城市轨道交通结构抗震设计规范

合集下载

城市轨道交通结构抗震设计规范

城市轨道交通结构抗震设计规范

5.7.12 场地或场地附近有滑坡、滑移、崩塌、塌陷、泥石流、采空区等不良 地质作用时,应进行专门勘察,分析评价在地震作用时的稳定性。
抗震设计要点
工程场地勘察
4.1.2 城市轨道交通结构的场地与地基的勘察和评价应至少包括下列内容: 1 确定场地土的类型和场地类别; 2 对可能产生滑坡、塌陷、崩塌和采空区等的岩土体,进行地震作用下的地基稳定 性评价; 3 对判别为液化的土层,根据液化等级提出处理方案;当不进行抗液化处理时,应 计入液化效应的影响对土层的设计参数进行修正; 4 划分场地抗震地段类别。
《建筑抗震设计规范>> GB50011 。
抗震设计要点
工程场地勘察
4.2.5 工程场地覆盖层厚度应按下列要求确定: 1 应按地面至剪切波速大于500m/s 且其下卧各岩土的剪切波速均不小于500m/s 的土层 顶面的距离确定; 当地面5m 以下存在剪切波速大于相邻上层土剪切波速2.5 倍的土层,且其下卧岩土 的剪切波速均不小于400m/s 时,可按地面至该土层顶面的距离确定; 对剪切波速大于500m/s 的孤石、透镜体,应视同周围土层;
设防标准和设防目标
多水准设防: 抗震设防烈度,一个地区抗震设防依据的地震烈度,一般情况下可采用《中国地震 区划图》规定的50年超越概率10%的地震基本烈度。
设防标准和设防目标
3.1.4 各抗震设防类别结构的抗震设防标准,应符合下列要求: 1 标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行 国家标准《中国地震动参数区划图》GB18306 规定的本地区抗震设防要 求确定;


抗震减灾法规与技术标准 设防标准和设防目标
轨道交通地下结构抗震设计要点
复杂结构的抗震设计的难题

中华人民共和国国家标准建筑工程抗震设防分类标准(8级)

中华人民共和国国家标准建筑工程抗震设防分类标准(8级)

中华人民共和国国家标准建筑工程抗震设防分类标准(GB 50223—2008)1 总则1.0.1 为明确建筑工程抗震设计的设防类别和相应的抗震设防标准,以有效地减轻地震灾害,制定本标准。

1.0.2 本标准适用于抗震设防区建筑工程的抗震设防分类。

1.0.3抗震设防区的所有建筑工程应确定其抗震设防类别。

新建、改建、扩建的建筑工程,其抗震设防类别不应低于本标准的规定。

1.0.4 制定建筑工程抗震设防分类的行业标准,应遵守本标准的划分原则。

本标准未列出的有特殊要求的建筑工程,其抗震设防分类应按专门规定执行。

2 术语2.0.1 抗震设防分类 Seismic fortification category for structures根据建筑遭遇地震破坏后,可能造成人员伤亡、直接和间接经济损失、社会影响的程度及其在抗震救灾中的作用等因素,对各类建筑所做的设防类别划分。

2.0.2 抗震设防烈度 Seismic fortification intensity按国家规定的权限批准作为一个地区抗震设防依据的地震烈度。

一般情况下,取50年内超越概率10%的地震烈度。

2.0.3 抗震设防标准 Seismic fortification criterion衡量抗震设防要求高低的尺度,由抗震设防烈度或设计地震动参数及建筑抗震设防类别确定。

3 基本规定3.0.1 建筑抗震设防类别划分,应根据下列因素的综合分析确定:1建筑破坏造成的人员伤亡、直接和间接经济损失及社会影响的大小。

2 城镇的大小、行业的特点、工矿企业的规模。

3 建筑使用功能失效后,对全局的影响范围大小、抗震救灾影响及恢复的难易程度。

4 建筑各区段的重要性有显著不同时,可按区段划分抗震设防类别。

下部区段的类别不应低于上部区段。

5 不同行业的相同建筑,当所处地位及地震破坏所产生的后果和影响不同时,其抗震设防类别可不相同。

注:区段指由防震缝分开的结构单元、平面内使用功能不同的部分、或上下使用功能不同的部分。

地铁车站抗震设计分析

地铁车站抗震设计分析

地铁车站抗震设计分析摘要:地铁地下结构是城市重要的公共基础设施,对城市生命和经济具有重大意义,因此对地铁地下结构进行抗震设计是非常必要的。

本文以某标准两层车站为计算模型,采用反应位移法和时程分析法两种方法进行地铁车站结构地震反应计算,并结合相关规范对计算结果进行了分析讨论,为类似工程及地下结构抗震研究具有一定的参考意义。

