电容器电流计算

电容器电流计算
电容器电流计算

电流计算

根据某进口品牌电容器铭牌,参考举例:要达到50Kvar无功输出。需配置电容器为70Kvar电容器。其额定电流为:81.6A,额定电压为:500V,产品型号:7R50+XD70.

根据公式计算:

额定电流I=Q÷·U)=70÷又根据I=U/Z=U÷(1/wc)=wc·U 故wc=I/U=81÷=162

1、当电容器运行在480V系统电压下时:I=wc·U Q=·I

电流(A) I==≈78A

容量(Kvar) Q=·I= 2、当电容器运行在450V系统电压下时:电流(A) I==≈73A

容量(Kvar) Q=·I= 3、当电容器运行在440V系统电压下时:电流(A) I==

容量(Kvar) Q=·I=、当电容器运行在420V系统电压下时:电流(A) I==≈68A

容量(Kvar) Q=·I= 综上计算公式可知,当系统电压越低,运行电流也变小,其实际输出容量则越小。考虑到一般低压配电系统运行电压为380V±5%。

取其上限计算。U=380+=399≈400V .考虑其加装7%电抗器后电容器端电压被抬高大约28V左右.实际运行电压假定为430V。

电流(A) I==≈70A

容量(Kvar) Q=·I=若实际电流为380V, 考虑其加装7%电抗器后电

容器端电压被抬高大约28V左右.实际运行电压假定为410V.

电流(A) I==≈67A

容量(Kvar) Q=·I=下图为某进口电容器铭牌:

推算,其铭牌标注容量跟实际计算容量完全吻合。

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

变频器直流母线电容纹波电流计算方法

变频器直流母线电容纹波电流计算方法 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。 使用电解电容器的作用主要有以下几个: (1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差; (2)提供逆变器开关频率的输入电流; (3)减小开关频率的电流谐波进入电网; (4)吸收急停状态时所有功率开关器件关断下的电机去磁能量; (5)提供瞬时峰值功率; (6)保护逆变器免受电网瞬时峰值冲击。 电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。 直流母线电容纹波电流的计算 纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。当工作温度小于额定温度时,额定纹波电流可以加大。但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。 但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。 本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。

电容电流计算(线路,发电机回路)

电容电流的计算书 电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。 1.架空线路的电容电流可按下式估算: I C =(2.7~3.3)U e L×10-3 (F-1) 式中:L——线路的长度(㎞); U e——线路系统电压(线电压KV) I C ——架空线路的电容电流(A); 2.7 ——系数,适用于无架空地线的线路; 3.3 ——系数,适用于有架空地线的线路; 同杆双回线路的电容电流为单回路的1.3~1.6倍。 亦可按附表1所列经验数据查阅。 附表1 架空线路单相接地电容电流(A/km) 2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算 I C=0.1U e L (F-2) 按电容计算电容电流 具有金属保护层的三芯电缆的电容值见附表2。 附表2 具有金属保护层的三芯电缆每相对地电容值(μF/㎞)

将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。单相接地电容电流可由下式求出: I C = 3 U e ωC ×10-3 (F-3) 其中 ω=2πf e 式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz ); C —— 厂用电系统每相对地电容(μF ); 2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。 6kV 电缆线路 = I C 6S 22002.84S 95++U e (A ) (F-4) 10kV 电缆线路 =I C 0.23S 22001.44S 95++U e (A ) (F-5) 式中 S —— 电缆截面 (㎜2) U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。 附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞) 2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。 前述各公式主要用于油浸纸绝缘电力电缆,而目前广泛采用的交联聚乙烯绝缘电力电 缆,由于其结构特点,其单独接地电容电流比同截面的纸绝缘电缆的电容电流大,根据厂家提供的参数和现场实测数据,大约增大20%左右,其值见附表4。 附表4 6~10 kV 交联聚乙烯绝缘电缆的接地电容电流

