23年中考数学25题
2023年陕西省中考数学真题及参考答案

2023年陕西省中考数学真题及参考答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项时符合题意的)1.计算:=-53()A .2B .2-C .8D .8-2.下列图形中,既是轴对称,又是中心对称图形的是()3.如图,AB l ∥,B A ∠=∠2.若︒=∠1081,则2∠的度数为()A .︒36B .︒46C .︒72D .︒824.计算:=⎪⎭⎫⎝⎛-⋅332216y x xy A .543y x B .543y x -C .633y x D .633y x -5.在同一平面直角坐标系中,函数ax y =和a x y +=(a 为常数,0<a )的图象可能是()6.如图,DE 是ABC ∆的中位线,点F 在DB 上,BF DF 2=.连接EF 并延长,与CB 的延长线相交于点M .若6=BC ,则线段CM 的长为()A .213B .7C .215D .87.陕西饮食文化源远流长,“老碗面”是山西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.弧AB 是☉O 的一部分,D 是弧AB 的中点,连接OD ,与弦AB 交于点C ,连接OB OA ,.已知cm AB 24=,碗深cm CD 8=,则☉O 的半径OA 为()A .cm13B .cm 16C .cm 17D .cm268.在平面直角坐标系中,二次函数m m mx x y -++=22(m 为常数)的图象经过点()60,,其对称轴在y 轴左侧,则该二次函数有()A .最大值5B .最大值415C .最小值5D .最小值415二、填空题(本大题共5小题,共15分)9.如图,在数轴上,点A 表示3,点B 与点A 位于原点的两侧,且与原点的距离相等.则点B 表示的数是.10.如图,正八边形的边长为2,对角线CD AB 、相交于点E .则线段BE 的长为.11.点E 是菱形ABCD 的对称中心,︒=∠56B ,连接AE ,则BAE ∠的度数为.12.如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点F C ,均在x 轴正半轴上,点D 在边BC 上,CD BC 2=,3=AB .若点E B ,在同一反比例函数的图象上,则这个反比例函数的表达式是.13.如图,在矩形ABCD 中,43==BC AB ,.点E 在边AD上,且3=ED ,N M 、分别是边BC AB 、上的动点,且BN BM =,P 是线段CE 上的动点,连接PN PM ,.若4=+PN PM .则线段PC 的长为.三、解答题(本大题共13小题,共81分.解答应写出文字说明,证明过程或演算步骤)14.(5分)解不等式:x x 2253>-.15.(5分)计算:()31271105-+⎪⎭⎫ ⎝⎛--⨯-.16.(5分)化简:11211132+-÷⎪⎭⎫⎝⎛---a a a a a .17.(5分)如图,已知ABC ∆,︒=∠48B ,请用尺规作图法,在ABC ∆内部求作一点P 使PC PB =,且︒=∠24PBC .(保留作图痕迹,不写作法)18.(5分)如图,在ABC ∆中,︒=∠50B ,︒=∠20C .过点A 作BC AE ⊥,垂足为E ,延长EA 至点D .使AC AD =.在边AC 上截取AB AF =,连接DF .求证:CB DF =.19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法,求摸出的这两个小球上标有的数字之积是偶数的概率.20.(5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,公用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得cm DF 4.2=;当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为︒6.26.已知爸爸的身高m CD 8.1=,小明眼睛到底面的距离m EF 6.1=,点BD F 、、在同一条直线上,FB AB FB CD FB EF ⊥⊥⊥,,.求该景观灯的高AB .(参考数据:45.06.26sin ≈︒,89.06.26cos ≈︒,50.06.26tan ≈︒)22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在底面以上m 3.1处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高()m y 是其胸径()m x 的一次函数.已知这种树的胸径为m 2.0时,树高为m 20;这种树的胸径为m 28.0时,树高为m 22.(1)求y 与x 之间的函数表达式;(2)当这种树的胸径为m 3.0时,其树高是多少?23.(7分)某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是;(2)求这20个数据的平均数.分组频数组内小西红柿的总个数3525<≤x 1284535<≤x n1545545<≤x 94526555<≤x 636624.(8分)如图,ABC ∆内接于☉O ,︒=∠45BAC ,过点B 作BC 的垂线,交☉O 于点D ,并与CA 的延长线交于点E ,作AC BF ⊥,垂足为M ,交☉O 于点F .(1)求证:BC BD =;(2)若☉O 的半径3=r ,6=BE ,求线段BF 的长.25.(8分)某校想将新建图书馆的正门设计为一个抛物线型拱门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方、和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一:抛物线型拱门的跨度m ON 12=,拱高m PE 4=.其中,点N 在x 轴上,ON PE ⊥,EN OE =.方案二:抛物线型拱门的跨度m N O 8=',拱高m E P 6=''.其中,点N '在x 轴上,N O E P '⊥'',N E E O ''='.要在拱门中设置高为m 3的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD 的面积为1S ,点D A 、在抛物线上,边BC 在ON 上;方案二中,矩形框架D C B A ''''的面积为2S ,点D A ''、在抛物线上,边C B ''在N O '上.现知,小华已正确求出方案二中,当m B A 3=''时,22212m S =.请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一种,当m AB 3=时,求矩形框架ABCD 的面积1S ,并比较21S S ,的大小.26.(10分)(1)如图①,在OAB ∆中,OB OA =,︒=∠120AOB ,24=AB .若☉O 的半径为4,点P 在☉O 上,点M 在AB 上,连接PM ,求线段PM 的最小值.(2)如图②所示,五边形ABCDE 是某市工业新区的外环路,新区管委会在点B 处,点E 处是该市的一个交通枢纽.已知:︒=∠=∠=∠90AED ABC A ,m AE AB 10000==.m DE BC 6000==.根据新区的自然环境及实际需求,现要在矩形AFDE 区域内(含边界)修一个半径为m 30的圆形环道☉O ,过圆心O ,作AB OM ⊥,垂足为M ,与☉O 交于点N ,连接BN ,点P 在☉O 上,连接EP .其中,线段EP BN ,及MN 是要修的三条道路,要在所修道路EP BN ,之和最短的情况下,使所修道路MN 最短,试求此时环道☉O 的圆心O 到AB 的距离OM 的长.参考答案一、选择题题号12345678答案BCABDCAD二、填空题9.3-;10.22+;11.︒62;12.xy 18=;13.22三、解答题14.解:x x 453>-,543>-x x ,5>-x ,5-<x .15.解:原式12587258725+-=+--=-+--=.16.解:原式()()()()()()()111211121211113121111113-=-⋅--=-+⋅-++-=-+⋅⎦⎤⎢⎣⎡-++--+=a a a a a a a a a a a a a a a a a a 17.解:如图,点P 即为所求.18.证明:∵在ABC ∆中,︒=∠︒=∠2050C B ,,∴︒=∠-∠-︒=∠110180C B CAB ∵BC AE ⊥,∴︒=∠90AEC ,∴︒=∠+∠=∠110C AEC DAF .