引言随着城市化的不断发展,为解决交通拥挤及效率问题,我国各大城市地铁建设迅猛发展。

地铁工程是城市重要的社会公共基础设施,其结构复杂且一旦损坏难以修复,会造成重大的经济损失。

而地铁等地下结构在地震中遭受重大震害的情况已有先例,如1985年墨西哥Ms8.1级地震造成的地铁隧道和车站结构破坏、1995年日本阪神Ms7.2级地震引起神户市大开地铁车站的严重破坏[1-3],因此对地下结构进行抗震分析是十分必要的。

众多学者对地铁等地下结构的抗震理论及规范进行了研究。

刘晶波等[4]阐述了地下结构抗震分析的五个关键问题,包括动力分析模型、结构-地基系统动力相互作用问题分析方法、地铁地下结构地震破坏模式和抗震性能评估方法、抗震构造措施,和地铁区间隧道穿越地震断层的设计方案及工程措施。

侯莉娜等[5]将《城市轨道交通结构抗震设计规范》和地上民用建筑抗震设计规范进行了对比分析,指出地铁地下结构可遵循“两水准、两阶段”的设计思路及地下结构抗震设计地震动参数应与其设计基准期一致等。

陈国兴等[6]对地下结构震害、动力离心机和振动台模型试验,以及工程师在地下结构抗震分析中可能用到的有效设计与分析方法等方面涉及的重要问题进行了简要和全面的回顾。

本文结合某标准两层车站的工程实例,阐述地铁地下结构抗震反应分析方法,并对计算结果进行分析,为城市地下结构抗震评估提供一定参考。

1.车站抗震反应分析概况1.1工程概况车站结构型式为地下两层两跨箱型框架结构,明挖法施工,标准段宽为20.1m,基坑开挖深度约为17m。

标准段剖面图如图1所示。

城市轨道交通结构抗震设计规范技术要点

城市轨道交通结构抗震设计规范技术要点

合工程的实际建设环境,来进行城市轨道交通结构抗震设计工作,并不断对设计想法进行补充与完善,从而有效提高工
程设计的科学性及合理性。
关 键 词 : 城市轨道交通;抗震设计;技术要点
中图分类号:U239.5;TU352
文献标志码:A 文章编号:2096-2789(2021)04-0226-02
DOI:10.19537/ki.2096-2789.2021.04.105
1 编写规范的重要性
编写规范能够对城市轨道交通结构抗震设计起到约束 作用,然而,就目前情况而言,在我国城市轨道交通结构 抗震设计方面缺少专用规范。结合已完成的城市轨道交通 结构抗震设计情况以及应用情况来看,在进行轨道高架结 构设计工作时,通常会参考一些铁路桥梁与公路的抗震设 计的理论与规范,并采用适当的方法来完成相关设计工作。 相对而言,在开展地面或地下结构的设计工作时,参考的 是一系列建筑结构设计理论与规范。相关设计人员需要结 合实际的设计情况选择科学合理的铁路、公路的抗震规范, 如果只是依据自身经验来选择相关规范,就可能会使所选 规范与实际设计要求不符,使设计的抗震能力不在一个统 一的水平线上。除此之外,与其他普通的工民建筑相比, 铁路或公路桥梁隧道在结构上具有一定的特殊性,具体表 现在轨道交通的结构形式、所承受的车辆荷载以及其他约 束条件上。因此,需要依据实际工程情况以及安全要求编 写针对性强、适用性强的抗震设计规范,从而保证所采用 的设计理论和设计标准可以更好地匹配实际建设要求。
在进行地面结构设计工作时,主要有两种设计方法,
分别是线性反应谱方法和弹塑性反应谱方法。线性反应谱 方法在经过几十年的实际应用后,在计算方法以及基本理 论方面都比较成熟,经过几十年的检验,该种方法被认为 是一种既简单又可靠的设计方法。与此同时,从实际的设 计情况来看,大多数工程设计师对线性反应谱方法的熟悉 度与认可度比较高,因此该种方法在地面结构设计中的应 用也比较广泛,在相关人员选择设计方法时,具有一定的 优先性。弹塑性反应谱方法主要是通过弹塑性效应来对弹 塑性反应进行相关分析工作。对目前城市轨道交通的建设 情况进行分析可以发现,一些比较简单的梁式结构被普遍 应用于我国很多高架的区间结构中,并且绝大多数的惯性 质量都来源于上部结构,最终集中在墩顶。结合已经推出 的相关研究理论来看,在进行该类结构的抗震设计工作时, 通常只要完成第一振型的计算便能满足相关要求。与此同 时,在高级区间结构中,其塑性铰的发生部位大多位于墩 顶和墩底,这会给开展识别工作和预先设计工作带来一定 便利。因此,弹塑性反应谱法可以应用于大多数高价区间 结构的抗震设计计算中。由此可见,在开展抗震设计规范 的编写工作时,应通过多方面渠道来进行资料收集,对国 内外的一些强震记录进行全方位了解,然后再对收集到的 相关资料进行整理与分析,从而得出不同场地环境和不同 周期分区相应的减系数计算方法,得到与弹性反应谱大致 相同的统计意义。与此同时,如果出现无论是线性反应谱 法还是弹塑性反应谱法都无法对其进行设计计算的特殊情 况,则应采用时程分析法对具体的抗震设计进行计算。

