要强调勾股定理的逆定理的概念和公式,也要注重其实际应用。
在练习和布置作业中,老师需要注意难易程度的掌控,要让学生既能够完成,又能够得到提高。
在展示中,老师应该强调问题的解决方法,并及时纠正错误。
在总结时,老师需要重点强调勾股定理和勾股定理的逆定理的区别和应用,以及怎样能够更好地运用勾股定理和逆定理解决问题。
人教版八年级数学下册---《勾股定理的逆定理》教案设计
人教版八年级数学下册---《勾股定理的逆定理》教案设计新课一、证明勾股定理的逆定理1.请大家自行分析命题的题设、结论,画出图形,写出已知和求证并证明.已知:ABC∆的三边长分别,,a b c满足222a b c+=.求证:ABC∆是直角三角形.证明:画Rt'''A B C∆,使''B C a=,''A C b=,'90C∠=︒.2222''''''Rt ABCA B B C A C a b∆=+=+在中,222a b c+=,2''A B c c∴==.'''ABC A B C∴∆∆在和中,''''''AB c A BBC a B CAC b A C==⎧⎪==⎨⎪==⎩'''.ABC A B C∴∆≅∆'90.C C∴∠=∠=︒ABC∴∆是直角三角形.2.归纳定理(1)探讨新命题与勾股定理的关系命题和结论正好相反的两个命题叫做互逆命题.原命题:勾股定理如果直角三角形的两条直角边长分别,,a b斜边长为c,那么222a b c+=.逆命题:勾股定理逆定理如果三角形的三边长分别,,a b c满足222a b c+=,那么这个三角形为直角三角形.(2)勾股定理逆定理的作用——判定直角三角形的一个依据.引导学生证明勾股定理的逆定理,体会从猜想到证明的认识几何图形的过程,提升直观想象和推理的素养.引导学生从文字语言、图形语言、符号语言去认识勾股定理.例题二、应用例1 写出下列命题的逆命题,这些命题的逆命题成立吗?⑴内错角相等,两条直线平行;⑵对顶角相等.例1设计意图:理解原命题与逆命题的关系.(1)22a b += 2217c ==22a b ∴+=90C ∴∠=ABC ∴∆1,(n >∴221n n -+>211,n >-∴22a b n +=(22c n =+( a ∴∴∠例3 在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且14CF CD =.求证:90.AEF ∠=︒分析:根据勾股定理的逆定理,判断90AEF ∠=︒,只要证222AE EF AF +=即可.所以分别在直角ABE ECF ADF ∆∆∆、、中计算AE EF AF 、、的长度即可.解:四边形ABCD 是正方形, AB BC CD AD ∴===,90B C D ∴∠=∠=∠=︒.设=4AB BC CD AD k ===,11444CF CD k k ∴===., 43DF CD CF k k k ∴=-=-=.E 是BC 的中点,114222BE CE BC k k ∴====.在Rt ABE ECF ADF ∆∆∆、、中, 222222=(4)(2)20AE AB BE k k k +=+=, 222222=(2)5EF EC CF k k k +=+=,222222=(4)325AF AD DF k k k +=+=()222AE EF AF ∴+=.90.(AEF ∴∠=︒勾股定理逆定理)例3. 综合运用勾股定理及其逆定理解决问题,提升数学推理的素养. 总结1. 学到了哪些知识?(1)勾股定理的逆定理的做用判定直角三角形的一个依据 (2)逆命题于原命题的什么关系?命题和结论正好相反,原命题成立,它的逆命题可能成立也可能不成立.2. 学到了哪些知识?(1)如何得到勾股定理的特殊 一般 猜想 证明 (2)如何证明勾股定理的逆定理? 构造直角三角形总结本节课所学知识,领悟数学方法.1. 写出下列命题的逆命题,这些命题的逆命题成立吗? ⑴同旁内角互补,两条直线平行;⑵如果两个实数相等,那么它们的平方相等。
2024最新-八年级数学《勾股定理的逆定理》教案【优秀4篇】
八年级数学《勾股定理的逆定理》教案1篇教学目标1. 知识与技能:- 理解勾股定理的逆定理内容。
- 能够应用勾股定理的逆定理来判断一个三角形是否是直角三角形。
2. 过程与方法:- 通过观察、计算和推理,培养学生发现问题、分析问题和解决问题的能力。
- 提高学生的逻辑思维能力和空间想象能力。
3. 情感、态度与价值观:- 激发学生对数学学习的兴趣和好奇心。
- 培养学生严谨、细致的数学学习习惯。
教学重点与难点- 重点:掌握勾股定理的逆定理及其应用。
- 难点:理解勾股定理的逆定理证明过程。
教学准备- 勾股定理的相关知识回顾。
- 直角三角形和非直角三角形的图形准备。
- 计算器或测量工具。
教学过程一、导入新课1. 复习提问:回顾勾股定理的内容是什么?2. 导入新课:如果一个三角形的三边满足勾股定理的条件,那么这个三角形一定是直角三角形吗?我们如何判断?二、新课讲解1. 勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
2. 逆定理证明(简要介绍):设三角形ABC中,AB² + AC² = BC²。
通过作边AB、AC的垂线并证明直角三角形中的相似三角形,可以推导出角C为直角。
3. 应用举例:给出三角形的三边长,判断是否为直角三角形。
三、课堂练习1. 判断题:下列哪些三角形是直角三角形?- a. 三边长分别为3, 4, 5。
- b. 三边长分别为5, 12, 13。
- c. 三边长分别为8, 15, 17。
2. 填空题:在三角形ABC中,AB = 5, AC = 12, BC = 13,则∠C = _______。
四、巩固提升1. 分组讨论:如何验证一个三角形是否是直角三角形(除了使用勾股定理的逆定理外,还有其他方法吗)?2. 小组展示:每个小组选派一名代表汇报讨论结果。
五、课堂小结1. 总结勾股定理的逆定理的内容。