∴CABDAF ∠=∠又∵AB AF AC AD ==,,∴CAB DAF ∆≅∆∴CB DF =.19.解:(1)21(2)列表如下:由上表可知,共有16种等可能的结果,其中摸出的这两个小球上标有的数字之积是偶数的结果有7种.∴167=P .20.解:设该文具店中这种大笔记本的单价是x 元,根据题意得()62364=-+x x .解得8=x .∴该文具店中这种大笔记本的单价为8元.21.解:如图,∵FB AB FB CD ⊥⊥,,∴ABCD ∥∴FBFDAB CD =,∴AB AB CD AB FD FB 348.14.2==⋅=.过点E 作AB EF ⊥,垂足为H ,得矩形EFBH .∴6.16.1-=-====AB HB AB AH EF HB FB EH ,,.在AEH Rt ∆中,()6.125.06.16.26tan -=-=︒=AB AB AH EH .∴()6.1234-=AB AB ,∴8.4=AB .∴该景观灯的高AB 为m 8.4.22.解:(1)设()0≠+=k b kx y ,根据题意得⎩⎨⎧=+=+2228.0202.0b k b k ,解得⎩⎨⎧==1525b k .∴1525+=x y .(2)当3.0=x 时,5.22153.025=+⨯=y .∴当这种树的胸径为m 3.0时,其树高为m 5.22.23.解:(1)补全频数分布直方图如图所示;这20个数的众数为54.(2)()5036645215428201=+++⨯=x ∴这20个数的平均数是50.(3)所求总个数:1500030050=⨯.∴估计这300棵西红柿植株上小西红柿的总个数是15000个.24.(1)证明:如图,连接DC ,则︒=∠=∠45BAC BDC ∵BC BD ⊥,∴︒=∠-︒=∠4590BDC BCD ∴BDC BCD ∠=∠,∴BC BD =.(2)解:如图,∵︒=∠90DBC ,∴CD 为☉O 的直径,∴62==r CD ∴2345sin 6sin =︒=∠⋅=BDC CD BC .∴()632362222=+=+=BC BE EC ∵︒=∠=∠90EBC BMC ,BCM BCM ∠=∠,∴ECB BCM ∆∆~,∴CBCMEB BM EC BC ==.∴()()66323326362322====⨯=⋅=EC BC CM EC EB BC BM ,.连接CF ,则︒=∠=∠45BAC F ,∴︒=∠45MCF ,∴6==MC MF .∴632+=+=MF BM BF .25.解:(1)由题意知,方案一种抛物线的顶点()4,6P ,设()462+-=x a y 依题意得91-=a .∴()46912+--=x y .(2)令3=y ,则()346912=+--x ,解得9321==x x ,,∴6=BC .∴18631=⨯=⋅=BC AB S ∵2122=S ,而21218>,∴21S S >.26.解:(1)如图①,连接OM OP ,,过点O 作AB M O ⊥',垂足为M ',则OM PM OP ≥+.∵☉O 半径为4,∴44-'≥-≥M O OM PM .∵OB OA =,︒=∠120AOB ,∴︒=∠30A .∴3430tan 1230tan =︒=︒'='M A M O .∴4344-=-'≥M O PM ,∴线段PM 的最小值为434-.(2)如图②,分别在AE BC ,上作()m r A A B B 30=='='.连接E B OE OP O B B A '''',,,,.∵B B ON AB B B AB OM '=⊥'⊥,,,∴四边形ON B B '是平行四边形,∴O B BN '=.∵E B OE O B PE OP O B '≥+'≥++',∴r E B PE BN -'≥+.∴当点O 在E B '上时,PE BN +取得最小值.作☉O ',使圆心O '在E B '上,半径()m r 30=,作AB M O ⊥'',垂足为M ',并与B A ''交于点H 易证,A E B H O B ''∆''∆~∴A B HB A E H O '''=''∵☉O '在矩形AFDE 区域内(含边界),∴当☉O '与FD 相切时,H B '最短,即403030600010000=+-='H B .此时,H O '也最短.∵H O N M '='',∴N M ''也最短.()91.40171000040303010000=⨯-='''⋅'='A B H B A E H O .∴91.404730=+'=''H O M O ∴此时环道☉O 的圆心O 到AB 的距离OM 的长为m 91.4047.。
安徽省2023年中考数学试题+参考答案

安徽省2023年中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。
1.-5的相反数是()A.5B.-5C.15D.-152.某几何体的三视图如图所示,则该几何体为()A. B.C. D.3.下列计算正确的是()A.a4+a4=a8B.a4⋅a4=a16C.a4 4=a16D.a8÷a4=a24.在数轴上表示不等式x-12<0的解集,正确的是()A. B.C. D.5.下列函数中,y的值随x值的增大而减小的是()A.y=x2+1B.y=-x2+1C.y=2x+1D.y=-2x+16.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A.60°B.54°C.48°D.36°7.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.298.如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.109.已知反比例函数y =kxk ≠0 在第一象限内的图象与一次函数y =-x +b 的图象如图所示,则函数y =x 2-bx +k -1的图象可能为()A. B.C. D.10.如图,E 是线段AB 上一点,△ADE 和△BCE 是位于直线AB 同侧的两个等边三角形,点P ,F 分别是CD ,AB 的中点.若AB =4,则下列结论错误的是()A.PA +PB 的最小值为33B.PE +PF 的最小值为23C.△CDE 周长的最小值为6D.四边形ABCD 面积的最小值为33二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:38+1=。
2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解

2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(试题部分)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A .B .C .D .7.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D .10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A .B .C .D .12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A .B .C .D .13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .24.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x =>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠= .26.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为 .27.(2024·内蒙古呼伦贝尔·中考真题)如图,点()0,2A −,()1,0B ,将线段AB 平移得到线段DC ,若90ABC ∠=︒,2BC AB =,则点D 的坐标是 .28.(2024·浙江·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与A B ''关于过点O 的直线l 对称,点B 的对应点B '在线段OC 上,A B ''交CD 于点E ,则B CE '与四边形OB ED '的面积比为29.(2024·江苏苏州·中考真题)如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .三、解答题30.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 31.