轨道交通工程地下车站结构抗震设计

轨道交通工程地下车站结构抗震设计

轨道交通工程地下车站结构抗震设计张有桔;王飞;沈洪波【摘要】综合抗震设计相关规范规定,结合抗震专项设计的要求,在分析抗震设防类别、等级及烈度、论证对象的判定基础上,明确基于性能要求的抗震设防目标,重点论述抗震专项设计中常用的反应位移法和时程分析法,通过对典型车站的抗震分析,说明抗震专项设计中主要计算过程和结论,以期为同类工程设计提供参考依据。

【期刊名称】《工程与建设》【年(卷),期】2016(030)003【总页数】4页(P361-364)【关键词】轨道交通;地下车站;抗震设计;设防目标;反应位移法;时程分析法【作者】张有桔;王飞;沈洪波【作者单位】安徽省交通规划设计研究总院股份有限公司,安徽合肥 230088;安徽省交通规划设计研究总院股份有限公司,安徽合肥 230088;安徽省交通规划设计研究总院股份有限公司,安徽合肥 230088【正文语种】中文【中图分类】U231.4;TU352城市轨道交通已经成为城市极为重要的交通基础设施,所以通过抗震设计,使轨道交通工程具有合理的抵抗地震破坏作用的能力,确保城市轨道交通结构的地震安全,尽可能减轻轨道交通结构因地震导致性能降低给城市轨道交通的正常运行造成障碍,对城市交通秩序、城市经济和人们社会活动、生命及财产安全都是非常重要的。

文献[1-5]规定,对抗震设防地区的城市轨道交通结构必须进行抗震设计。

本文重点从抗震设防类别、等级及烈度、论证对象的判定、抗震设防目标和抗震论证方法等方面,阐述合肥市城市轨道交通常见的地下车站结构抗震专项设计思路和方法。

根据文献[1]要求,城市轨道交通结构应根据其使用功能的重要性分为标准设防类(丙类)、重点设防类(乙类)和特殊设防类(甲类)3个抗震设防类别。

对于一般日平均客流量未超过50万人次的大型综合枢纽车站,抗震设防分类均为重点设防类(乙类)。

对重点设防类地下车站结构,其设防标准应满足文献[2]规定的本地区抗震设防要求确定;对进行过地震安全性评价的,应采用经国家地震工作主管部门批准的建设工程抗震设防要求确定,但不应低于本地区抗震设防要求确定的地震作用。

城市轨道交通地下结构抗震分析与设计

城市轨道交通地下结构抗震分析与设计

城市轨道交通地下结构抗震分析与设计摘要:轨道交通在城市建设中已成为重要的交通设施,因此有必要进行抗震设计,使轨道交通工程具有更为合理的抗震害能力,更好地保证城市轨道交通结构的地震安全性,减少地震造成的破坏。

