材料力学性能复习资料

材料力学性能复习资料
材料力学性能复习资料

材料力学性能复习资料

一、 说明下列力学性能指标的意义

1) P

σ 比例极限 2) e

σ 弹性极限 3) b

σ抗拉强度 4) s

τ扭转屈服强度 5) bb

σ抗弯强度 6) HBW 压头为硬质合金球时的布氏硬度

7) HK 显微努氏硬度

8) HRC 压头为顶角120?

金刚石圆锥体、总试验力为1500N 的洛氏硬度

9) KV A 冲击韧性

10) K IC 平面应变断裂韧性 11) R

σ应力比为R 下的疲劳极限 12) ?K th 疲劳裂纹扩展的门槛值 13) ISCC

K 应力腐蚀破裂的临界应力强度因子 14) /T

t εσ给定温度T 下,规定试验时间t 内产生一定的蠕变伸长率δ的蠕变极限

15) T

t

σ给定温度T 下,规定试验时间t 内发生断裂的持久极限

二、单向选择题

1)在缺口试样的冲击实验中,缺口越尖锐,试

7)K ISCC 表示材料的( c )。

a) 断裂韧性; b) 冲击韧性;c ) 应力腐蚀破裂门槛值;d) 应力场强度因子

8)蠕变是指材料在( B )的长期作用下发生的塑性变形现象。

a) 恒应变;b) 恒应力;c) 恒加载速率;d) 恒定频率

9)T

t

σ表示给定温度T 下,恰好使材料经过规定的时间t 发生断裂的( b )。

a) 蠕变极限;b) 持久强度;c) 高温强度;d) 抗拉强度

10)th

K ?表示材料的( b )。 a) 断裂韧性; b) 疲劳裂纹扩展门槛值;c ) 应力腐蚀破裂门槛值;d) 应力场强度因 子

11)在单向拉伸、扭转与单向压缩实验中,应力状态系数的变化规律是( C )。

a) 单向拉伸>扭转>单向压缩;b) 单向拉伸>单向压缩>扭转;c) 单向压缩>扭转> 单向拉伸;d) 扭转>单向拉伸>单向压缩

12) 平面应变条件下裂纹尖端的塑性区尺寸( b )平面应力下的塑性区。

a) 大于;b) 小于; c) 等于; d) 不一定

13)材料的断裂韧性随板材厚度或构件截面尺寸的增加而( a )。

a) 减小;b) 增大;c) 不变;d) 无规律14)与干摩擦相比,加入润滑剂后摩擦副间的摩擦系数将会( b)。

a) 增大;b) 减小;c) 不变;d) 不一定

15) 拉伸试样的直径一定,标距越长则测出的延伸率会( B )。

a) 越大;b) 越小;c) 不变;d) 无规律可循16)拉伸试样的直径一定,标距越长则测出的断面收缩率会( C )。

a) 越高;b) 越低;c) 不变;d) 无规律可循

17)拉伸试样的直径一定,标距越长则测出的抗拉强度会( C )。

a) 越高;b) 越低;c) 不变;d) 无规律可循

材料和直径均相同的低碳钢长短试样各一个,用他们测得的伸长率,断面收缩率,和抗拉强度是否基本相同?

试样所以要规定一个标准要求的长度,是为了检测结果的标准化。

如果试样长度不同,虽然材料完全相同,但结果可能会有所不同。

如果试样长度相差不多,一般没有实质性的差别。

如果试样长度太短,将会出现一些使检测结果不能标准化的情况。

试样检测都是要夹持的,如果太短,这夹持引起的应力会影响到试样的受拉区域,则这种试样肯定是长度太短而影响到了检测结果。

如果试样长度长一些,因为这试样,不管如何说是均质的,其实肯定是不均质的,只是变化范围大小不同而已。所以试样长度的加长,试样将会在其薄弱处出现破坏的原理,结果长的试样检测结果要比短试样的小一些。小多少?要看材料的不均匀程度与试样长度的差别。

标准检测,应该要按标准规定的要求来进行,才能使结果比较标准化,结果才能有权威性而让人信服。

其实,这种情况你可以做一下一些比对试验的,从而真实牢固地掌握一些基本的概念。

加载速度会对材料力学性能产生什么影响?

加载速度的快慢就是生产加工中材料变形速度的快慢。通常情况下,塑性变形速度越快,变形后的材料储能越高,应变硬化率越高。这样造成材料本体硬度提高,力学中的抗拉强度会相对高一些,耐磨性能也好一些。

加工硬化可以使屈服强度增加,但不能改变抗拉强度

金属的抗拉强度其实就是抵御外力、不让内部由于各种原因产生的裂纹发生扩展的能力。这个涉及到了材料的断裂韧性。凡是提高或降低材料断裂韧性的措施或手段会会相应提高或降低材料的抗拉强度。如(1)加入高强的分散均匀、界面结合良好的细长纤维第二相(金属中加入高强陶瓷纤维);(2)或采取措施诱发产生应力诱导的体积发生膨胀的相变过程使得裂纹前端压应力成分增加(如氧化铝中加入氧化锆);(3)加入极细的弥散分布硬颗粒,使得裂纹的扩展不沿直线而沿曲线传播(金属中加入碳化钛或氮化钛);(4)裂纹前端扩展时尽可能地发生较大的塑性变形,不过这与所述的金属的本性有关