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm 的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)32.(2024·吉林长春·中考真题)图①、图②、图③均是33⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A 、B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作四边形ABCD ,使其是轴对称图形且点C 、D 均在格点上.(1)在图①中,四边形ABCD 面积为2;(2)在图②中,四边形ABCD 面积为3;(3)在图③中,四边形ABCD 面积为4.33.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A −,()2,3B −,()5,2C −.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π) 34.(2024·吉林·中考真题)图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD 的一条对称轴.(2)在图②中,画出经过点E 的O 的切线.35.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围; ②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 36.(2024·北京·中考真题)在平面直角坐标系xOy 中,O 的半径为1,对于O 的弦AB 和不在直线AB 上的点C ,给出如下定义:若点C 关于直线AB 的对称点C '在O 上或其内部,且ACB α∠=,则称点C 是弦AB 的“α可及点”.(1)如图,点()0,1A ,()1,0B .①在点()12,0C ,()21,2C ,31,02C ⎛⎫ ⎪⎝⎭中,点___________是弦AB 的“α可及点”,其中α=____________︒;②若点D 是弦AB 的“90︒可及点”,则点D 的横坐标的最大值为__________;(2)已知P 是直线y =且存在O 的弦MN ,使得点P 是弦MN 的“60︒可及点”.记点P 的横坐标为t ,直接写出t 的取值范围.2024年中考数学真题汇编专题25 图形的平移翻折对称+答案详解(答案详解)一、单选题1.(2024·江苏苏州·中考真题)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.2.(2024·天津·中考真题)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查轴对称图形,掌握轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形是解题的关键.【详解】解:A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选C.3.(2024·黑龙江牡丹江·中考真题)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【分析】本题考查了中心对称图形与轴对称图形的概念,正确掌握中心对称图形与轴对称图形定义是解题关键.中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形.根据定义依次对各个选项进行判断即可.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.4.(2024·重庆·中考真题)下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D.该标点符号不是轴对称图形,故此选项不符合题意.故选:A.5.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cm B.320cm C.280cm D.160cm【答案】A【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm的正方形的周长加上边长是80cm的正方形的两条边长再减去220cm⨯,∴阴影图形的周长是:480280220440cm⨯+⨯−⨯=,故选:A.6.(2024·四川眉山·中考真题)下列交通标志中,属于轴对称图形的是()A.B.C.D.【答案】A【分析】本题主要考查了轴对称图形,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不符合题意;C. 不是轴对称图形,故此选项不符合题意;D. 不是轴对称图形,故此选项不符合题意;故选:A.7.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键. 根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .8.(2024·湖南·中考真题)下列命题中,正确的是( )A .两点之间,线段最短B .菱形的对角线相等C .正五边形的外角和为720︒D .直角三角形是轴对称图形【答案】A【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A 、两点之间,线段最短,正确,是真命题,符合题意;B 、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C 、正五边形的外角和为360︒,选项错误,是假命题,不符合题意;D 、直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A .9.(2024·贵州·中考真题)“黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A .B .C .D . 【答案】B【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意;故选:B.10.(2024·北京·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的定义是解题的关键.【详解】解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形,也是中心对称图形,故符合题意;C、不是轴对称图形,也不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B.11.(2024·湖北武汉·中考真题)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.12.(2024·广西·中考真题)端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A.B.C.D.【答案】B【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.图案不成轴对称,故不符合题意;B.图案成轴对称,故符合题意;C.图案不成轴对称,故不符合题意;D.图案不成轴对称,故不符合题意;故你:B.13.(2024·黑龙江大兴安岭地·中考真题)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、是轴对称图形,不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .14.(2024·广东·中考真题)下列几何图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D . 【答案】C【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .15.(2024·青海·中考真题)如图,一次函数23y x =−的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是( )A .3,02⎛⎫− ⎪⎝⎭B .3,02⎛⎫ ⎪⎝⎭C .()0,3D .()0,3−【答案】A【分析】本题考查了一次函数与坐标轴的交点坐标,点的对称,属于简单题,求交点坐标是解题关键.16.