北京典型道路交通环境机动车黑碳排放与浓度特征研究_严晗1_吴烨1_2_张少君1_

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网络出版时间:2014-01-13 22:54

网络出版地址:/kcms/detail/11.1843.X.20140113.2254.003.html

环境科学学报

Acta Scientiae Circumstantiae

北京典型道路交通环境机动车黑碳排放与浓度特征研究

严晗1,吴烨1,2,*,张少君1,宋少洁1,3,傅立新1,2,郝吉明1,2

1.清华大学环境学院,环境模拟与污染控制国家联合重点实验室,北京100084

2.国家环境保护大气复合污染来源与控制重点实验室,北京100084

3.麻省理工学院地球大气与行星科学系,马塞诸塞州,美国

收稿日期:录用日期:

摘要:本研究对2009年北京市典型道路(北四环中路西段)进行实际交通流监测和调研,分析了总车流量、车型构成和平均速度的日变化规律。应用北京机动车排放因子模型(EMBEV模型)和颗粒物黑碳排放的研究数据,计算该路段的黑碳平均排放因子和排放强度。根据同期观测的气象数据,应用AERMOD 模型对道路黑碳排放进行了扩散模拟,并根据城市背景站点和道路边站点的监测数据对模拟结果进行了验证。研究表明,该路段黑碳平均排放因子与重型柴油车在总车流中所占比例呈现出极强的相关性,由于北京市实行货车区域限行制度,日间时段总车流的平均黑碳排放因子(9.3±1.2)mg·km-1·veh-1,而夜间时段上升至(29.5±11.1)mg·km-1·veh-1。全天时均黑碳排放强度为17.9 g·km-1·h-1~115.3g·km-1·h-1,其中早(7:00-9:00)晚(17:00-19:00)高峰时段的黑碳排放强度分别为(106.1±13.0)g·km-1·h-1和(102.6±6.2)g·km-1·h-1。基于同期监测数据验证,AERMOD模型的模拟效果较好。模拟时段的道路黑碳排放对道路边监测点的平均浓度贡献为(2.8±3.5)µg·m-3。由于局地气象条件差异,日间和夜间的机动车排放对道路边黑碳的模拟浓度存在显著差异。日间时段,小型客车排放对道路边站点的黑碳浓度贡献最高,达(1.07±1.57)µg·m-3;其次为公交车,达(0.58±0.85)µg·m-3。夜间时段货车比例明显上升,其黑碳排放占主导地位,贡献浓度(2.44±2.31)µg·m-3。

关键词:黑碳;交通流;机动车;排放因子;AERMOD模型

文章编号:中图分类号:文件标识码:

Emission characteristics and concentrations of vehicular black carbon in a

typical freeway traffic environment of Beijing

YAN Han1, WU Ye1,2,*, ZHANG Shaojun1, SONG Shaojie1,3, FU Lixin1,2, HAO Jiming1,2

1.School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control,

Tsinghua University, Beijing 100084, China

2.State Environmental Protection Key Laboratory of Source and Control of Air Pollution

Complex, Beijing 100084, China

3.Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology,

Cambridge, Massachusetts, U.S.

Received Accepted

Abstract:Traffic flow data were investigated on a typical freeway (i.e., the North Fourth Ring Road) in Beijing during 2009, including hourly profiles for total traffic volume, fleet composition by vehicle category and average

基金项目:国家自然科学基金项目(51322804,51378225),新世纪优秀人才支持计划(NCET-13-0332),国家高科技研究发展计划(863计划)(2013AA065303)

Supported by the National Natural Science Foundation of China (No. 51322804 and No. 51378285) , Program for New Century

Excellent Talents in University (No. NCET-13-0332) and the National High Technology Research and Development Program (863) of China (No. 2013AA065303)