二、简答题

1.简述洛氏硬度试验方法的原理、计算方

法和优缺点。

答:洛氏硬度试验方法的原理是以一定的压力(600N、1000N、1500N)将顶角为1200的金刚石圆锥体压头或直径为1/钢球压入试样表面,以残留于表面的压痕深度e来表示材料的硬度。

洛氏硬度的计算方法为:(1)对以金刚石圆锥体为压头、总试验力为1500N的C标尺,有HRC=100-e/0.002;(2)对以钢球为压头、总试验力为600N和1000N的A和B标尺,有HRA(B)=130-e/0.002。

洛氏硬度试验的优点是:(1)因有硬质、软质两种压头,故适于各种不同硬质材料的检验,不存在压头变形问题。(2)因为硬度值可从硬度机的表盘上直接读出,故测定洛氏硬度更为简便迅速,工效高。(3)对试件表面造成的损伤较小,可用于成品零件的质量检验。(4)因加有预载荷,可以消除表面轻微的不平度对试验结果的影响。

洛氏硬度的缺点是:(1)洛氏硬度存在人为的定义,使得不同标尺的洛氏硬度值无法相互比较,不像布氏硬度可以从小到大统一起来。(2)

由于压痕小,所以洛氏硬度对材料组织的不均匀性很敏感,测试结果比较分散,重复性差,因而不适用具有粗大组成相(如灰铸铁中的石墨片)或不均匀组织材料的硬度测定。

2)什么是低温脆性?并阐述低温脆性的物理本质。

答:材料因温度的降低由韧性断裂转变为脆性断裂,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状的现象,称为低温脆性或冷脆。

低温脆性是材料屈服强度随温度的下降而急

却随温度变化剧增加、但材料的断裂强度σ

f

较小的结果。

3)切口冲击韧性实验能评定那些材料的低温脆性?哪些材料不能用此方法检验和评定?局限性?

答:切口冲击韧性实验能综合评定缺口、低温和高应变速率对对材料脆化的影响。塑性很好的材料及表面光滑无裂纹的材料不能用此方法检验和评定。

局限性表现在材料的冲击韧性是定性的,无

法用理论公式确定,而且,对缺口、材料缺陷敏感,不能定量研究。

4)从宏观和微观分析为什么有些材料有明显的韧脆转变温度,有些没有?

答:宏观上,体心立方中、低强度结构钢明显的韧脆转变温度,高强度度结构钢在很宽的温度范围内,冲击功都很低,没有明显的韧脆转变温度。面心立方金属及其合金一般没有韧脆转变现象。

微观上,体心立方金属中位错运动的阻力对温度变化非常敏感,位错运动阻力随温度下降而增加,在低温下,该材料处于脆性状态。

而面心立方金属因滑移系较多,对温度不敏感,故一般不显示低温脆性。

5)材料的厚度或截面尺寸对材料的断裂韧性有什么影响?在平面应变断裂韧性K

IC

的测试过程中,为了保证裂纹尖端处于平面应变和小范围屈服状态,对试样的尺寸有什么要求?

答:材料的断裂韧性随材料厚度或截面尺寸的增加而减小,因此为保证裂纹尖端处于平面应变和小范围屈服状态,对试样在z向的厚度B、在y向的宽度W与裂纹长度a之差(即W-a,称为韧带宽度)和裂纹长度a设计成如下尺寸:

6)高周疲劳与低周疲劳的区别是什么?并从材料的强度和塑性出发,分析应如何提高材料

的抗疲劳性能?

答:高周疲劳是指小型试样在变动载荷(应力)试验时,疲劳断裂寿命高于105周次的疲劳过程。高周疲劳试验是在低载荷、高寿命和控制应力下进行的疲劳。而低周疲劳是在高应力、短寿命、控制应变下进行的疲劳过程。

对高周疲劳,由于承受的载荷较小、常处于弹性变形范围内,因而材料的疲劳抗力主要

取决于材料强度。于是提高的材料就可改善材料的高周疲劳抗力。

而对低周疲劳,承受的载荷常大于材料的屈服强度、处于塑性变形内,因而材料的疲劳抗力主要取决于材料的塑性。于是增加材料的塑性,可提高材料的低周疲劳抗力。

7)叙述区分高强钢发生应力腐蚀破裂与氢致滞后断裂的方法。

答:应力腐蚀与氢致滞后断裂,虽然都是由于应力和化学介质共同作用而产生的延滞断裂现象,但可通过以下的方法进行区分:(1)利用外加电流对静载下产生裂纹的时间或裂纹扩展速率的影响来判断。当外加小的阳极电流而缩短产生裂纹时间的是应力腐蚀;当外加小的阴极电流而缩短产生裂纹时间的是氢致延滞断裂。

(2)应力腐蚀的断裂源在试样的表面;而氢致开裂的断裂源在表面以下的某一深度处。

(3)应力腐蚀断口的颜色灰暗,常有腐蚀产物存在;而氢致断裂断口一般较光亮、没有腐蚀产物或腐蚀产物的量很少。

(4)应力腐蚀的主裂纹有较多的二次裂纹

存在;而氢致断裂的主裂纹没有分枝。

8)与常温下力学性能相比,金属材料在高温下的力学行为有哪些特点?