本文对城市地下轨道交通工程的结构抗震设计进行了全面的分析和研究,希望能对同行工作者提供一些有价值的参考。

关键词:轨道交通工程;轨道交通工程结构;抗震;设计引言随着城市化的发展,城市交通条件和环境条件日益恶化。

交通拥堵和低效已成为各大城市的通病。

人们逐渐认识到,以地下铁道为骨干的大运量快速公交系统是解决这一问题的重要途径。

实践证明,地铁具有快速、高效、清洁的特点,在世界发达地区如东京、莫斯科、伦敦等大城市的客运中发挥着不可替代的作用。

近年来,中国的地铁建设也得到了快速的发展。

地铁工程是生命线工程的重要组成部分,其地震问题已成为城市工程抗震防灾减灾研究的重要组成部分。

在美国、日本等国家,对地铁等地下结构的抗震设计理论进行了研究,提出了一些实用的抗震设计方法。

然而,我们对这一领域的研究却相对滞后。

到目前为止,还没有独立的抗震设计规范。

GB50157—92《地下铁道设计规范》和GB50157—2003《地铁设计规范》对地铁的抗震设计都只给出了极为笼统的规定,其原因主要是研究工作开展不够,对地下结构抗震设计方法缺乏系统研究。

长期以来,地铁结构的抗震设计基本是参照GBJ111—87《铁路工程抗震设计规范》中有关隧道部分的条文和GB50011—2001《建筑抗震设计规范》,采用地震系数法进行的。

地震系数法用于地下结构抗震计算时具有明显的缺陷,比如按照地震系数法,作用在地下结构的水平惯性力随埋深的增加而增加,这与实际情况明显不符。

出现这一局面的原因与人们对地下结构震害的认识不无关系,在地层可能发生较大变形和位移的部位,地铁等地下结构可能会出现严重的震害,因此对其抗震问题应给予高度重视。

一、关于地下结构抗震研究和地下结构较为常用的地震分析方法 1.关于原型观测的方法分析这种方法主要是研究地下结构的地震反应规律和破坏机理,主要包括地震观测和损伤调查。

城市轨道交通盾构隧道的横向抗震设计

城市轨道交通盾构隧道的横向抗震设计

城市轨道交通盾构隧道的横向抗震设计(郑州工业应用技术学院,河南,郑州,451150)【摘要】随着地下空间大规模的开发和利用,城市轨道交通网中城市地下铁道所占比重很大,而城市地铁区间隧道又以盾构法隧道为主。

目前国内外学者在隧道的横向抗震分析方法提出了多种分析方法,包括地震系数法、相对刚度法、响应位移法等。

本文主要介绍了盾构隧道横向抗震设计中重力作用的计算方法、反应位移法、反应加速度法和基于等效线性化的时程法,可为地铁抗震设计提供参考。

【关键词】盾构隧道;抗震设计;重力作用计算;反应位移法;基于等效线性化的时程法一、引言随着城市建设的快速发展,人们不断地向城市聚集,造成如交通堵塞、环境污染等各大问题,因地铁具有快速、高效、清洁的特点,人们逐渐意识到发展地铁系统的重要性,在这种情况下地铁应运而生。

近年来,我国各大城市的地铁建设正处在快速发展阶段,如北京、天津、上海等城市地铁已相继建成通车,南京、重庆、西安、郑州、福州等一些大中城市也正在进行地铁建设。

由于地铁具有交通客运量大、速度快、安全、方便舒适等优点,地铁将逐渐取代公交车而成为城市主要的交通工具.目前,国内还没有具体的与地下结构相关的抗震设计标准和规范,其中《地铁设计规范》和《地下铁道设计规范》只是给出了指导性条文,缺乏明确的和可操作性强的规定及具体计算原则和施工措施,导致该状况的主要原因有以往地下结构建设发展比地面建筑缓慢的多,导致工程界学者的重视度相对不足;另外人们普遍认为土体对地下结构的运动具有约束作用,地下结构的抗震稳定性随面波埋深衰减而趋于更加稳定,认为在发生地震时不会轻易遭受破坏,这就是导致地下结构抗震研究比地面结构抗震研究滞后的主要原因。