2. 强调判断直角三角形时,勾股定理的逆定理的重要性和应用。
八年级数学下册 18.2 勾股定理逆定理(第2课时)学案2(无答案) 新人教版
勾股定理逆定理班级 姓名【学习目标】1.掌握勾股逆定理的内容.2. 能应用勾股逆定理解决实际问题【学习重难点】会结合勾股定理及直角三角形相关知识解决问题(一)【复习回顾】1.已知△ABC 的三边长a ,b ,c 分别为6,8,10,则△ABC__ ____(•填“是”或“不是”)直角三角形.2.△ABC 中,AB=7,AC =24,BC=25,则∠A=_____ _.3.△ABC 中,BC=n 2-1,AC=2n ,AB=n 2+1(n>1),则∠______=9004.如果三角形的三边长为1.5,2,2.5,那么这个三角形最短边上的高为______.(二)合作探究例2.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?(三)学以致用1.已知两条线段的长为3cm 和4c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.2. 在Rt △ABC 中,∠C=90°,(1)若a=5,b=12,则c= ;(2)b=8,c=17 ,则ABC S =3. 等边三角形的边长为6,则它的高是________4. 在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=____5.已知甲、乙两人从同一处出发,甲往东走了4km ,乙往南走了3km ,这时甲、乙两人相距 千米.6.下列各组数中,以它们为边的三角形不是直角三角形的是( )A .1.5,2,3 B. 7,24,25 C .6,8,10 D. 3,4,5 7.下列命题中是假命题的是( )A. △ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形.B. △ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C. △ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D. △ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形.8.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( )A. 等腰三角形B. 等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形9.一个直角三角形,有两边长分别为6和8,下列说法正确的()A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为1010.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( ) A . 27cm B. 30cm C. 40cm D. 48cm11.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )cm 2A 6B 8C 10D 1212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距()A .25海里 B. 30海里 C. 35海里 D. 40海里13. 如图所示,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求A B 的长.14.已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积.F 第11题 北南 A 东第12题15.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36,点P从点A开始沿AB边向B 点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?。
小学八年级《勾股定理的逆定理》教案
小学八年级《勾股定理的逆定理》教案为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享小学八年级《勾股定理的逆定理》教案,希望大家在学习中得到提高。
教学目标:一、知识技能1.理解勾股定理的逆定理的证明方法和证明过程;2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;二、数学思考1.通过勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程;2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.三、解决问题通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.四、情感态度1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.教学重、难点:一、重点:勾股定理的逆定理及其应用.二、难点:勾股定理的逆定理的证明.教学方法启发引导、分组讨论、合作交流等。
教学媒体多媒体课件演示。