(2024·福建·中考真题)小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是( )A .OB OD ⊥B .BOC AOB ∠=∠ C .OE OF =D .180BOC AOD ∠+∠=︒ 由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;OH ,可得 GOD ∠=,即可判断;掌握轴对称的性质是解题的关键.A.OE OF ⊥,90︒,点的中点,OAB 与ODC 都是等腰三角形,由对称得OAB ODC ≌,F 分别是底边AB ,,结论正确,故不符合题意;O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒,GOD BOH ∴∠=∠,由对称得GOD COH ∴∠=∠,同理可证AOD ∠∴故选:B 17.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7−或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q −,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q −,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98−+−,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题18.(2024·江西·中考真题)在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标. 【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B , ∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.19.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是 .【答案】()1,4【分析】本题考查坐标与图形,三角形全等的性质.利用数形结合的思想是解题的关键.根据点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,画出图形,结合图形的对称性可直接得出()1,4D .【详解】解:∵点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,∴AD BC =,AC BD =,∴可画图形如下,由图可知点C 、D 关于线段AB 的垂直平分线2x =对称,则()1,4D .故答案为:()1,4.20.(2024·四川甘孜·中考真题)如图,Rt ABC △中,90C ∠=︒,8AC =,4BC =,折叠ABC ,使点A 与点B 重合,折痕DE 与AB 交于点D ,与AC 交于点E ,则CE 的长为 .【答案】3【分析】本题考查了折叠的性质和勾股定理,熟练掌握勾股定理是解题的关键. 设CE x =,则8AE BE x ==−,根据勾股定理求解即可.【详解】解:由折叠的性质,得AE BE =,设CE x =,则8AE BE x ==−,由勾股定理,得222BC CE BE +=,∴()22248x x +=−,解得3x =.故答案为:3.21.(2024·甘肃临夏·中考真题)如图,等腰ABC 中,2AB AC ==,120BAC ∠=︒,将ABC 沿其底边中线AD 向下平移,使A 的对应点A '满足13AA AD '=,则平移前后两三角形重叠部分的面积是 .出A EF A B C ''''∽,根据对应边上的中线比等于相似比,利用面积公式进行求解即可.【详解】解:∵等腰ABC 中,30ABC ∠=︒,AD 为中线,AD BC ⊥,BD CD =,∵将ABC 沿其底边中线,C BC B '∥∴A EF A B C ''''∽,EF A D B C A G'=''', 13AA AD '=,3223DA AD A G '='=2EF A D '22.(2024·四川广安·中考真题)如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为 .∵4AB =,30ABC ∠=︒,在ABCD Y ∴122AH AB ==,AD BC ∥,∴24AA AH '==,AA AD '⊥,∵5AD =,23.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为 .【答案】()3,10【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=︒,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,。
2023年河北保定中考数学真题及答案

2023年河北保定中考数学真题及答案一、选择题1.代数式7x -的意义可以是()A.7-与x 的和B.7-与x 的差C.7-与x 的积D.7-与x的商2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A.南偏西70︒方向B.南偏东20︒方向C.北偏西20︒方向D.北偏东70︒方向3.化简233y x x ⎛⎫ ⎪⎝⎭的结果是()A.6xyB.5xy C.25x y D.26x y 4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.5.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为()A .2B.3C.4D.56.若k 为任意整数,则22(23)4k k +-的值总能()A.被2整除 B.被3整除C.被5整除D.被7整除7.若a b ===()A.2B.4C.D.8.综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程.(1)作BD 的垂直平分线交BD 于点O ;(2)连接AO ,在AO 的延长线上截取OC AO =;(3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是()A.a b <B.a b =C.a b >D.a ,b 大小无法比较10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A.12119.4610109.4610⨯-=⨯B.12129.46100.46910⨯-=⨯C.129.4610⨯是一个12位数D.129.4610⨯是一个13位数11.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S = ()A.43B.83C.12D.1612.如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个13.在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A.30︒B.n ︒C.n ︒或180n ︒-︒D.30︒或150︒14.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A. B.C. D.15.如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=()A.42︒B.43︒C.44︒D.45︒16.已知二次函数22y x m x =-+和22y x m =-(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.2m C.4D.22m 二、填空题17.如图,已知点(3,3),(3,1)A B ,反比例函数(0)ky k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k的数值:_________.18.根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7b21x x+a119.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中∠=______度.(1)α(2)中间正六边形的中心到直线l的距离为______(结果保留根号).三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A区B区脱靶-一次计分(分)312在第一局中,珍珍投中A区4次,B区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.a>.某同学分别21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1),S S.