答:与常温下力学性能相比,金属材料在高温下的力学行为有如下特点:

(1)材料在高温下将发生蠕变现象。即在应力恒定的情况下,材料在应力的持续作用下不断地发生变形。

(2)材料在高温下的强度与载荷作用的时间有关了。载荷作用的时间越长,引起一定变形速率或变形量的形变抗力及断裂抗力越低。

(3)材料在高温下工作时,不仅强度降低,而且塑性也降低。应变速率越低,载荷作用时间越长,塑性降低得越显著。因而在高温下材料的断裂,常为沿晶断裂。

(4)在恒定应变条件下,在高温下工作的材料还会应力松弛现象,即材料内部的应力随时间而降低的现象。

9)金属材料在高温下的变形机制与断裂机制,和常温比较有何不同?

答:变形机制:高温下晶内变形以位错滑移和攀移方式交替进行,晶界变形以滑动和迁移

方式交替进行。常温下,变形机制以晶内位错滑移为主,若滑移受到阻碍,滑移便不能进行,必须在更大切应力作用下才能使位错重新开动和增值。

断裂机制:高温下,主要是沿晶断裂,由于晶界滑动,在晶界的台阶(如经第二相质点或滑移带的交截)处受阻而形成空洞,特别易产生在垂直于拉应力方向的晶界上,空洞连接而发生断裂。

10)控制摩擦磨损的方法有哪些?

(1)润滑剂的使用:在相对运动的摩擦接触面之间加入润滑剂,使两接触面之间形成润滑膜,变干摩擦为润滑剂内部分子之间内摩擦,从而达到减少接触面间的摩擦、降低材料磨损的目的。(2)摩擦材料的选择:根据摩擦的具体工况(载荷、速度、温度、介质),选择合理的摩擦副材料(减摩、摩阻、耐磨),也可达到降低材料磨损的目的。(3)材料的表面改性或强化:利用各种无力的、化学的或机械的工艺手段如机械加工强化处理、表面处理(滚压、喷九和表面化学热处理)都可因为表层产生压应力,能有效地减少材料磨损。

11)氢脆可以分为哪些类型?何谓‘第一类氢脆’、‘第二类氢脆’、‘可逆氢脆’、‘不可逆氢脆’,他们有什么特点?

答:氢脆根据氢的来源可分成两大类:第一类为内部氢脆,它是由于金属材料在冶炼、锻造、焊接或电镀、酸洗过程中吸收了过量的氢气而造成的;第二类氢脆称为环境氢脆,它是在应力和氢气氛或其它含氢介质的联合作用下引起的一种脆性断裂,如贮氢的压力容器中出现的高压氢脆。氢脆按其与外力作用的关系可分成两大类:第一类氢脆和第二类氢脆。第一类氢脆是在负荷之前材料内部已存在某种氢脆断裂源。在应力作用下裂纹迅速形成与扩展,因而随着加载速度的增加,氢脆的敏感性增大,包括白点、氢蚀、氢化物致脆等。第二类氢脆是在负荷之前,材料内部并不存在某种氢脆断裂源。加载后由于氢与应力的交互作用才形成裂纹源,裂纹逐渐扩展而导致脆断,因而氢脆的敏感性是随着加载速度的降低而增大,包括可逆氢脆和不可逆氢脆。

可逆氢脆是指材料经低速形变变脆后,如果

卸载并停留一段时间在进行正常速度变形,原先已脆化材料的塑性可以得到恢复。通常高强度钢的环境氢脆及低含氢量状况下的内部氢脆均属此类。

不可逆氢脆是指已脆化的材料,卸载后再进行正常速度变形时,其塑性不能恢复。氢化物致脆属此类。

12)腐蚀疲劳和应力疲劳相比有何不同?

答:腐蚀疲劳和应力疲劳相比,主要有以下不同点:

(1)应力腐蚀是在特定的材料与介质组合下才发生的,而腐蚀疲劳却没有这个限制,它在任何介质中均会出现。

(2)对应力腐蚀来说,有一临界应力强度因子KISCC ,这是材料固有的性能,当外加应力强度因子KI

(3)应力腐蚀破坏时,只有一两个主裂纹,主裂纹上有分支小裂纹,而腐蚀疲劳裂纹源有多处,裂纹没有分支。

(4)在一定的介质中,应力腐蚀裂纹尖端的溶液酸度是较高的,总是高于整体环境的平均值。

13)试述高温蠕变预应力松弛的异同点。

答:蠕变是指在一定的温度和较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象。

应力随时间增加不断下降的现象叫做应力松弛。应力松弛可看作是应力不断降低时的“多级”蠕变。

14)什么是低循环疲劳、高循环疲劳?什么是应力疲劳、应变疲劳?

答:在很高的应力下,在很少的循环次数后,试件即发生断裂,并有较明显的塑性变形。一般认为,低循环疲劳发生在循环应力超出弹性极限,疲劳寿命在0.25到104或105 次之间。

因此,低循环疲劳又可称为应变疲劳。

在高循环疲劳区,循环应力低于弹性极限,疲劳寿命长,Nf>105 次循环,且随循环应力降低而大大地延长。试件在最终断裂前,整体上无可测的塑性变形,因而在宏观上表现为脆性断裂。在此区内,试件的疲劳寿命长,

故可将高循环疲劳称为应力疲劳。

15)简述布氏硬度试验方法的原理、计算方法和优缺点。

答:a) 测试原理:用一定的压力P将直径为D的淬火钢球或硬质合金球压入试样表面,保持规定的时间后卸除压力,于是在试件表面留下压痕(压痕的直径和深度分别为d和h)。布氏硬度用单位压痕表面积A上所承受的平均压力表示。

b)