如何准确计算电源滤波器中的漏电流

如何准确计算电源滤波器中的漏电流 1 引言 在电气设备的正常运行过程中,一部分电流沿着保护接地导体流入大地。这些电流称为漏电流,是用户的一个安全隐患,因此,大多数产品安全标准均对漏电流进行了限制。人们越来越多地使用剩余电流设备或者漏电流断路器,当检测到漏电流过高时,这些设备将断开电源。 电源线路滤波器,或者emc滤波器,通过它们的对地电容器影响设备的总漏电流。当今的技术已使噪声抑制滤波器的使用成为必需,这样,漏电流对于最终用户更为重要。客户经常对漏电流的额定值感到困惑,因为滤波器制造商不使用统一的方法进行计算。因此,采用相同的电路,但是由不同制造商制造的滤波器的漏电流不能直接比较。本文叙述了关于漏电流的基本内容,包括计算和测量方法等。 2 标准中的要求 保护接地器在电气设备出现故障或发生短路时,保护用户不会受到危险接触电压的伤害。为确保此基本功能,对保护接地线上的电流必须加以限制,这是为什么大多数产品安全标准中包含漏电流测量和限制条款的原因。对办公室设备和信息技术设备的产品安全标准en 60950-1进行了相关说明。 尽管都使用漏电流这个术语进行描述,但是标准在实际上对接触电流和保护导体电流进行了区分。接触电流是人在接触电气装置或设备时,流过人体的所有电流。另一方面,保护导体电流是在设备或装置正常运行时,流过保护接地导体的电流。此电流也称为漏电流。 所有电气设备的设计都必须避免产生危及用户的接触电流和保护导体电流。一般来说,接触电流不得超过 3.5ma,采用下文所述的测量方法进行测量。 3.5ma的极限值并不适用于所有设备,因此,在标准中,还对配备工业型电源接线器(b型可插拔设备)和保护接地器的设备进行了补充规定。如果保护接地电流不超过输入电流的5%,那么接触电流可以超过3.5ma。另外,等电位联结导体的最小截面积必须符合en 60950-1的规定。最后,但不是最不重要的,制造商必须在电气设备上附带下述警告标签之一。 “警告!强接触电流。先接地。”;“警告!强漏电流。先接地。” 除了普通的产品安全标准之外,还有关于无源emi滤波器的安全标准。在欧洲,新颁布了en 60939,自2006年1月1日起代替了当时现行的en 133200。然而,此标准没有关于滤波器漏电流的附加要求。美国的emi滤波器标准,ul 1283,与此不同。不仅需要进行所有常规安全试验,还需要确认滤波器的漏电流。在默认情况下,此漏电流不允许超过0.5ma。否则,滤波器必须附带一个安全警告,说明滤波器不适用于住宅区。必须提供接地连接器以防触电,另外滤波器必须连接到接地电源引出线或接头上。 3 漏电流的计算 本节将说明计算漏电流的方法。因为元件存在误差,并且电网(对于三相供电网)的不平衡只能估计,所以实际结果不一定等于测量结果。另一方面,对连续生产的每一个滤波器都进行漏电流测量是不合理的,所以一般来说,制造商提供的漏电流都是根据计算值。 对于所有的计算,磁性元件的寄生元件及保护接地器的阻抗均忽略不计。计算时只考虑滤波器电容的误差。emi 滤波器电容一般用来抑制差模和共模干扰。对于前者,在相位之间,以及相位和中性导体之间,连接有所谓的x电容。对于共模抑制,相位和接地之间采用y电容。 电容器对于频率和电压的依存关系也没有考虑。这对于陶瓷电容器是非常重要的,因为这种电容器会受到电压和频率的明显影响。因此,采用陶瓷电容器的滤波器的漏电流也比计算结果更大。 3.1 三相供电网中的漏电流 要计算三相供电网中的漏电流,需要确定电源中性点mq和负载中性点ml之间的电压。在电源端,是3个相电压ul1、ul2和ul3,与中性点mq相连接。在负载端,是3个阻抗z1、z2和z3,也与一个星形相连接,如图1所示。两个中性点mq和ml通过阻抗zql相连,此阻抗上的压降为uql。