用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188nC y x x c =-+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与 EQ的长度,并比较大小.25.在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.26.如图1和图2,平面上,四边形ABCD 中,8,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).参考答案一、选择题【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】B【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】A【10题答案】【答案】D【11题答案】【答案】B【12题答案】【答案】B【13题答案】【答案】C【14题答案】【答案】D【15题答案】【答案】C【16题答案】【答案】A二、填空题【17题答案】【答案】4(答案不唯一,满足39k <<均可)【18题答案】【答案】①.52②.2-【19题答案】【答案】①.30②.三、解答题【20题答案】【答案】(1)珍珍第一局的得分为6分;(2)6k =.【21题答案】【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a -=++-+=-+=-∵1a >,∴()21210S S a -=->,∴12S S >.【22题答案】【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【23题答案】【答案】(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【24题答案】【答案】(1)7cm ;(2)11cm 2;(3)253cm 3EF =, 25π=cm 6EQ , EF EQ >.【25题答案】【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,函数图象如图所示:(3)538a c b+=【26题答案】【答案】(1)∵将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',∴A M AM'=∵A MA '∠的平分线MP 所在直线交折线AB BC -于点P ,∴A MP AMP'∠=∠又∵PM PM=∴()SAS A MP AMP 'V V ≌∴A P AP '=;(2)①90CBD ∠=︒,13x =;②76或236(3)22816x x +。
2023福建中考数学25题

2023福建中考数学25题
题目:某班级有30名学生,其中15名男生和15名女生。
从班级中随机选择3名学生,求选择的3名学生中至少有2名男生的概率。
解析:首先,我们需要计算总的选择方式。
从30名学生中选择3名学生的方式共有C(30, 3)种,即30个学生中选出3个学生的组合数。
接下来,我们计算选择的3名学生中至少有2名男生的方式。
有两种情况满足这个条件:
选择3名男生:从15名男生中选择3名学生的方式共有C(15, 3)种。
选择2名男生和1名女生:从15名男生中选择2名学生的方式共有C(15, 2)种,从15名女生中选择1名学生的方式共有C(15, 1)种。
因此,选择2名男生和1名女生的方式共有C(15, 2) * C(15, 1)种。
最后,我们将两种情况的方式数相加,得到选择的3名学生中至少有2名男生的方式总数。
概率等于选择的方式数除以总的选择方式数。
因此,最终的概率为:
P(至少有2名男生) = (C(15, 3) + C(15, 2) * C(15, 1)) / C(30, 3)。
2023年山东省聊城市中考数学真题

二〇二三年全市初中学生学业水平考试数学试题亲爱的同学,伴随着考试的开始,你又走到了一个新的人生驿站.请你在答题之前,一定要仔细阅读以下说明:1. 试题由选择题与非选择题两部分组成,共6页.选择题36分,非选择题84分,共120分.考试时间120分钟.2. 将姓名、考场号、座号、考号填写在试题和答题卡指定的位置.3. 试题答案全部涂、写在答题卡上,完全按照答题卡中的“注意事项”答题.4. 考试结束,答题卡和试题一并交回.5. 不允许使用计算器.愿你放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.选择题(共36分)一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1. ()02023-的值为()A. 0B. 1C. 1-D.1 2023 -2. 如图所示几何体的主视图是()A B. C. D.3. 4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A. 1500名师生的国家安全知识掌握情况B. 150C. 从中抽取的150名师生的国家安全知识掌握情况D. 从中抽取的150名师生4. 若一元二次方程2210m x x++=有实数解,则m的取值范围是().A. 1m ≥-B. 1m £C. 1m ≥-且0m ≠D. 1m £且0m ≠5. 如图,分别过A B C 的顶点A ,B 作A D B E.若25C A D ∠=︒,80E B C ∠=︒,则A C B ∠的度数为( )A. 65︒B. 75︒C. 85︒D. 95︒6. 如图,点O 是A B C 外接圆的圆心,点I 是A B C 的内心,连接O B ,IA .若35C A I ∠=︒,则O B C ∠的度数为( )A.15︒B. 17.5︒C. 20︒D. 25︒7. 若关于x 的分式方程111xm x x+=-的解为非负数,则m 的取值范围是( )A.1m £且1m≠- B. 1m ≥-且1m ≠C. 1m <且1m ≠-D. 1m >-且1m ≠8. 如图,在直角坐标系中,A B C 各点坐标分别为()2,1A -,()1,3B -,()4,4C -.先作A B C 关于x 轴成轴对称的111A B C △,再把111A B C △平移后得到222A B C △.若()22,1B ,则点2A 坐标为( )A. ()1,5B. ()1,3C. ()5,3D. ()5,59. 如图,该几何体是由一个大圆锥截去上部的小圆锥后剩下的部分.若该几何体上、下两个圆的半径分别为1和2,原大圆锥高的剩余部分1O O 为 )A.B. C. D.10. 甲乙两地相距a 千米,小亮8:00乘慢车从甲地去乙地,10分钟后小莹乘快车从乙地赶往甲地.两人分别距甲地的距离y (千米)与两人行驶时刻t (×时×分)的函数图象如图所示,则小亮与小莹相遇的时刻为( )A. 8:28B. 8:30C. 8:32D. 8:3511. 已知二次函数()20y a x b x c a =++≠的部分图象如图所示,图象经过点()0,2,其对称轴为直线=1x -.下列结论:①30a c +>;②若点()14,y -,()23,y 均在二次函数图象上,则12y y >;③关于x的一元二次方程21a x b x c ++=-有两个相等的实数根;④满足22a x b x c ++>的x 的取值范围为20x -<<.其中正确结论的个数为( ).A. 1个B. 2个C. 3个D. 4个12. 如图,已知等腰直角A B C ,90A C B ∠=︒,A B =C 是矩形E C G F 与A B C 的公共顶点,且1C E=,3C G=;点D 是C B 延长线上一点,且2C D =.连接B G ,D F ,在矩形E C G F 绕点C 按顺时针方向旋转一周的过程中,当线段B G 达到最长和最短时,线段D F 对应的长度分别为m 和n ,则m n的值为( )A. 2B. 3C.D.非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.计算:⎛÷=⎝______.14. 若不等式组12232x x x m x --⎧≥⎪⎨⎪-≥⎩的解集为x m ≥,则m 的取值范围是______.15. 如图,在A B C D Y 中,B C 的垂直平分线E O 交A D 于点E ,交B C 于点O ,连接B E ,C E ,过点C 作C F B E ∥,交E O 的延长线于点F ,连接B F .若8A D =,5C E =,则四边形B F C E 的面积为______..16. 在一个不透明的袋子中,装有五个分别标有数字,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为______.17. 