计算方法:

c) 优缺点:

优点:1) 分散性小,重复性好,能反映材料的综合平均性能。

2) 可估算材料的抗拉强度。

缺点:1) 不能测试薄件或表面硬化层的硬度。

2) 试验过程中,常需要更换压

头和实验载荷,耗费人力和时间。

16)解释平面应力和平面应变状态,并用应力应变参数表述这两种状态。

答:对薄板,由于板材较薄,在厚度方向上可以自由变形,即σz=0。这种只在两个方向上存在应力的状态称为平面应力。(2分)对厚板,由于厚度方向变形的约束作用,使得z方向不产生应变,即εz=0,这种状态称为平面应变。

推导题

1)在原子平衡间距为的理想晶体中,两原子间的作用力σ与原子相对位置变化x的关系为σsin(2πx/λ) 。如晶体断裂的表面能为γ,=σ

m

弹性模量为E,试推导晶体发生断裂的理论断裂强度。

答:材料的理论结合强度,应从原子间的结合力入手,只有克服了原子间的结合力,材料才能断裂。两个原子面的作用力如下图所示。克服了原子之间作用力的最大值,即可产生断裂。这一最大值即为理论断裂强度σm。

曲线上的最高点代表晶体的最大结合力,

即理论断裂强度。作为一级近似,该曲线可用

正弦曲线表示

sin(2πx/λ) σ=σ

m

(1)

式中x为原子间位移, λ为正弦曲线的波长。

如位移很小,则sin(2πx/λ)=(2πx/λ),

于是

σ=σm(2πx/λ) (2)

根据虎克定律,在弹性状态下,

σ=Eε=Ex/a0 (3)

式中E为弹性模量;ε为弹性应变;a。为

原子间的平衡距离。合并式(2)和(3),消

去x,得

σm=λE/2πa

(4)

另一方面,晶体脆性断裂时,形成两个新的表面,需要表面形成功2γ,其值应等于释放出的弹性应变能,可用上图中曲线下所包围的面积来计算得,假定sin(2πx/λ)=(2π

x/λ) 。

(5)

?由式5和式4得到:

?

?σm=(Eγ/a0)1/2

2)试用无限大板中心贯穿裂纹(裂纹长度为2a)延长线上应力场强度分布公式

/(2πr)1/2 ,计算平面应力条件下裂纹前σy=K

I

端塑性区的真实大小。其中材料的屈服强度为σ

。注意,计算时需考虑应力松弛的影响。

S

最新福州大学材料力学期末试卷1(带答案)

精品文档 福州大学 《材料力学》期末考试卷1答案 (考试时间:120分钟) 使用班级: 学生数: 任课教师: 考试类型 闭卷 题 序 一 二 三 四 五 六 总分 得 分 阅卷人 一.填空题(22分) 1. 为保证工程结构或机械的正常工作,构件应满足三个要求,即 强度要求、 刚度要求 及 稳定性要求 。(每空1分,共3分) 2.材料力学中求内力的基本方法是 截面法 。(1分) 3.进行应力分析时,单元体上剪切应力等于零的面称为 主平面 ,其上正应力称为 主应力 。(每空1分,共2分) 4.第一到第四强度理论用文字叙述依次是最大拉应力理论、最大拉应变理论、最大剪应力理论和形状改变能理论。(每空1分,共4分) 5. 图示正方形边长为a ,圆孔直径为D ,若在该正方形中间位置挖去此圆孔,则剩 下部分图形的惯性矩y z I I ==44 1264 a D π-。(2分) 6. 某材料的σε-曲线如图,则材料的 (1)屈服极限s σ=240MPa (2)强度极限b σ=400MPa (3)弹性模量E =20.4GPa (4)强度计算时,若取安全系数为2,那么 塑性材 料的许用 应力 []σ=120MPa ,脆性材料的许用应力 []σ=200MPa 。(每空2分,共10分) 二、选择题(每小题2分,共30分) ( C )1. 对于静不定问题,下列陈述中正确的是 。 A 未知力个数小于独立方程数; B 未知力个数等于独立方程数 ; C 未知力个数大于独立方程数。 ( B )2.求解温度应力和装配应力属于 。 A 静定问题; B 静不定问题; C 两者均不是。 ( B )3.圆轴受扭转变形时,最大剪应力发生在 。 A 圆轴心部; B 圆轴表面; C 心部和表面之间。 ( C )4. 在压杆稳定中,对于大柔度杆,为提高稳定性,下列办法中不能采用的是 。 A 选择合理的截面形状; B 改变压杆的约束条件; C 采用优质钢材。 ( C )5.弯曲内力中,剪力的一阶导数等于 。 A 弯矩; B 弯矩的平方; C 载荷集度 ( C )6.对构件既有强度要求,又有刚度要求时,设计构件尺寸需要 。 A 只需满足强度条件; B 只需满足刚度条件; C 需同时满足强度、刚度条件。 ( A )7.()21G E μ=+????适用于 A .各向同性材料 B. 各向异性材料 C. 各向同性材料和各向异性材料 D. 正交各向异性。 ( B )8.在连接件上,剪切面和挤压面分别 于外力方向 A.垂直、平行 B.平行、垂直 C.均平行 D.均垂直 ( C )9.下面两图中单元体的剪切应变分别等于 。虚线表示受力后的形状 A. 2γ,γ B. 2γ,0 C. 0,γ D. 0,2γ . 系 班 姓名 座号 成绩 . ...................................................... 密 .................................... 封 ................................ 线 ...................................................... y z