电容电流计算

Y型时的电流: I相=Qc/(1.732×U相) △型时的电流: I线=Qc/(1.732×U线) (Qc=三相电容额定总量,单位:KVAR,U=电容额定电压,单位:KV) 公式:I=P/(根3×U),I表示电流,单位“安培”(A);P表示功率,单位:无功“千乏”(Kvar),有功“千瓦”(KW);根3约等于1.732;U表示电压,单位“千伏”(KV)。 I=40/(1.732×10)…………(10KV的电容) I=2.3(A) I=40/(1.732*0.4)…………(0.4KV的电容) I=57.7(A)。 回答人的补充 2009-11-30 16:54 计算单台电容器额定电流注意要点 一、当单台电容器为三相时,其标注的额定电压如6.6KV/√3和6.6KV。这两种标注方式主要区别在于说明此三相电容内部接线方式分为星型Y和三角型Δ两种。而加在三相电容器三个接线端电压均为线电压6.6KV。计算其额定电流时和标注中6.6KV/√3分母上的√3无关,不管是Y接法Δ接法, U均为6.6KV。而不是6.6KV/√3。根据三相电功率P=√3IU得出I=P/√3U(不论星型Y和三角型Δ接法。不考虑COSΦ。)。P为电容器额定容量Karv ,U为电网线电压。 二、当单台电容器为单相时,其标注的额定电压如6.6KV/√3和6.6KV,这两种标注方式主要区别在于说明: 1、标称6.6KV /√3的单台电容当组成电容器组接在三相电网时只能接成Y,电网线电压为6.6KV时,此时电容两个接线柱实际电压为6.6KV/√3即3.8KV。

否则当接成Δ时电容器就会过电压,当单只电容接电源时只能接在3.8KV电网中而不是6.6KV电网。这时计算单台电容器电流时I=P/U, P为电容器额定容量Karv , U为6.6KV/√3即3.8KV也就是电网电压的相电压而不是线电压6.6KV。 2、标称6.6KV的单台电容当组成电容器组接在三相电网时只能接成Δ,如果接成Y时,由于电容器两端实际电压降成相电压6.6KV/√3即3.8KV,他就达不到它的标称 Karv 值。如果三只这样的电容器组成电容器组按Δ型可直接接在线电压为6.6KV的三相电网中。单只电容可直接接在三相6.6KV其中两相上。计算电流时I=P/U,P为电容器额定容量Karv ,U为电网线电压。 信息来源: https://www.360docs.net/doc/bb7659204.html, 三、综上所述单台电容器计算电流时分以下三种情况: 1、电容器为三相电容时:(不论星型Y和三角型Δ接法,不考虑COSΦ)。 I=P/√3U P为电容器额定容量Karv ,U为电网线电压KV。 2、电容器为单相时: a、当标称电压为U/√3时 I=P/(U/√3)即I=√3(P/U) P为电容器额定容量Karv ,U为电网线电压KV。 b、当标称电压为U时 I=P/U P为电容器额定容量Karv ,U为电网线电压KV。

电源线路滤波器中的漏电流

电源线路滤波器中的漏电流 1. 标准中的要求 保护接地器在电气设备出现故障或发生短路时,保护用户不会受到危险接触电压的伤害。为确保此基本功能,保护接地线上的电流必须加以限制,这是为什么大多数产品安全标准中包含漏电流测量和限制条款的原因。办公室设备和信息技术设备的产品安全标准EN 60950-1进行了相关说明。 尽管都使用漏电流这个术语进行描述,但是标准在实际上对接触电流和保护导体电流进行了区分。接触电流是人在接触电气装置或设备时,流过人体的所有电流。另一方面,保护导体电流是在设备或装置正常运行时,流过保护接地导体的电流。此电流也称为漏电流。 所有电气设备的设计都必须避免产生危及用户的接触电流和保护导体电流。一般来说,接触电流不得超过3.5 mA,采用下文所述的测量方法进行测量。 3.5 mA的极限值并不适用于所有设备,因此,在标准中,还对配备工业型电源接线器(B 型可插拔设备)和保护接地器的设备进行了补充规定。如果保护接地电流不超过输入电流的5%,那么接触电流可以超过3.5 mA。另外,等电位联结导体的最小截面积必须符合EN 60950-1的规定。最后,但不是最不重要的,制造商必须在电气设备上附带下述警告标签之一。 “警告! 强接触电流。先接地。” “警告! 强漏电流。先接地。” 除了普通的产品安全标准之外,还有关于无源EMI滤波器的安全标准。在欧洲,新颁布了EN 60939,自2006年1月1日起代替了当时现行的EN 133200。然而,此标准没有关于滤波器漏电流的附加要求。美国的EMI滤波器标准,UL 1283,与此不同。不仅需要进行所有常规安全试验,还需要确认滤波器的漏电流。在默认情况下,此漏电流不允许超过0.5 mA。否则,滤波器必须附带一个安全警告,说明滤波器不适用于住宅区。必须提供接地连接器以防触电,另外滤波器必须连接到接地电源引出线或接头上。 2. 漏电流的计算 本节将说明计算漏电流的方法。因为元件存在误差,并且电网(对于3相供电网)的不平衡只能估计,所以实际结果不一定等于测量结果。另一方面,对顺序生产的每一个滤波器都进