如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:_______.三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或演算步骤)18. 先化简,再求值:222224422aa a a a aa a +⎛⎫+÷⎪-+--⎝⎭,其中2a =.19. 如图,在四边形A B C D 中,点E 是边B C 上一点,且B E C D =,B A E D C ∠=∠=∠.(1)求证:E A D E D A ∠=∠;(2)若60C ∠=︒,4D E =时,求A E D △的面积.20. 某中学把开展课外经典阅读活动作为一项引领学生明是非、知荣辱、立志向、修言行的德育举措.为了调查活动开展情况,需要了解全校2000名学生一周的课外经典阅读时间.从本校学生中随机抽取100名进行调查,将调查的一周课外经典阅读的平均时间()h x 分为5组:①12x ≤<;②23x ≤<;③34x ≤<;④45x ≤<;⑤56x ≤<,并将调查结果用如图所示的统计图描述.根据以上信息,解答下列问题:(1)本次调查中,一周课外经典阅读的平均时间的众数和中位数分别落在第______组和第______组(填序号);一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为______;估计全校一周课外经典阅读的平均时间达到4小时的学生有______人;(2)若把各组阅读时间的下限与上限的中间值近似看作该组的平均阅读时间,估计这100名学生一周课外经典阅读的平均时间是多少?(3)若把一周课外经典阅读的平均时间达到4小时的人数百分比超过40%,作为衡量此次开展活动成功的标准,请你评价此次活动,并提出合理化的建议.21. 今年五一小长假期间,我市迎来了一个短期旅游高峰.某热门景点的门票价格规定见下表:某旅行社接待的甲、乙两个旅游团共102人(甲团人数多于乙团),在打算购买门票时,如果把两团联合作为一个团体购票会比两团分别各自购票节省730元.(1)求两个旅游团各有多少人?(2)一个人数不足50人的旅游团,当游客人数最低为多少人时,购买B种门票比购买A种门票节省?22. 东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2︒方向,南关桥C在南偏东56.31︒方向(点A,B,C,P四点在同一平面内).求明珠大剧院到龙堤B C的距离(结果精确到1m).(参考数据:sin68.20.928︒≈,︒≈,co s68.20.371︒≈,tan68.2 2.50︒≈,sin56.310.832︒≈,tan56.31 1.50co s56.310.555︒≈)23. 如图,一次函数yk x b=+图像与反比例函数m y x=的图像相交于()1,4A -,(),1B a -两点.(1)求反比例函数和一次函数(2)点(),0p n 在x 轴负半轴上,连接AP ,过点B 作B QA P ,交m y x=的图像于点Q ,连接PQ .当B Q A P =时,若四边形APQB 的面积为36,求n 的值.24. 如图,在R t A B C △中,90A C B∠=︒,B A C ∠的平分线A D 交B C 于点D ,A D C ∠的平分线D E交A C 于点E .以A D 上的点O 为圆心,O D 为半径作O ,恰好过点E .(1)求证:A C 是O 的切线;(2)若12C D =,3ta n 4A B C ∠=,求O半径.25. 如图①,抛物线29y a x b x =+-与x 轴交于点()30A -,,()6,0B ,与y 轴交于点C ,连接AC ,BC .点P x 轴上任意一点.(1)求抛物线的表达式;(2)点Q 在抛物线上,若以点A ,C ,P ,Q 为顶点,AC 为一边的四边形为平行四边形时,求点Q 的坐标;(3)如图②,当点(),0P m 从点A 出发沿x 轴向点B 运动时(点P 与点A ,B 不重合),自点P 分别作∥P E B C ,交AC 于点E ,作P D B C ⊥,垂足为点D .当m 为何值时,P E D V 面积最大,并求出最大值.二〇二三年全市初中学生学业水平考试数学试题亲爱的同学,伴随着考试的开始,你又走到了一个新的人生驿站.请你在答题之前,一定要仔细阅读以下说明:1. 试题由选择题与非选择题两部分组成,共6页.选择题36分,非选择题84分,共120分.考试时间120分钟.2. 将姓名、考场号、座号、考号填写在试题和答题卡指定的位置.3. 试题答案全部涂、写在答题卡上,完全按照答题卡中的“注意事项”答题.4. 考试结束,答题卡和试题一并交回.5. 不允许使用计算器.愿你放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.选择题(共36分)一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】B【9题答案】【答案】C【10题答案】【答案】A【11题答案】 【答案】B 【12题答案】 【答案】D非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)【13题答案】 【答案】3 【14题答案】【答案】1m ≥-##1m -≤ 【15题答案】 【答案】24 【16题答案】 【答案】25##0.4【17题答案】【答案】()221,22n n n n ++++三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或演算步骤)【18题答案】【答案】22a -【19题答案】【答案】(1)见解析 (2)【20题答案】【答案】(1)③,③,28%,560; (2)3.4;(3)此次活动不成功,建议:①学校多举办经典阅读活动;②开设经典阅读知识竞赛,提高学生阅读兴趣等(答案不唯一) 【21题答案】【答案】(1)甲团人数有58人,乙团人数有44人;(2)当游客人数最低为46人时,购买B 种门票比购买A 种门票节省. 【22题答案】第11页/共11页【答案】明珠大剧院到龙堤B C 的距离为1320m .【23题答案】【答案】(1)4y x =-,3y x =-+(2)215n =-【24题答案】【答案】(1)见解析 (2)15-【25题答案】【答案】(1)213922y x x =--(2)点Q 坐标(3,9)-,或3(,9)22+或3(,9)22-;(3)32m =时,P D E S △有最大值,最大值为1108.。
2023年江苏南京中考数学真题及答案

2023年江苏南京中考数学真题及答案注意事项:1. 本试卷共6页. 全卷满分 120分. 考试时间为120分钟. 考生答题全部答在答题卡上,答在本试卷上无效.2. 请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上.3. 答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑. 如需改动,请用橡皮擦干净后,再选涂其他答案. 答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2 分,共 12分. 在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色, 去年完成造林约 3 830 000 公顷. 用科学记数法表示3830000 是A. 3.83×10⁶B. 0.383×10⁶C. 3.83×10⁷D.0.383×10⁷ 2. 整数a 满足则a 的值为A. 3B. 4C. 5D. 6 3. 若一个等腰三角形的腰长为3,则它的周长可能是A. 5B. 10C. 15D. 204.甲、乙两地相距100km ,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)与行驶速度 v(单位:km/h) 之间的函数图像是5. 我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里, 大斜一十五里. 里法三百步, 欲知为田几何? ”问题大意: 如图, 在△ABC 中, AB=13里, BC=14里, AC=15里, 则的面积是A. 80 平方里B. 82平方里C. 84平方里D. 86平方里6.如图,不等臂跷跷板 AB 的一端A 碰到地面时,另一端B 到地面的高度为60cm ; 当AB 的一端B 碰到地面时,另一端A 到地面的高度为 90cm ,则跷跷板 AB 的支撑点 O 到地面的高度 OH 是 A. 36cm B. 40cm C. 42cm D. 45cm二、填空题(本大题共 10 小题,每小题2 分,共20分. 