材料力学性能重点总结

名词解释: 1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。 2弹性比功:表示金属材料吸收弹性变形功的能力。 3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。 4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5塑性:金属材料断裂前发生塑性变形的能力。常见塑性变形方式:滑移和孪生 6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。 7比例极限:应力与应变保持正比关系的应力最高限。 8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈 服强度。 9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂 过程,在裂纹扩展过程中不断的消耗能量。韧性断裂的断裂面一般平行于最大切应力并于主 应力成45度角。 10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。 11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。 12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。 13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓缺口效应“ ①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。 ②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。 8缺口敏感度:有缺口强度的抗拉强度Z bm与等截面尺寸光滑试样的抗拉强度Zb的比值. NSR=Z bn / Z S NSR越大缺口敏感度越小 9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商 10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J 11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解 理,断口特征由纤维状变为结晶状,这种现象称为低温脆性 12脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间 16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI越大,则应力场各应力分量也越大 17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象第一章 3?金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指 标? 答:由于弹性变形时原子间距在外力作用下可逆变化的结果,应力与应变关系实际上是原子

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

2017材料力学性能复习提纲

1.第一章是重中之重。可以说没有什么需要忽略的。还要尤其注意其中跟工程实践密切相关的内容,如:弹性极限、屈服强度、抗拉强度、断裂强度等重要力学性能指标的工程实践意义怎样? 2.如何提高材料的强度?相变强化的本质是什么?其中固溶强化效果与溶质原子的关系如何?材料的刚度如何影响材料的使用性能?脆性断裂和韧性断裂主要易发生在哪些材料上?断口特征怎样。 3. 弹性比功、包申格现象等等的概念和影响因素,这些因素是如何影响材料相关性能的? 4.断裂强度的裂纹理论。特别是重要力学参数的计算。 5.材料中的非金属夹杂物,在构件受到扭转、压缩或者拉伸时,如何影响最后断口形貌的。扭转、压缩、弯曲实验各自最适合测量材料的哪些性能?在做这些实验时,操作过程应注意哪些因素?缺口效应是怎样的?为何要在试样上加工缺口? 6.冲击实验的步骤,对试样的要求怎样?为何有这些要求? 7.各种硬度实验的原理,硬度值的表示方式,其中各个参数的含义。各种硬度测试方法的适用范围和彼此的优劣。 8.材料的低温脆性含义,具体衡量指标,以及如何判断材料的低温使用性能? 9.针对常用的金属、陶瓷和高分子材料,怎样提高其断裂韧性。测定KⅠc的实验中试样有什么要求?裂纹体的开裂、扩展方式有哪几种,其中哪种最危险?断裂韧性的影响因素,以及断裂韧度在金属材料中的具体应用举例。

10.材料的疲劳强度,以及影响因素。何为过载锻炼?如何估计材料的疲劳寿命(Pair公式的应用)?疲劳断口的特征有? 11.应力腐蚀断裂的概念和力学性能指标有哪些?如何改善材料应对SCC的能力?环境氢脆的特点和影响因素。SCC和环境氢脆的区别在哪些方面? 12.材料的高温力学性能指标有哪些?表示方法和符号中各个参数的含义。材料发生高温蠕变断裂具体的影响因素。 13.材料磨损过程,从耐磨的角度考虑为提高器件的使用寿命,应遵循什么样的设计原则?磨损的详细分类。

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

大学期末考试---材料力学试题及答案

一、判断题(正确打“√”,错误打“X ”,本题满分为10分) 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。( ) 2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。( ) 3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。( ) 4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。( ) 5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。( ) 6、单元体上最大切应力作用面上必无正应力。( ) 7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。( ) 8、动载荷作用下,构件内的动应力与材料的弹性模量有关。( ) 9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。( ) 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。( ) 二、选择题(每个2分,本题满分16分) 1.应用拉压正应力公式A F N =σ的条件是( )。 A 、应力小于比例极限; B 、外力的合力沿杆轴线; C 、应力小于弹性极限; D 、应力小于屈服极限。 2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比 ) (m ax )(m ax b a σσ 为 ( )。 A 、1/4; B 、1/16; C 、1/64; D 、16。 3、关于弹性体受力后某一方向的应力与应变关系有如下论述:正确的是 。 A 、有应力一定有应变,有应变不一定有应力; B 、有应力不一定有应变,有应变不一定有应力; C 、有应力不一定有应变,有应变一定有应力; D 、有应力一定有应变,有应变一定有应力。 4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是 。 A :脉动循环应力: B :非对称的循环应力; C :不变的弯曲应力;D :对称循环应力 h 4h (a) h 4h (b)