教学过程:一、复习孕新,引入课题问题:(1) 勾股定理的内容是什么?(2) 求以线段a、b为直角边的直角三角形的斜边c的长:① a=3,b=4② a=2.5,b=6③ a=4,b=7.5(3) 分别以上述a、b、c为边的三角形的形状会是什么样的呢?二、动手实践,检验推测1.把准备好的一根打了13个等距离结的绳子,按3个结、4个结、5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?学生分组活动,动手操作,并在组内进行交流、讨论的基础上,作出实践性预测.教师深入小组参与活动,并帮助、指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.2.分别以2.5cm、6cm、6.5cm和4cm、7.5cm、8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?三、探索归纳,证明猜想问题1.三边长度分别为3 cm、4 cm、5 cm的三角形与以3 cm、4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?2.你能证明以2.5cm、6cm、6.5cm和4cm、7.5cm、8.5cm 为三边长的三角形是直角三角形吗?3.如图18.2-2,若△ABC的三边长、、满足,试证明△ABC是直角三角形,请简要地写出证明过程. 教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.四、尝试运用,熟悉定理问题1、例1:判断由线段组成的三角形是不是直角三角形:(1)(2)2、三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?教师巡视,了解学生对知识的掌握情况.特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题五、类比模仿,巩固新知1.练习:练习题1、3.2.思考:习题18.2第5题.部分学生演板,剩余学生在课堂练习本上独立完成.死记硬背是一种传统的教学方式,在我国有悠久的历史。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册《勾股定理的逆定理》
教
学
目
标
.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
重点
探究勾股定理的逆定理的证明方法
难点
理解原命题、逆命题、逆定理的概念及关系。
教学
方法
先学后教,当堂检测
教学
准备
教师
导学案
学生
学具教
学
流
程
教
学
内
容
教师与学生活
动
时间分配与二次备课板书课题揭示目标
怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。
导入课题。
二、先学后教,合作探究
阅读课本31-32 页完成以下问题
(一)、自主学习
、互逆命题:如果两个命题的题设和结论正好
,那么这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另外一个叫做它的
2、逆定理:一般地,如果一个定理的
经过证明是正确的,它也是一个
,称这两个定理互为。
3 、勾股定理的逆定理。
因此,通过边长的计算,可以判断一个三角形是否是直 角三角形。
4、三边长度分别为 3cm 、4cm 、5cm 的三角形与以 4cm 为直角边的直角三角形之间有什么关系?你是怎样得到 的?
、先学后教,合作探究
探讨 1. 勾股定理“如果直角三角形的两直角边为 斜边为c ,那么a2+b2=c2”的逆命题如何叙述?
归纳:“如果…”引导的为
,“那么…”引导的为。
请说出下列命题的逆命题。
这些命题的逆命题成立吗?
(1)
两直线平行,内错角相等;
(2)
如果两个实数相等,那么它们的绝对值相等;
(3) 全等三角形的对应角相等;
(4) 角的内部到角的两边距离相等的点在角的平分线上。
3cm 、 a,b ,
探讨2.如图,若△ ABc的三边长--中国最大型、最专业
的中小学教育资源门户网站、满足,试证明
△
ABc是直角三角形,请简要地写出证明过程. 归纳:勾股定理的逆定理。
三、自学反馈:
:判断由线段-- 、组成的三角形是不是直角三角形:(若是直角三角形,并指出斜边)
(1);
(2)
(3);
(4);
2. 回答下列命题的逆命题:原命题:1,同位角相等两直
线平行。
原命题的逆命题是:
原命题:2,如果天空在下雨,那么地面是湿的。
原命题的逆命题是:
原命题:3,对顶角相等。
原命题的逆命题是:
三、当堂检测
、判断题。
⑴在一个三角形中,如果一边上的中线等于这条边的一
半,那么这条边所对的角是直角。
(
)
⑵命题:“在一个三角形中,有一个角是30 °,那么它所对的边是另一边的一半。
”的逆命题是真命题。
(
)
⑶勾股定理的逆定理是:如果两条直角边的平方和等于
斜边的平方,那么这个三角形是直角三角形。
(
)
⑷厶ABc的三边之比是1:1:初二数学教学设计,则△
ABc是直角三角形。
(
)
2、A ABc中/ A、/ B、/ c的对边分别是a、b、c,下
列命题中的假命题是(
)
A.如果/ c — /B=/人,则厶ABc是直角三角形。
B.如果c2=b2 —a2,则厶ABc是直角三角形,且/ c=90°。
c.如果(c + a)(c —a)=b2,则△ ABc是直角三角
形。
D.如果/ A:/ B:Z c=5 : 2: 3,则△ ABc是直角三角
形。
3、判断下列线段a,b,c 组成的三角形是不是直角三
角形
(1)a=7,b=24,c=25
(2)a=1.5 ,b=4,c=2.5
(3)a=初二数学教学设计,b=1, c=初二数学教学设计(4 )
a=初二数学教学设计,b=2n, c=初二数学教学设计
4、如果三条线段长a,b,c 满足,这三条线段组成的三角形是不是直角三角形?为什么?
四、课堂总结: 通过本节课的学习你有什么收获?
五、作
业:
课本34 页1.2.3. 题
学生思考回答
学生完成自学内容小组内互相学习探讨小组内加以纠正,
对于个别的同学互相帮助学习。
对于探究部分进行加以巩固
5-7 分钟内完成当堂检测的练习
板
书
设
计
7.2 勾股定理的逆定理(1)
命题2:如果三角形的三边长a,b,c 满足,那么这个三角形是直解三解形。
教学反思。