请把答案填写在答题卡相应位置.......上) 7. 计算:8. 若式子 在实数范围内有意义, 则x 的取值范围是 ▲ .9. 计算 的结果是 ▲ . 10. 分解因式 的结果是 ▲ . 11. 计算的结果是 ▲ .12. 某校九年级有8个班级, 人数分别为37, a, 32, 36, 37, 32, 38, 34. 若这组数据的众数为32,则这组数据的中位数为 ▲ .13. 甲车从 A 地出发匀速行驶,它行驶的路程y(单位:km) 与行驶的时间x(单位:min)之间的函数关系如图所示. 甲车出发20 min 后,乙车从A 地出发沿同一路线匀速行驶. 若乙车经过 20min~30min 追上甲车,则乙车的速度 v(单位:km/min)的取值范围是 ▲ .14. 在平面直角坐标系中,点O 为原点,点A 在第一象限,且OA=3. 若反比例函数的图像经过点A ,则k 的取值范围是 ▲ .15. 如图, ⊙O 与正六边形ABCDEF 的边CD, EF 分别相切于点C, F. 若AB=2, 则⊙O 的半径长为 ▲.16. 如图, 在菱形纸片ABCD 中, 点E 在边 AB 上,将纸片沿CE 折叠, 点 B 落在 B'处,CB'⊥AD,垂足为F 若 CF=4cm, FB'=1cm, 则BE= ▲ cm三、解答题(本大题共11 小题,共88分. 请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(7分) 计算18.(8分) 解不等式组 并写出它的整数解.19.(7分) 如图,在▱.ABCD 中, 点 M, N 分别在边 BC, AD 上, 且AM ∥CN, 对角线BD 分别交 AM, CN 于点E, F. 求证BE=DF.20.(8分) 社会运转和日常生活离不开物流行业的发展,阅读以下统计图并回答问题.2011~2022年中国社会物流总费用及占GDP比重统计图(1) 下列结论中,所有正确结论的序号是▲ .①2011~2022年社会物流总费用占 GDP 比重总体呈先下降后稳定的趋势:②2011~2016年社会物流总费用的波动比2017~2022年社会物流总费用的波动大;③2012~2022 年社会物流总费用逐年增加,其中增加的幅度最大的一年是 2021年,(2) 请结合上图提供的信息,从不同角度写出两个与我国GDP 相关的结论.21.(8分) 某旅游团从甲、乙、丙、丁4个景点中随机选取景点游览.(1) 选取2个景点,求恰好是甲、乙的概率;(2) 选取3个景点,则甲、乙在其中的概率为▲ .22.(8分) 如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口. 温水的温度为30℃, 流速为20ml/s; 开水的温度为100℃,流速为 15ml/s. 某学生先接了一会儿温水,又接了一会儿开水,得到一杯280ml温度为60℃的水(不计热损失),求该学生分别接温水和开水的时间.物理常识开水和温水混合时会发生热传递,开水放出的热量等于温水吸收的热量,可以转化为开水的体积X开水降低的温度=温水的体积×温水升高的温度.23.(8分) 如图,为了测量无人机的飞行高度,在水平地面上选择观测点A,B. 无人机悬停在C处,此时在A 处测得 C的仰角为:无人机垂直上升5m悬停在D处,此时在B 处测得 D的仰角为( 点A, B, C, D在同一平面内, A, B两点在 CD的同侧. 求无人机在 C 处时离地面的高度.(参考数据:24.(8分) 如图,玻璃桌面与地面平行,桌面上有一盏台灯和一支铅笔,点光源O与铅笔AB所确定的平面垂直于桌面. 在灯光照射下,AB 在地面上形成的影子为 CD(不计折射),AB∥CD.(1) 在桌面上沿着 AB 方向平移铅笔,试说明CD的长度不变.(2)桌面上一点P恰在点O的正下方,且(桌面的高度为 60cm.在点O 与AB 所确定的平面内,将AB绕点A 旋转,使得CD的长度最大.①画出此时AB所在位置的示意图;②CD的长度的最大值为▲ cm.25.(8分) 已知二次函数(a为常数, a≠0).(1) 若a<0,求证:该函数的图像与x轴有两个公共点.(2) 若a=-1, 求证: 当-1<x<0时, y>0.(3)若该函数的图像与x轴有两个公共点(x₁,0),(x₂,0),且-则a的取值范围是▲ .26.(9分) 如图, 在△ABC中, AB=AC, ⊙O 是△ABC的外接圆, 过点 O作 AC的垂线,垂足为 D,分别交直线BC, AC于点E, F, 射线AF 交直线 BC 于点G.(1) 求证AC=CG.(2) 若点 E 在 CB 的延长线上, 且EB=CG, 求∠BAC的度数.(3) 当BC=6时,随着 CG 的长度的增大,EB 的长度如何变化? 请描述变化过程,并说明理由.27.(9分) 在平面内,将一个多边形先绕自身的顶点 A 旋转一个角度( 再将旋转后的多边形以点 A 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为 k,称这种变换为自旋转位似变换. 若顺时针旋转,记作 T(A,顺θ,k);若逆时针旋转, 记作T(A, 逆θ, k).例如:如图①,先将绕点B逆时针旋转. 得到再将以点 B 为位似中心缩小到原来的得到这个变换记作T(B,逆(1)如图②,经过T(C,顺60°,2)得到用尺规作出(保留作图痕迹)(2) 如图③, 经过 T(B, 逆α, k₁) 得到经过 T(C, 顺β, k₂)得到连接AE,AF. 求证: 四边形AFDE是平行四边形.(3) 如图④, 在中, 若经过(2) 中的变换得到的四边形AFDE 是正方形.Ⅰ. 用尺规作出点D(保留作图痕迹,写出必要的文字说明);Ⅱ. 直接写出AE 的长.答案解析一、选择题题号 1 2 3 4 5 6答案 A C B D C A1.【解析】科学记数法的表示为a×10" (1≤a<10, n为整数), 故3830 000可表示为3 .故选A.2.【解析】: 故选 C.3.【解析】根据三边关系可得0<x<6,则周长的取值范围为6<C<12.故选 B.4.【解析】根据路程=速度×时间,可得所以t与v成反比例. 故选 D.5.【解析】本题考察双勾股定理,过点 A 作交BC于点D.在 Rt△ABD中, 在 Rt△ACD中,设BD=x, 则可列方程: 求得x=5.则AD=12, 所以三角形ABC的面积为故选 C.8/166.【解析】设长边OA=a, 短边( , O离地面的距离为h,根据相似得:解得h=36二、解答题题号7 8 9 10 11 12答案2; 2 x≠2 3 3(a-1)²1135题号13 14 15 16 答案 1.5≤v≤1.8 0<k≤4.57. 【解答】解: 2; 2.8. 【解答】解: x≠2.9.【解答】解:故答案为10.【解答】解:故答案为11.【解答】解:故答案为:12. 【解答】解: 由题可知a=32将这组数从小到大排列,由中位数概念可知,中位数为中间两个数34和36 的平均数 35. 故答案为:35.13.【解答】解:由函数图像可知甲的速度为18÷20=0.9 (km/min) 追及的路程为0.9×20=18(km)x=20min 时, 甲乙两车速度差为18÷20=0.9(km/min), 此时乙车速度为0.9+0.9=1.8(km/m in)x=30min 时, 甲乙两车速度差为18÷30=0.6(km/min), 此时乙车速度为0.9+0.6=1.5(km/m in)所以乙车的速度v 的取值范围是1.5≤.v ≤.1.814. 【解答】解:反比例函数如图所示,因为函数经过第一象限,所以k>0,因为反比例函数关于直线y=x 对称,所以直线 y=x 与反比例函数的交点是到原点的距离最小值点,k 的值最小,由k 的几何意义可知,k 为图像上的点与坐标轴围成的正方形的面积,此时k=3×3÷2=4.5 所以k 的取值范围是0<k ≤4.5.15.【解答】解:如图由正六边形的内角和和对称性可知 CF=4且CF 平分∠BCD 和∠AFE, 每个内角都为120° ∴∠QCD=60°过点O 作OQ ⊥CF, ∴CQ=2 ∵OC 与圆O 相切,∴∠OCD=90°, ∴∠OCQ=30°∴.在直角三角形OCQ 中,由三边比例关系可知∴半径OC 的长为16.【解析】 由翻折得: BC=CD=B'C=5, ∠BCE=∠B'CE =45°,∵CD=5, CF=4, ∠CFD=90°,∴FD=3, 过点E 作EG ⊥BC, 设 CG=x, 则EG =x,BC=5-x, ∵△EGB ∽△CFD,∴.EG=GB, 解得三、解答题 17. 解:18. 解: 解不等式①得:解不等式②得:x>-3∵x 取整数 ∴x 取-2,-1,0.19.【解析】连接AC 交BD 于点O, ∵□ABCD 为平行四边形 ∴AO=CO, BO=DO ∵AM ∥CN ∴∠EAC=∠FCA在△AEO 和△CFO 中∴△AOE ≌.△COF∴BE=DF20.【解析】(1) 比重总体呈先下降后稳定的趋势,故①正确;2011 ~2016 年社会物流总费用的波动范围为2.7,2017 ~2022年社会物流总费用的波动范围为5.7,故2011 ~2016 年社会物流总费用的波动比2017 ~2022年社会物流总费用的波动小,故②错误;2012~2022年社会物流总费用逐年增加,其中增加的幅度最大的一年是 2021年,故③正确. 故答案为: ①③. (2) 根据统计图可得,①从2012年到2017年社会物流总费用平稳增长,占GDP 的比重却逐年递减;说明我国G DP 总量在逐年增长;②从2017年到2022年社会物流总费用逐年增加,占GDP 的比重却趋于稳定,变化不大。