西安工业大学材料力学性能复习重点资料

弹性模量:产生100%弹性变形所需要的应力 弹性比功(弹性比能/应变比能):表示金属材料吸收弹性变形功的能力 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力 塑性:金属材料断裂前发生不可逆永久(塑性) 变形的能力. 包申格效应:金属材料经过预先加载产生少量的弹性形变,卸载后,再同向加载(拉伸)时,屈服强度或弹性极限增加;反向加载(压缩)时,屈服强度或弹性极限降低的 现象。 *消除包申格效应的方法:预先进行较大的塑形变形;在第二次反向受力前先使金属材料于 回复或再结晶温度下退火 金属韧性:金属材料断裂前吸收塑形变形功和断裂功的能力;或材料抵抗裂纹扩展的能力 缩颈:韧性金属在拉伸试验时变形集中于局部区域的特殊现象 韧性断裂:断裂前发生明显塑性变形的断裂 脆性断裂:突然发生的断裂,且断裂前基本不产生塑性变形。 穿晶断裂:裂纹扩展的路径穿过晶内 沿晶断裂:裂纹沿晶界扩展,大多为脆性断裂。断口形貌:冰糖状 剪切断裂:金属材料在切应力作用下沿滑面分离造成的滑移面分离的断裂 解理断裂:金属材料在一定条件下,外加正应力达到一定数值后,以极快速率沿一定晶体平面产生的穿晶断裂。 .解理面:由于与大理石的断裂相似,所以称这种晶体学平面为解理面 解理刻面:以晶粒大小为单位的解理面 解理台阶:解理裂纹与螺型位错相遇,形成具有一定高度的台阶 河流花样:解理台阶沿裂纹前端滑动,同号台阶汇合并长大,足够大时汇集成河流花样。微孔聚集断裂:由于杂质与基体界面脱离形成微孔形核并长大形成微孔,在外力作用下产生缩颈而断裂,导致各个微孔连接形成微裂纹,微裂纹在三向拉应力区和集中 塑形变形区,在该区形成新微孔。新微孔连通使裂纹向前推进,不断如此下 去产生断裂。 应力状态软性系数:τmax和σmax的比值,用α表示 各种加载状态下的应力状态软性系数: 三向不等拉伸:α=0.1 单向静拉伸α=0.5 扭转:α=0.8 单向压缩:α=2 三向不等压缩:α=4 缺口效应:由于缺口的存在,缺口截面上的应力状态将发生变化缺口,缺口根部应力集中缺口敏感度(NSR):缺口试样的抗拉强度σbn与截面尺寸光滑试样的抗拉强度σb的比值 冲击韧性:是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用Ak表示 冲击吸收功:试样变形和断裂所消耗的功 低温脆性:在试验温度低于某一温度t k时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,。t k称为韧脆转变温度,也称冷脆转变温度 低应力脆断:在应力水平低于材料屈服极限的情况下所发生的突然断裂现象。 张开型(Ⅰ型)裂纹:拉应力垂直作用于裂纹扩展面,沿作用力方向张开,沿裂纹面扩展的裂纹 应力场:物件受力时,其内部所受到的有方向有大小且连续的应力所构成的场 塑性区:金属材料裂纹扩展前,尖端附近出现的塑性变形区 有效屈服应力:在某个方向上发生屈服时对应的应力

湖南大学材料力学期末试卷及答案

湖南大学材料力学试卷(一) 一、选择题(在下面的四个答案中,只有一个答案是正确的,请将正确答案填 在答题栏内。每小题4分,共20分。) (1)铸铁拉伸试验破坏由什么应力造成?破坏断面在什么方向?以下结论哪一 个是正确的? (A )切应力造成,破坏断面在与轴线夹角45o方向; (B )切应力造成,破坏断面在横截面; (C )正应力造成,破坏断面在横截面; (D )正应力造成,破坏断面在与轴线夹角45o方向。 正确答案是。 (2)对于图示四种横截面直杆受扭时,适用公式P I T ρτρ=的截面有四种答案: (注:除(D)外其余为空心截面) 正确答案是。 (3)已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点, 则比值M e1/M e2为: (A) M e1/M e2=2; (B)M e1/M e2=3; (C)M e1/M e2=1/2; (D)M e1/M e2=1/3。 正确答案是。 (4)图示四种结构,各杆 (A) (B) (C) (D)

EA 相同。在集中力F 作用下结构的应变能分别用V ε1、V ε2、V ε3、V ε4表示。下列结论中哪个是正确的? (A )V ε1 > V ε2 > V ε3 > V ε4 ;(B )V ε1< V ε2< V ε3< V ε4 ; (C )V ε1 >V ε2 ,V ε3 > V ε4 ,V ε2 < V ε3 ;(D )V ε1< V ε2 , V ε3< V ε4 ,V ε2< V ε3 。 正确答案是??????。 (5)由稳定条件[]F A ?σ≤,可求[]F ,当A 增加一倍时,[]F 增加的规律有四种答案: (A) 增加一倍; (B) 增加二倍; (C)增加1/2倍; (D)[]F 与A 不成比例。 正确答案是。 二、作图(15 分) 作图示梁的剪力图和弯矩图。 三、计算题(共65分) (1) (1) 圆轴受力如图所示,已知轴的直径为d ,长度为a 2,切变模量为G , 相对截面A 2 (1) (3)(4)

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测 出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