电解电容纹波及寿命测试方法

Electrolytic Capacitor Ripple Current Derating Test Method and Life Time Evaluation From:郭雪松 Date:Oct-27-04 一.SPEC 1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series) 2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。 3.而用于评估电解电容Ripple Current之Spec要依据以下公式: SPEC=Spec(component)×频率系数(FM)×温度系数(TM)注:FM/TM取值方法见附表 4.OTPV 评估电解电容Ripple Current的Derating规格为85%,因此测试值

线电流的有效值(rms),测试时要调整输入电压值(90V~264V)达到纹波电流最大。见图示: Irms 三.附表(FM&TM取值方法):NCC公司产品为例 1.Multiplying Factors on KMG Series(radial lead type) Frequency Multipliers Temperature Multipliers 2. Multiplying Factors on KY Series Frequency Multipliers

贴片陶瓷电容知识(介质,DF,漏电,应用等)

AVX/松下/华亚/国巨/TDK ,TAIYO,村田(不是春田啊),AVX 单片陶瓷电容器(通称贴片电容)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册。 NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。 NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 容量精度在5%左右,但选用这种材质只能做容量较小的,常规100PF以下,100PF-1000PF也能生产但价格较高 介质损耗最大0。15% 封装DC=50V DC=100V 0805 0.5---1000pF 0.5---820pF 1206 0.5---1200pF 0.5---1800pF 1210 560---5600pF 560---2700pF 2225 1000pF---0.033μF 1000pF---0.018μF NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。适用于低损耗,稳定性要求要的高频电路 二X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。 X7R此种材质比NPO稳定性差,但容量做的比NPO的材料要高,容量精度在10%左右。常规10000PF以下,10000PF-1UF也能生产但价格较高 介质损耗最大2。5%(25V与50V)3。5%(16V) 封装DC=50V DC=100V 0805 330pF---0.056μF 330pF---0.012μF 1206 1000pF---0.15μF 1000pF---0.047μF 1210 1000pF---0.22μF 1000pF---0.1μF 2225 0.01μF---1μF 0.01μF---0.56μF 三Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。 尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。尤其是在退耦电路的应用中。下表给出了Z5U电容器的取值范围。

电解电容纹波的测试,计算及判定_ 应用报告

一、前言: 铝电解电容的工作状态及工作环境,是影响其寿命的主要因素。在众多因素中,又以环境温度的高低和 Ripple Current 纹波电流的大小对电容寿命的影响最大。所以在实际使用中,电解电容Ripple Current 有否超规格,电解电容工作温度有否超标准值,是影响电容失效爆浆的最主要原因,特别是在整机测试未对电解电容寿命进行估算计算的情况下,电解电容Ripple Current 的测试,计算及判定,尤为重要。 二、标准测试: 1、一次侧Bulk Cap.纹波电流 说明:一次侧Bulk Cap.纹波电流通常由基本频率(低频率)和高频(开关频率)电流构成,因此在计算时,要通过合成公式,利用频率系数计算出其在指定频率下的合成有效值。(如图1所示) R/C(Ripple Current) = Lowf(Low Freq.Current) +Hif(High Freq. Current) 一次侧Bulk Cap.是指:一次侧主电解电容;Lowf 是指:低频纹波电流有效值; Hif 是指:高频纹波电流有效值。 图(1) 2、二次侧Filter Cap.纹波电流 说明:二次侧Filer Cap.纹波电流通常由高频电流构成。 R/C(Ripple Current) = Hif(High Freq. Current) 二次侧Filter Cap.是指二次侧滤波电解电容。 3、温度 机种名称: 机种编号: 机种类别: 电路拓扑: 输出规格: 编写单位: 应用类别: 材料应用 受控日期: 201 年 月 日 应用编号: AR500XbcEedDFf P 应用描述: 电解电容纹波电流的测试,计算及判定