直到1995年日本阪神大地震使人们彻底改变了地下建筑结构在地震时不易发生破坏这一观点。

正是由于隧道震害不断地出现,学者开始对地下结构的抗震安全性进行了大量研究,世界各国对地下结构的抗震性能的研究日益增多,并且根据试验研究的测试结果提出相应的设计方法及抗震减震方案,因此,对盾构隧道等地下结构进行抗震性能研究具有重要的理论价值和应用价值。

轨道交通工程地下车站结构抗震设计

轨道交通工程地下车站结构抗震设计

轨道交通工程地下车站结构抗震设计摘要:随着我国城市化进程的不断加快,人们生活质量和周边环境也发生了翻天覆地变化。

随着城市人口数量的增长,城市腰痛压力越来越大,轨道交通工程地下车站的出现有助于环节交通压力。

但轨道交通不仅要满足运输功能,还要有一定安全性和抗震能力。

本文以A市B地下车站为例,展开地下车站抗震设计分析,分析结果可作为后续地下车站抗震设计相关参考。

关键词:轨道交通工程;地下车站;结构;抗震设计引言现代化城市建设过程中,城市轨道交通不仅要具备良好的运输能力,还要在设计方面充分考虑其抗震性能和安全性。

地下车站结构施工要严格按照国家规定相关抗震设计标准进行设计,如此不仅能提升地下车站抗震性能,还能为日后城市的健康、可持续发展奠定良好基础。

一、抗震设防目标(一)抗震设防类别、烈度与等级根据《城市轨道交通结构抗震设计规范》的相关要求,城市轨道交通结构应划分为:标准设防类;重点设防类;特殊设防类,三个抗震设防类别。

标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行国家标准《中国地震动参数区划图》GB 18306规定的本地区抗震设防要求确定;重点设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地震作用应按现行国家标准《中国地震动参数区划图》GB18306规定的本地区抗震设防要求确定;对进行过工程场地地震安全性评价的。

应采用经国务院地震工作主管部门批准的建设工程的抗震设防要求确定,但不应低于本地区抗震设防要求确定的地震作用;特殊设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地震作用应按国务院地震工作主管部门批准的建设工程的抗震设防要求且高于本地区抗震设防要求确定[1]。