2023年北京中考数学真题及答案

2023年北京中考数学真题及答案考生须知1.本试卷共6页,共两部分,三道大题,28道小题.满分100分.考试时间120分钟.2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.第一部分 选择题一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1.截至2023年6月11日17时,全国冬小麦收款2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( ) A .B .C .D .723.910⨯82.3910⨯92.3910⨯90.23910⨯2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,,,则的大小为( )90AOC BOD ∠=∠=︒126AOD ∠=︒BOC ∠A .B . 36︒44︒4.已知,则下列结论正确的是(10a ->A . 11a a -<-<<C .11a a -<-<<上述结论中,所有正确结论的序号是(15.如图,是的半径,是OA O A BC16.学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A,B,C,D,E,F,G七道工序,加工要求如下:①工序C,D须在工序A完成后进行,工序在工序C,D都完成后进行;(1)求证:四边形是矩形; AECF (2),,AE BE =2AB =1tan 2ACB ∠=22.在平面直角坐标系中,函数xOy y kx =+与过点且平行于x 轴的线交于点C . ()0,4(1)求该函数的解析式及点C 的坐标; (2)当时,对于x 的每一个值,函数3x <y =且小于4,直接写出n 的值.23.某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:(1)求证平分,并求DB ADC ∠BAD ∠(2)过点作交的延长线于点C CF AD ∥AB 长.25.某小组研究了清洗某种含污物品的节约用水策略.部分内容如下.(Ⅰ)选出C 是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量和总用水1x 量之间的关系,在平面直角坐标系中画出此函数的图象;12x x +xOy结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为______个单位质量(精确到个位)时,总用水量最小. 根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约______个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C ______0.990(填“>”“=”或“<”).26.在平面直角坐标系中,,是抛物线xOy ()11,M x y ()22,N x y ()20y ax bx c a =++>上任意两点,设抛物线的对称轴为. x t =(1)若对于,有,求的值;11x =22x =12y y =t (2)若对于,,都有,求的取值范围.101x <<212x <<12y y <t 27.在中、,于点M ,D 是线段上的动ABC A ()045B C αα∠=∠=︒<<︒AM BC ⊥MC 点(不与点M ,C 重合),将线段绕点D 顺时针旋转得到线段.DM 2αDE(1)如图1,当点E 在线段上时,求证:D 是的中点;AC MC (2)如图2,若在线段上存在点F (不与点B ,M 重合)满足BM ,直接写出的大小,并证明.EF AEF ∠(1)如图,点()1,0A -()1,1C -【详解】如图,所有结果有4种,满足要求的结果有1种,故概率为∴,DF AC a b ==+∵,DF DE <∴,①正确,故符合要求;a b c +<23.(1),;166m =165n =(2)甲组(3)170, 172由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过的清洁度能达到0.990,第一次用水量为6个单位质量,总用水量为7.5∴,即D 是的中点; DM DC =MC (2);90AEF ∠=︒证明:如图2,延长到H 使,连接,, FE FE EH =CH AH ∵,DF DC =∴是的中位线, DE FCH V ∴,,DE CH ∥2CH DE =由旋转的性质得:,, DM DE =2MDE α∠=∴, 2FCH α∠=∵,B C α∠=∠=∴,是等腰三角形, ACH α∠=ABC A ∴,,B ACH ∠∠=AB AC =设,,则,, DM DE m ==CD n =2CH m =CM m n =+∴,DF CD n ==∴, FM DF DM n m =-=-∵, AM BC ⊥∴,BM CM m n ==+∴, ()2BF BM FM m n n m m =-=+--=∴,CH BF =在和中,,ABF △ACH A AB ACB ACH BF CH =⎧⎪∠=∠⎨⎪=⎩∴,()SAS ABF ACH ≅A A28.(1),; 1C 2C 2OC =(2)或.2313t ≤≤2633t ≤≤a 、若与相切,经过点O ,12C B O A AC 则、所在直线为: 12C B 1AC 0y x y ⎧=-⎪⎨=⎪⎩①当S 位于点时,为()0,3M MP A ∵,的半径为1,且()0,3M O A MP ∴, OP MP ⊥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23年中考数学25题
摘要:
1.23 年中考数学25 题概述
2.题目分类与分析
3.解题技巧与方法
4.备考建议
正文:
【23 年中考数学25 题概述】
23 年中考数学25 题是指在每年中考数学考试中,最后25 道题目的难度相对较高,对学生的综合能力和应变能力有较高的要求。
这25 道题目涵盖了初中数学的各个领域,包括几何、代数、函数、概率等。
对于备考中考的学生来说,攻克这25 道题目是提高数学成绩的关键。
【题目分类与分析】
1.几何题:这类题目主要涉及三角形、四边形、圆等几何图形的性质、面积和周长的计算。
学生需要熟练掌握相关公式和定理,灵活运用切割、旋转等几何变换方法。
2.代数题:这类题目主要包括一元二次方程、不等式、二次函数等。
学生需要熟练掌握代数运算法则,善于解方程、解不等式,找到题目中的规律。
3.函数题:函数题主要涉及一次函数、二次函数、反比例函数等。
学生需要熟练掌握函数的性质、图像和解析式,善于通过函数解决问题。
4.概率题:概率题主要涉及随机事件、概率、条件概率等内容。
学生需要
熟练掌握概率的基本概念和运算方法,善于分析随机事件之间的关系。
【解题技巧与方法】
1.仔细审题:对于数学题目,审题非常重要。
学生需要仔细阅读题目,理解题意,找到题目的关键词。
2.化繁为简:在解题过程中,学生需要将题目化繁为简,将复杂的问题分解为若干个简单的问题,逐步解决。
3.善于归纳总结:在解题过程中,学生需要善于归纳总结,找到题目中的规律,为后续解题提供思路。
4.灵活运用公式定理:学生需要熟练掌握数学公式和定理,灵活运用这些知识解决问题。
5.注重解题过程:在解题过程中,学生需要注重解题过程,按照步骤逐步解题,避免出现计算错误。
【备考建议】
1.巩固基础知识:学生需要扎实掌握初中数学的基本概念、公式、定理等,为解题奠定基础。
2.多做真题练习:通过做历年中考数学真题,学生可以了解题目类型和解题方法,提高自己的应试能力。
3.分析解题思路:在解题过程中,学生需要认真分析解题思路,善于总结经验,不断提高自己的解题能力。
4.合理安排时间:在备考阶段,学生需要合理安排时间,平衡各科目的复习,避免过度偏科。