DCDC Buck Converter输入电容纹波电流有效值

输入电容纹波电流有效值 相信很多人都知道Buck Converter 电路中输入电容纹波电流有效值,在连续工作模式下可以用一下两个公式来计算: Icin.rms =Io × ()D D ×?1 或Icin.rms =Io × 2 )(Vin Vo Vo Vin ? 然而,相信也有很多人并不一定知道上面的计算公式是如何推导出来的,下文将完成这一过程。 众所周知,在Buck Converter 电路中Q1的电流(Iq1)波形基本如右图所示(或见第二页Q1电流波形):0~DTs 期间为一半梯形,DTs ~Ts 期间为零。当0~DT 期间Iq1⊿足够小时,则Iq1波形为近似为一个高为Io 、宽为DTs 的矩形,则有: ?? ?=<<<<)() (01DTs t o Io Ts t DTs Iq 而对于Iin ,只要Cin 容量足够大,则在整个周期中是基本恒定的【见输入电流(Iin)波形】,Iin 值由下式得出: Iin =(V o/Vin)*Io =DIo 由KCL 得:Iin+Icin =Iq1,这里定义Icin 流出电容为正向。所以在整个周期中有: 输入电流(Iin)波形: Icin =Iq1-Iin 即: { )0() (DTs t DIo Io T t DTs DIo Icin <

的,所以有Icin =-DIo 根据有效值的定义,不难得出输入电容的纹波电流有效值Icin.rms 的计算公式: ])()([1.022 ∫∫ ?+?=DTs Ts DTs dt DIo dt DIo Io Ts rms Icin )]()()[(1 .22DTs Ts DIo DTs DIo Io Ts rms Icin ?×+×?= 即: 又因为有D D Io rms Icin ×?=)1(.Vin Vo D =,所以得: 2 )(.Vin Vo Vo Vin Io rms Icin ?= Q1电流(Iq1)波形:

电容计算公式

教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己!慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数 并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。 3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法? 答:C=KVar/(U×U×2×π×f×0.000000001) =30/(450×450×2×3.14×50×0.000000001)≈472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大?还有"ε"是什么,与电容有什么关系?再请问在计算中应注意什么?电容是如何阻直通交的呢? 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知 第 2 页共 3 页 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,

母线电容计算

变频器中直流母线电容的纹波电流计算 2010年06月26日评论(0)|浏览(130) 点击查看原文 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。 使用电解电容器的作用主要有以下几个[1]: (1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差; (2)提供逆变器开关频率的输入电流; (3)减小开关频率的电流谐波进入电网; (4)吸收急停状态时所有功率开关器件关断下的电机去磁能量; (5)提供瞬时峰值功率; (6)保护逆变器免受电网瞬时峰值冲击。 电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。 2 直流母线电容纹波电流的计算 纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。当工作温度小于额定温度时,额定纹波电流可以加大。但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。 但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到[2],一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。 本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。

电容器保护整定计算

电容器保护整定计算 一、集合式并联电容器:例如BAMH11/√3-1200-1×3W B:并联电容器;A为浸渍剂代号,表示苄基甲苯 M:为介质代号,表示全膜介质(如为F表示膜纸复合介质) H:集合式 11/√3:额定电压 1200:额定容量 3:代表三相 W:户外 二、集合式并联电容器成套装置 TBB□-□-A K T表示并成套装置 BB表示并联电容器装置 第一个□表示额定电压 第二个□表示额定容量 A表示单星形接线 K表示开口三角电压保护 三、可调容集合式成套装置 TBB□-□+□-A K □+□为可调额定容量 一、延时电流速断保护 作为电容组与断路器之间连线以及电容器组内部连线上的相间短路、两(三)相接地短路故障的保护。 整定原则:按躲过电容器长期允许的最大工作电流整定,一般整定为3-5倍的电容器组的额定电流,同时为了躲过电容器组投入时的涌流,考虑0.1-0.2S 延时。 Idz=Kk×Ie Ie为电容器组额定电流 我们一般取4倍的Ie,T=0.1S IΦ=I=Q/1.732/U U为线电压(电容器Y形接线) 例如BAMH11/√3-1200-1×3W I=1200/√3/11 灵敏度要求:保护安装处故障时Klm≥2 二、过电流保护 作为电容组与断路器之间连线以及电容器组内部连线上的相间短路、两(三)相接地短路故障的保护。 整定原则:按躲过电容器长期允许的最大工作电流整定,一般整定为1.5-2倍的电容器组的额定电流,动作时间一般为0.3-1S.我们一般取2In,0.4S. 灵敏度要求:电容器端部引出线故障时Klm≥1.2-1.5 灵敏度=0.866×Idmin(3)/Idz≥1.5 Idmin(3)为最小方式下,保护安装处的三相短路电流 咱们计算灵敏度时一般考虑电容器串联电抗器的阻抗