作者简介:严晗(1988—),女,硕士研究生,E-mail:yanhan06@;*通讯作者(责任作者),E-mail:ywu@ Biography:Y AN Han(1988—),Female,Master,E-mail:yanhan06@;*Corresponding author,E-mail:ywu@

speed. The Emission Factor Model for Beijing Vehicle Fleet (EMBEV) was applied, in combined with previous studies on vehicle emissions of black carbon (BC), to estimate BC emission factors and emission intensity from on-road vehicles. In combination with simultaneously measured meteorological data in Beijing, dispersion of road traffic BC emissions was simulated with the AERMOD model in a roadside environment and further validated with concurrently observed BC concentration data. Our results show that the hourly average BC emission factor was very strongly correlated with the proportion of the traffic volume of heavy-duty diesel vehicles (e.g., diesel-powered passenger buses and freight trucks). Due to the traffic restrictions on truck use in the urban area of Beijing during the day time (6 a.m. to 11 p.m.), the average BC emission factor was (9.3±1.2) mg·km-1·veh-1 during the day but rose to (29.5±11.1) mg·km-1·veh-1 during night time. On the other hand, BC hourly emission intensity ranged from 17.9 g·km-1·h-1to 115.3 g·km-1·h-1for this road segment. Two peaks of BC emission intensity were observed synchronized with traffic volume peaks, (106.1±13.0) g·km-1·h-1 during the morning rush period (7:00-9:00) and (102.6±6.2) g·km-1·h-1 during the evening rush period (17:00-19:00). The AERMOD was able to provide satisfactory simulated results of BC concentration at the road side due to traffic emissions as validated by observed concentration data. Road traffic emissions are estimated to contribute (2.8±3.5) µg·m-3 BC on average at the road side with the AERMOD model. In particular, due to the great differences of local meteorological conditions, substantial seasonal and diurnal variations are observed from the simulated BC concentrations. During the day, light-duty passenger cars were the largest contributor (1.07±1.57) µg·m-3 among all vehicle categories, followed by the public bus fleet (0.58±0.85) µg·m-3. During night time, trucks became the dominant contributor (2.44±2.31) µg·m-3 to BC concentration at the road site.

Key words: Black carbon; Traffic flow; Vehicle; Emission factor; AERMOD

1 引言(Introduction)

随着社会经济的发展与城市化进程的深化,中国机动车保有量快速上升。机动车排放成为城市空气污染的主要来源之一,“煤烟-机动车混合型”大气复合污染特征日益显著(Wang et al.,2010;Wang et al.,2012)。例如,根据环保部公布的数据,2011年全国机动车氮氧化物排放总量达到637.6万吨,占全国排放总量的26.5%(中国机动车污染防治年报,2012)。北京、上海和广州等特大城市的机动车氮氧化物排放贡献率则更高,达到40%以上(Wang et al.,2010;Zhang et al.,2013;Fu et al.,2013)。为了控制机动车排放,北京市除了采取加严新车排放标准、改善燃油品质、强化维护/保养制度等传统排放控制措施,也采取了一系列严格的交通管控措施,包括摩托车和黄标车的区域限行、机动车尾号限行和小客车摇号上牌等(Wu et al.,2012;孔茜等,2010)。这些交通管控措施不仅能够改善路面道路车流构成和运行状况,对北京市区的机动车排放控制也能起到一定的作用(Wu et al.,2011;Zhou et al.,2010;宋少洁等,2012)。

在大气PM2.5各化学组分中,黑碳(black carbon,BC)是化石燃料含碳物质不完全燃烧的产物,被认为对气候变化和人体健康具有显著影响(Jacobson,2002;Scwartz et al.,2008;Bond et al.,2013;Wu et al.,2014)。城市机动车颗粒物排放具有低空特征,对城市人群的健康影响更为显著(Du et al.,2011;Du et al.,2013)。此外,交通排放还被认为是黑碳排放的重要贡献者,特别是来自于柴油发动机的排放贡献(Bond,2007;唐杨等,2013)。需要指出的是,以往对交通源黑碳的研究主要是基于平均排放因子的宏观清单方式,缺乏对包括车流量、车型构成和运行工况在内的道路交通流特征的关注。北京市所采取交通管控措施会对道路的交通流特征产生影响,从而对道路机动车黑碳排放特征和交通环境黑碳浓度产生影响。目前,基于实际道路交通流特征的机动车黑碳排放和浓度变化尚缺乏深入研究。

因此,本研究选取北京市北四环西路中段为研究对象,对道路典型交通流特征进行了调研分析,建立了基于交通流特征的机动车黑碳排放量与排放强度的计算方法。通过应用空气质量模型,对交通环境中的黑碳浓度进行模拟,并以同期监测数据进行验证,分析了交通环境黑碳浓度的机动车贡献日变化规律和不同时段的分车型浓度贡献率。

2 研究方法与数据来源(Methods and data sources)

2.1 数据监测概况

相关文档
最新文档