抗震设防地震动峰值加速度与抗震设防地震动分档和抗震设防烈度之间对应关系如表1所示。

表1:抗震设防地震动峰值加速度与抗震设防地震动分档和抗震设防烈度之间对应关系(二)论证对象的判定根据住房和城乡建设部印发的《市政公用设施抗震设防专项论证技术要点(地下工程篇)》的相关规定,轨道交通地下车站建筑面积超过10000㎡的可以判定该地下车站工程可以作为单体工程进行抗震专项论证分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《建筑抗震设计规范>> GB50011 。
抗震设计要点
工程场地勘察
4.2.5 工程场地覆盖层厚度应按下列要求确定: 1 应按地面至剪切波速大于500m/s 且其下卧各岩土的剪切波速均不小于500m/s 的土层 顶面的距离确定; 当地面5m 以下存在剪切波速大于相邻上层土剪切波速2.5 倍的土层,且其下卧岩土 的剪切波速均不小于400m/s 时,可按地面至该土层顶面的距离确定; 对剪切波速大于500m/s 的孤石、透镜体,应视同周围土层;
抗震设计要点
工程场地勘察
《建筑抗震设计规范>> GB50011 。
抗震设计要点
工程场地勘察
4.2.6 工程场地类别,应根据土层等效剪切波速和场地覆盖层厚度划分为四类,并应符 合表4.2.6 的规定。当土层等效剪切波速和覆盖层厚度处于表4.2.6 所列场地类别分界线 的界限值附近时,宜按插值方法确定地震作用计算所用的场地特征周期。
设防标准和设防目标
3.1.2 抗震设防类别的划分应符合下列规定:
1 标准设防类:除特殊设防类、重点设防类以外的其他轨道交通结构;
2 重点设防类:除特殊设防类以外的高架区间结构、高架车站主体结构、 区间隧道结构和地下车站主体结构; 3 特殊设防类:在城市轨道交通网络中占据关键地位、承担交通量大的 大跨度桥梁和车站的主体结构。
法规与标准
中华人民共和国主席令 第七号 《中华人民共和国防震减灾法》[1]已由中华人民共和国第十一届全国人民代 表大会常务委员会第六次会议于2008年12月27日修订通过,现将修订后的 《中华人民共和国防震减灾法》公布,自2009年5月1日起施行。
胡锦涛 2008年12月27日 (1997年12月29日第八届全国人民代表大会常务委员会第二十九次会议通过, 2008年12月27日第十一届全国人民代表大会常务委员会第六次会议修订)
设防标准和设防目标
多水准设防: 抗震设防烈度,一个地区抗震设防依据的地震烈度,一般情况下可采用《中国地震 区划图》规定的50年超越概率10%的地震基本烈度。
设防标准和设防目标
3.1.4 各抗震设防类别结构的抗震设防标准,应符合下列要求: 1 标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行 国家标准《中国地震动参数区划图》GB18306 规定的本地区抗震设防要 求确定;
2 重点设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按现行国家标准《中国地震动参数区划图》GB18306 规定的本 地区抗震设防要求确定;对进行过工程场地地震安全性评价的,应采用经 国务院地震工作主管部门批准的建设工程的抗震设防要求确定,但不应 低于本地区抗震设防要求确定的地震作用;
抗震设计要点
工程场地勘察
4.1 一般规定 4.1.1 城市轨道交通结构的场地与地基应考虑下列宏观震害或地震反应:
1 强烈地震动造成场地、地基的失稳或失效,包括土层液化、震陷、地裂缝、滑坡等;
2 地表断裂错动,包括地表基岩断裂及构造性地裂造成的破坏; 3 局部地形、地貌、地层结构的变异引起地震动异常造成的特殊破坏。
设防标准和设防目标
3.1 抗震设防要求
3.1.1 城市轨道交通结构应划分为特殊设防类、重点设防类、标准设防类 三个抗震设防类别。
《建筑抗震设防分类标准》GB50223-2004 第3.0.2条 甲类(特殊设防类):重大建筑工程;地震时可能发生严重次生灾害的 建筑 乙类(重点设防类):地震时使用功能不能中断的建筑或需尽快恢复的 生命线工程 丙类(标准设防类):除甲、乙、丁类建筑以外的建筑 丁类(适度设防类):使用人员稀少可适度降低
3 特殊设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按国务院地震工作主管部门批准的建设工程的抗震设防要求且高 于本地区抗震设防要求确定。
设防标准和设防目标
3.1.4 各抗震设防类别结构的抗震设防标准,应符合下列要求: 1 标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行 国家标准《中国地震动参数区划图》GB18306 规定的本地区抗震设防要求 确定; 重点设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按现行国家标准《中国地震动参数区划图》GB18306 规定的本 地区抗震设防要求确定;对进行过工程场地地震安全性评价的,应采用经 国务院地震工作主管部门批准的建设工程的抗震设防要求确定,但不应 低于本地区抗震设防要求确定的地震作用; 特殊设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按国务院地震工作主管部门批准的建设工程的抗震设防要求且高 于本地区抗震设防要求确定。 设防水准 抗震措施允许低于设防烈度(6度不降) 高于设防的罕遇作用不倒塌 抗震措施提高1度(9度区按高于9度) 抗震措施提高1度(9度区按高于9度)