纹波电容计算

本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻( ESR )和电感( ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算,纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位 W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为: 充电电流的峰值为 dU 是纹波电压( U max – U min)

则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度: 其中: Th 电容为电容中心点温度 , 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。 Rth 为电容的热阻,其值和风速等有关 ,Ta 表示电容表面温度。 P Loss 为纹波电流的中损耗。 4 、计算电容寿命 得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降 10 度,其寿命增加一倍,反过来也就是电容温度升高 10 度,电容寿命减小一倍:

详解滤波电容的选择及计算

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.

电解电容器中的纹波电流和额定纹波电流

电解电容詣中的纹波电流和颔定纹波电流 电解电容器在使用过程。加在电解电容器两端的电压随时间波动变化,忽高忽低,电容器就产生充放电,有电荷流动,形成电流,电解电容器上这个高低不停变化的电压,其随时间变化的曲线类似在平静的池塘面投下一块石子,石子在水面激起的一圈圈链漪有波峰也有波谷。于是人们形象的把电解电容器两端的这种电压称纹波电压,由纹波电压所加在电容器上,电容器就进行充放电,由此在电容器中形成的电流就形象的称之为纹波电流。电解电容器中的纹波电流I和其两端的纹波电压V及容量C,其上的电量Q有下面的关系:???C=Q∕V=( dQ∕dt)∕(dV∕dt) dQ∕dt=l ???I= C*(dV∕dt) 电解电容器在使用过程中有一个重要参数:电解电容器 的额定纹波电流,该参数不同的厂家有不同的值,就是同一厂家同一规格不同系列的产品,其额定的纹波电流也不一定相同。它是由电解电容器制造商给出的。电解电容器中的纹波电流和其额定纹波电流是两个不同的概念。 电解电容器的额定纹波电流的确定,主要是根据该规格电解电容 器的用途及使用条件及工作时间(俗称寿命)来和电容器自身的材料性能由电解电容制造商来确定的O 在确定某一规格电解电容器的额定纹波电流需要考虑的因素有以 下几点。 K电解电容器的寿命,它是电解电容器制造商对用户的承诺,简单点讲就 是电容器在一定使用条件所能有效工作的时间,也是用户进行电解电容选型

的重要观注点之一,这个一般各制造商在其产品手册上者0会给出O 2、电解电容的等效串联电阻ESR, ESR大小决定了纹波电流在电解电容器中的发热量的大小。 理论上讲纹波电流在电解电容器中产生的热量(单位时间里): Q-I2*ESR 这里I是纹波电流的有效值。ESR是电容器的等效串联电阻。 3、电解电容在上限温度时,电解电容内部的压力。 当工作时,电解电容工作时所处的环境温度比较高。由于电解电容器自身的损耗发热,其内部的温度比处的环境温度要高,一般的湿式电解电容器的液态电解液都会产汽化,产生一定的蒸汽压,该蒸汽压和被封在电解电容器内部的空气所产生的压力构成了电解电容内部的总压力,各种分压的大小遵从道尔顿分压定理。内部总压力不能大于电解电容器铝壳安全阀的抗压强度,否则安全阀会开启,电解电容器失效。电解电容器内部压力和外部压力差是造成电解液泄漏的原因。 4、电解电容的密封特性。 由于电解电容的电解液是液态的,电解电容在工作时,电解液汽化产生蒸汽压,为防止电解液逃逸造成电解失效,就用铝壳和胶盖将芯子密封起来,胶盖与铝壳和芯子铝梗的密封,是一种非匹配密封,都会有一定的泄露,泄露的大小除与胶盖材质封接表面光洁度,铝壳铝梗表面光洁度,封口工艺,铝