(完整word版)宁波大学期末材料力学A卷试题及答案2014

………密………封………线………以………内………答………题………无………效…… 一、选择题(每题2分,共 10分) 1. 图中所示三角形微单元体,已知两个直角截面上的切应力为0τ,则斜边截面上的正应力σ和切应力 τ分别为 D 。 A 、00,στττ==; B 、0,0σττ==; C 、00,στττ=-=; D 、0,0σττ=-=。 2. 构件中危险点的应力状态如图所示,材料为低碳钢, 许用应力为[]σ,正确的强度条件是 B 。 A 、[]σσ≤; B 、[]στσ+≤; C 、[],[][]/2σσττσ≤≤=; D 、 224[]στσ+≤。 3. 受扭圆轴,当横截面上的扭矩不变而直径减小一半时,该横截面上的最大切应 力原来的最大切应力是 d 。 A 、2倍 B 、4倍 C 、6倍 D 、8倍 4. 两根材料相同、抗弯刚度相同的悬臂梁I 、II 如图示,下列结论中正确的是 c 。 A.I 梁和II 梁的最大挠度相同 B.II 梁的最大挠度是I 梁的2倍 C.II 梁的最大挠度是I 梁的4倍 D.II 梁的最大挠度是I 梁的1/2倍 2P P l I 2l II 题1-4 图 5. 现有两种压杆,一为中长杆,另一为细长杆。在计算压杆临界载荷时,如中长杆误用细长杆公式, 而细长杆误用中长杆公式,其后果是 D 。 A 、两杆都安全; B 、两杆都不安全; C 、中长杆不安全,细长杆安全; D 、中长杆安全,细长杆不安全。 二、填空(每题4分,共20分) 1. 用积分法求图示梁的挠曲线方程时,需分 3 段进行积分。 0τ0 ττ σ 45 45 题 1-1 图 σ τ 题 2-2 图

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料力学性能》复习资料

《材料力学性能》复习资料 第一章 1塑性--材料在外力作用下发生不可逆的永久变形的能力 2穿晶断裂和沿晶断裂---穿晶断裂,裂纹穿过晶界。沿晶断裂,裂纹沿晶扩展。 3包申格效应——金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 4E---应变为一个单位时,E即等于弹性应力,即E是产生100%弹性变形所需的应力 5ζs----屈服强度,一般将ζ0.2定为屈服强度 6n—应变硬化指数 Hollomon关系式: S=ken (真应力S与真应变e之间的关系) n—应变硬化指数;k—硬化系数 应变硬化指数n反映了金属材料抵抗继续塑性变形的能力。分析:n=1,理想弹性体;n=0材料无硬化能力。大多数金属材料的n值在0.1~0.5之间。 7δ10---长比例试样断后延伸率 L0=5d0 或 L0=10d0 L0标注长度 d0名义截面直径) 8静力韧度:静拉伸时,单位体积材料断裂所吸收的功(是强度和塑性的综合指标)。J/m3 9脆性断裂(1)断裂特点断裂前基本不发生塑性变形,无明显前兆;断口与正应力垂直。(2)断口特征平齐光亮,常呈放射状或结晶状;人字纹花样的放射方向与裂纹扩展方向平行。通常,脆断前也产生微量的塑性变形,一般规定Ψ<5%为脆性断裂;大于5%时为韧性断裂。 11屈服在金属塑性变形的开始阶段,外力不增加、甚至下降的情况下,变形继续进行的现象,称为屈服。 12低碳钢在室温条件下单向拉伸应力—应变曲线的特点p1-2 13解理断裂以极快速率沿一定晶体学平面产生的穿晶断裂。 解理面一般是指低指数晶面或表面能量低的晶面。 14韧性是金属材料塑性变形和断裂全过程吸收能量的能力,它是强度和塑性的综合表现,因而在特定条件下,能量、强度和塑性都可用来表示韧性。 15弹性比功αe(弹性比能、应变比能) 物理意义:吸收弹性变形功的能力。 几何意义:应力-应变曲线上弹性阶段下的面积。αe = (1/2) ζe*ε e

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

工程材料力学性能各章节复习知识点

工程材料力学性能各个章节主要复习知识点 第一章 弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。 滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。 塑性:指金属材料断裂前发生塑性变形的能力。 脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。 韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。 应力、应变;真应力,真应变概念。 穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。 拉伸断口形貌特征? ①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。用肉眼或放大镜观察时,断口呈纤维状,灰暗色。纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。 ②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。板状矩形拉伸试样断口呈人字形花样。人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。 韧、脆性断裂区别? 韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆 拉伸断口三要素? 纤维区,放射区和剪切唇。 缺口试样静拉伸试验种类? 轴向拉伸、偏斜拉伸 材料失效有哪几种形式? 磨损、腐蚀和断裂是材料的三种主要失效方式。 材料的形变强化规律是什么? 层错能越低,n越大,形变强化增强效果越大 退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。 在某些合金中,增强效果随合金元素含量的增加而下降。 材料的晶粒变粗,增强效果提高。 第二章 应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmax σmax 缺口敏感度:缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