抗震减灾法规与技术标准 设防标准和设防目标
轨道交通地下结构抗震设计要点
复杂结构的抗震设计的难题
设防标准和设防目标
设防标准
• 分类设防——建筑重要性不同,设防标准有差别; • 多水平设防——同类建筑,应考虑不同水平的地震作用。 设防目标 • 控制不同设防水平下结构的性能
• 场地
• 地震响应
设防标准和设防目标
3.2 抗震性能要求 3.2.1 城市轨道交通结构的抗震性能要求应分成下列三个等级: 1 性能要求 I:地震后不破坏或轻微破坏,应能保持其正常使用功能; 结构处于弹性工作阶段; 不应因结构的变形导致轨道的过大变形而 影响行车安全; 2 性能要求 II:地震后可能破坏,经修补,短期内应能恢复其正常使用 功能;结构局部进入弹 塑性工作阶段;
第一章 总则
第一条 为了防御和减轻地震灾害,保护人民生命和财产安全,促进经济社会的可 持续发展,制定本法。
第二条 在中华人民共和国领域和中华人民共和国管辖的其他海域从事地震监测预 报、地震灾害预防、地震应急救援、地震灾后过渡性安置和恢复重建等防震减灾 活动,适用本法。 第三条 防震减灾工作,实行预防为主、防御与救助相结合的方针。
法规与标准
第四章 地震灾害预防 第三十四条 国务院地震工作主管部门负责制定全国地震烈度区划图或者地震动参数区划图。 国务院地震工作主管部门和省、自治区、直辖市人民政府负责管理地震工作的部门 或者机构,负责审定建设工程的地震安全性评价报告,确定抗震设防要求。
法规与标准
《建筑抗震设防分类标准》GB50223 《中国地震动参数区划图》GB18306 《工程场地地震安全性评价》 GB17741 《建筑抗震设计规范》GB 50011 《岩土工程勘察规范》GB50021 《 地铁设计规范》GB 50157 《混凝土结构设计规范》 《钢结构设计规范》 《地基基础设计规范》 ………
轨道交通地下结构抗震设计要点
复杂结构的抗震设计的难题
法规与标准
法规与标准
法规与标准
中华人民共和国《建筑法》、《防震减灾法》 国务院《建设工程质量管理条例》 国务院《建设工程勘察设计管理条例》 建设部《实施工程建设强制性标准监督规定》 住房和城乡建设部《市政公用设施抗灾设防管理规定》2008年
1 强烈地震动造成场地、地基的失稳或失效,包括土层液化、震陷、地裂缝、滑坡等;
2 地表断裂错动,包括地表基岩断裂及构造性地裂造成的破坏; 3 局部地形、地貌、地层结构的变异引起地震动异常造成的特殊破坏。
5.7 场地和地基的地震效应
5.7.1 抗震设防烈度等于或大于6 度的地区,应进行场地和地基地震效应的岩土 工程勘察,井应根据国家批准的地震动参数区划和有关的规范,提出勘察场地 的抗震设防烈度、设计基本地震加速度和设计地震分组。
2
3
第3.0.3条 建筑抗震设防标准 地震作用 丁类: 丙类: 设防烈度 乙类: 设防烈度 甲类:按“安评”且高于设防烈度
设防标准和设防目标
地震作用水平(设防水准)
• E1:符合地铁100年设计使用寿命; • E2:与《中国地震动参数区划图》GB18306 相一致; • E3:与“罕遇”地震发生频次相关。 控制结构性能水平
• 工程场地勘察 场地类别 抗震危险性评价
• 场地处治 抗震设计 • 结构选型——概念设计
• 抗震措施 调整地震作用的效应 抗震构造措施
• 地震作用计算 计算模型 效应组合 结构验算
抗震设计要点
工程场地勘察
4.1 一般规定 4.1.1 城市轨道交通结构的场地与地基应考虑下列宏观震害或地震反应:
3 性能要求 III:地震后可能产生较大破坏,但不应出现局部或整体倒毁, 结构处于弹塑性工 作阶段。
多水准设防:“小震不坏,中震可修,大震不倒”
设防标准和设防目标


抗震减灾法规与技术标准 设防标准和设防目标
轨道交通地下结构抗震设计要点
复杂结构的抗震设计的难题
抗震设计要点
工程选址与场地处理
3 特殊设防类:抗震措施应按本地区抗震设防烈度提高一度的要求确定;地 震作用应按国务院地震工作主管部门批准的建设工程的抗震设防要求且高 于本地区抗震设防要求确定。
设防标准和设防目标
3.1.4 各抗震设防类别结构的抗震设防标准,应符合下列要求: 1 标准设防类:抗震措施应按本地区抗震设防烈度确定;地震作用应按现行 国家标准《中国地震动参数区划图》GB18306 规定的本地区抗震设防要 求确定;
5.7.12 场地或场地附近有滑坡、滑移、崩塌、塌陷、泥石流、采空区等不良 地质作用时,应进行专门勘察,分析评价在地震作用时的稳定性。
抗震设计要点
工程场地勘察
4.1.2 城市轨道交通结构的场地与地基的勘察和评价应至少包括下列内容: 1 确定场地土的类型和场地类别; 2 对可能产生滑坡、塌陷、崩塌和采空区等的岩土体,进行地震作用下的地基稳定 性评价; 3 对判别为液化的土层,根据液化等级提出处理方案;当不进行抗液化处理时,应 计入液化效应的影响对土层的设计参数进行修正; 4 划分场地抗震地段类别。
相关文档
最新文档