电力电容电流的计算方法

关于电力电容器的计算公式和产品选型说明 1.补偿功率(无功输出): Q=√3IU=2πfCU2(带n为额定值或标称值,如Qn、Un;不带n的为实际值,如Q、U) 如:BZMJ0.4-30-3电容器参数如下 Qn=30KVar Un=0.4KV In=43.3A f=50Hz Cn=596.8μF (制造商根据此值生产电容器,Cn一般不变) 2.当电网电压变化时,电容器实际无功输出: Q=√3IU=2πfCnU2=(U/Un)2Qn (一般情况下,0.4KV的电容器使用在电压400V的线路上)▲如:Un=400V,U=440V (即0.4KV的电容器使用在电压440V的线路上) Q=(440/400)2×Qn=1.21Qn (此时电容器过载,电容器严重发热,寿命缩短) ▲如:Un=450V,U=400V (即0.45KV的电容器使用在电压400V的线路上)Q=(400/450)2×Qn=0.79Qn (此时电容器为降额使用,无功输出不足,用户投 资不经济,但可靠性提高,电容器寿命延长。目前电容柜均为分组自动补偿,只要总的电容量充足,提高电容器额定电压不影响电容柜的补偿效果,产品寿命五年左右) 3.当电网有谐波时,总电流增大或谐波电流分量增大。 如:I=1.4In,U=Un Q=√3IU=√3×1.4InUn=1.4Qn (此时电容器严重过载,电容器很快损坏失效) 所以当用户发现电网存在谐波或使用有产生谐波的大功率负载(如中频炉,大型变频器、整流器等)或电容器上级的保护装置经常动作(如热继电器动作,保险丝熔断等),如检测电容器电流大于电容器额定电流的1.1倍以上,建议用户改用额定电压等级较高的电容器,如0.525KV等级: 此时U=(400/525)Un=0.76Un,Q=√3IU=√3×1.4In×0.76Un=1.06Qn电容器过载不多,能勉强应付使用。但谐波对电容器寿命的影响仍然存在,其影响情况相当复杂,在此不便展开讨论。最终解决办法是去除电网谐波(加装谐波滤波器)(串联调谐电抗器),净化电网,保证电容器及其它电器的安全运行。

电容器电流计算

电容器电流计算 The manuscript was revised on the evening of 2021

电流计算 根据某进口品牌电容器铭牌,参考举例:要达到50Kvar无功输出。需配置电容器为70Kvar电容器。其额定电流为:81.6A,额定电压为:500V,产品型号:7R50+XD70. 根据公式计算: 额定电流 I=Q÷·U)=70÷又根据I=U/Z=U÷(1/wc)=wc·U 故wc=I/U=81÷=162 1、当电容器运行在480V系统电压下时:I=wc·U Q=·I 电流(A) I==≈78A 容量(Kvar) Q=·I= 2、当电容器运行在450V系统电压下时:电流(A) I==≈73A 容量(Kvar) Q=·I= 3、当电容器运行在440V系统电压下时:电流(A) I== 容量(Kvar) Q=·I=、当电容器运行在420V系统电压下时:电流(A) I==≈68A 容量(Kvar) Q=·I= 综上计算公式可知,当系统电压越低,运行电流也变小,其实际输出容量则越小。考虑到一般低压配电系统运行电压为380V±5%。 取其上限计算。U=380+=399≈400V .考虑其加装7%电抗器后电容器端电压被抬高大约28V左右.实际运行电压假定为430V。 电流(A) I==≈70A

容量(Kvar) Q=·I=若实际电流为380V, 考虑其加装7%电抗器后电容器端电压被抬高大约28V左右.实际运行电压假定为410V. 电流(A) I==≈67A 容量(Kvar) Q=·I=下图为某进口电容器铭牌: 根 据 以 上 公 式 来 推算,其铭牌标注容量跟实际计算容量完全吻合。

相关文档
最新文档