《材料力学性能》复习提纲

《材料力学性能》复习提纲 第一章金属在单向静拉伸载荷下的力学性能 1.拉伸变形过程; 2.弹性不完整性(滞弹性,包申格效应),循环韧性; 3.塑性变形方式,滑移,均匀屈服产生机制,影响屈服强度的因素; 4.应变硬化(形变强化)及其产生原因和工程意义; 5.缩颈,抗拉强度; 6.塑性、脆性及韧性,塑性指标; 7.机件的失效形式:磨损、腐蚀和断裂; 8.断裂的分类及各类断口特征,韧性断裂和脆性断裂的区别,哪种断裂更危险及其原因; 9.拉伸断口的三要素以及强度和塑性对断口三个区域组成的影响; 10.微孔聚集断裂过程; 11.格雷菲斯裂纹理论(原理,出发点,必要条件); 12.为什么理论断裂强度与实际断裂强度在数值上有数量级的差别; 13.机械设计中最常用的两个强度指标为:屈服强度和抗拉强度; 14.碳含量对钢拉伸曲线的影响。 第二章金属在其他静载荷下的力学性能 1.应力状态软性系数α及其代表的意义; 2.压缩、弯曲、扭转试验的特点; 3.缺口效应(定义及由于缺口引起的两个效应),理论应力集中系数,缺口敏感度及其代表的意义; 4.硬度的分类、符号表示方法、测试(布氏硬度、洛氏硬度、维氏硬度)原理\方法; 5.课后作业P55页的8题。 第三章金属在冲击载荷下的力学性能 1.冲击韧性; 2.低温脆性、韧脆转变温度及其确定方法、韧性温度储备; 3.产生低温脆性的物理本质和机理; 4.影响韧脆转变温度的因素。 第四章金属的断裂韧度 1.低应力脆断; 2.裂纹的扩展形式; 3.应力场强度因子KⅠ定义及其表达式; 4.材料的断裂韧度,断裂K判据,断裂G判据;5 5.KⅠ和K IC,G IC与K IC的关系; 6.KⅠ的修正条件,考虑应力松弛时塑性区宽度(平面应力,平面应变),修正后KⅠ计算公式; 7.断裂韧度测试时试样的制备(满足条件);

福州大学材料力学期末试卷3(带答案)

福州大学 《材料力学》期末考试卷3 (考试时间:120分钟) 使用班级: 学生数: 任课教师: 考试类型 闭卷 题 序 一 二 三 四 五 六 总分 得 分 阅卷人 一、单项选择题(共10个小题,每小题2分,合计20分) 1.材料的失效模式 B 。 A 只与材料本身有关,而与应力状态无关; B 与材料本身、应力状态均有关; C 只与应力状态有关,而与材料本身无关; D 与材料本身、应力状态均无关。 2.下面有关强度理论知识的几个论述,正确的是 D 。 A 需模拟实际构件应力状态逐一进行试验,确定极限应力; B 无需进行试验,只需关于材料破坏原因的假说; C 需要进行某些简单试验,无需关于材料破坏原因的假说; D 假设材料破坏的共同原因,同时,需要简单试验结果。 3、 轴向拉伸细长杆件如图所示,____ B ___。 A .1-1、2-2面上应力皆均匀分布; B .1-1面上应力非均匀分布,2-2面上应力均匀分布; C .1-1面上应力均匀分布,2-2面上应力非均匀分布; D .1-1、2-2面上应力皆非均匀分布。 4、塑性材料试件拉伸试验时,在强化阶段___ D ___。 A .只发生弹性变形; B .只发生塑性变形; C .只发生线弹性变形; D .弹性变形与塑性变形同时发生。 5、比较脆性材料的抗拉、抗剪、抗压性能:___ B ____。 A .抗拉性能>抗剪性能<抗压性能; B .抗拉性能<抗剪性能<抗压性能; C .抗拉性能>抗剪性能>抗压性能; D .没有可比性。 6、水平面内放置的薄壁圆环平均直径为d ,横截面面积为A 。当其绕过圆心的轴在水平面内匀角速度旋转时,与圆环的初始尺寸相比__ A ____。 A .d 增大,A 减小; B .A 增大,d 减小; C .A 、d 均增大; D .A 、d 均减小。 7、如右图所示,在平板和受拉螺栓之间垫上一个垫圈,可以提高___ D ___。 A .螺栓的拉伸强度; B .螺栓的挤压强度; C .螺栓的剪切强度; D .平板的挤压强度。 8、右图中应力圆a 、b 、c 表示的应力状态分别为 C 。 A 二向应力状态、纯剪切应力状态、三向应力状态; B 单向拉应力状态、单向压应力状态、三向应力状态; C 单向压应力状态、纯剪切应力状态、单向拉应力状态; D 单向拉应力状态、单向压应力状态、纯剪切应力状态。 9.压杆临界力的大小 B 。 A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关; C 与压杆的长度大小无关; D 与压杆的柔度大小无关。 10.一点的应力状态如下图所示,则其主应力1σ、2σ、3σ 分别为 B 。 A 30MPa 、100 MPa 、50 MPa B 50 MPa 、30MPa 、-50MPa C 50 MPa 、0、-50MPa D -50 MPa 、30MPa 、50MPa 二、简述题(每小题4分,共20分): 1、简述材料力学的任务。 答:材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。(4分) 2、简述截面法求内力的基本步骤。 答:分三个步骤:(1)用假想截面将构件分成两部分,任取一部分作为研究对象,舍去另一部分。(2)用内力代替舍去部分的作用。(3)建立平衡方程,确定内力。 3、简述求解超静定问题的基本思路。 答:研究变形,寻找补充方程。(4分) 4、简述求解组合变形的基本思路。 答:先将外力进行简化或分解,使之对应着不同的基本变形,然后用叠加原理求解。 5、简述应力集中的概念。 答:因杆件外形突然变化,而引起局部应力急剧增大的现象,称为应力集中。(4分) . 系 班 姓名 座号 成绩 . ...................................................... 密 .................................... 封 ................................ 线 ......................................................

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

相关文档
最新文档