数值分析 函数逼近与曲线拟合
数值分析 董玉林第三章 函数逼近与曲线拟合

3、交错点组
定义4
若函数 f x 在其定义域的某一区间 a,b
上存在 n 个点 xk | k 1, 2,..., n, 使得
1 f xk max f x
f x k 1, 2,..., n; ,
2 f xk f xk1 , k 1, 2,..., n 1;
则称点集 xk | k 1, 2,..., n 为函数 f x 在区间
为 f x 与 Pn x 在a,b 上的偏差。
. 注:显然 f , Pn 0, f , Pn 的全体组成一个集合, 它有下界0
若记集合的下确界为
En inf f , Pn inf max f x Pn x
Pn H n
Pn H n a x b
则称 En 为f x 在 a,b 上的最小偏差。
二、函数逼近问题的一般提法
对于函数类 A 中给定的函数 f ,x 要求在另一类 较简单的且便于计算的函数类 B中寻A找一个函
数 ,使P x与 之P差 x在 某f种x度量意义下最小。
注:本章中所研究的函数类 A通常为区间 a上,b的 连续函数,记做 ; C而a函,b数 类 通常是代B数多
项式或三角多项式。
四、一致逼近的概念
定义1 设函数 f 是x区间 上a,b的 连续函数,对于任意给定
的 ,如果存在多项式 P,使x不等式
f x Px
成立,则称多项式 P 在x区间 上a,一b致逼近于函数 。f x
五、一致逼近多项式的存在性
定理 1(维尔斯特拉斯定理) 若f (x)是区间[a, b]上的连续函数,则对于任意给定的
➢ 切比雪夫多项式的极值性质 Tn (x) 的最高次项系数为 2n-1 (n = 1, 2, …)。
➢ 在区间[-1,1]上,在所有首项系数为1的n次多项式 pn x
数值分析Ch3函数逼近与曲线拟合

正交,这就需要引进范数与赋范线性空间,内积
3.1 函数逼近的基本概念
• 定义 设集合 S 是数域 P 上的线性空间,元 素 x1 , x2 , , xn S ,若存在不全为零的数 1 , 2 , , n P ,使得 1 x1 2 x2 n xn 0 则称 x1 , x2 , , xn 线性相关,否则,若仅对
数 值 分 析
Computational Method
Chapter 3 函数逼近
第三章 函数逼近与曲线拟合 设函数 y f x 的离散数据(有误差)为
x y
,
x0 y0
x1 y1
x2 y2
xn yn
希望找到简单函数 Px 整体上有 是某度量, 0 是指定精度。
f x Px
1 x1
2 x2 x 2 , 1 1 1 , 1 x , x , 3 2 2 3 x3 3 1 1 2 , 2 1 , 1
xn , 1 xn , 2 xn , n1 1 2 n1 n xn 1 , 1 2 , 2 n1 , n1 k 1 xk , i i ( k 1,2,, n) 简写为: k x xk i 1 i , i
,
x
2
。
(连续) f x Ca, b
b
常见范数:
f x 1 f x dx • 1范数: a ,
• 2-范数:
f x 2
2 f x dx a b
1 2
f x max f x • 范数: , a ,b
小波分析之函数逼近与曲线拟合

(ϕ 0 , ϕ 0 ) (ϕ 0 , ϕ1 ) ⋯ (ϕ 0 , ϕ n ) (ϕ1 , ϕ 0 ) (ϕ1 , ϕ1 ) ⋯ (ϕ1 , ϕ n ) G = ⋮ ⋮ ⋮ (ϕ , ϕ ) (ϕ , ϕ ) ⋯ (ϕ , ϕ ) n 1 n n n 0
∑α
j =1
n
j
u j = 0.
Th3的证明
G非奇异当且仅当齐次方程组
∑ (u
j =1
n
j
, u k ) α j = 0, k = 1, 2, ⋯ , n.
只有零解,即 ( ∑ α j u j , u k ) = 0, k = 1, 2, ⋯ , n.
j =1
n
只有零解,即
∑α
j =1
n
j
u j = 0 只有零解,即
C[a.b]带权内积的定义
• [a,b]上的非负函数 ρ (x) 称为[a,b]上的权 函数,若满足: b ① ∫ x k ρ ( x)dx 存在且为有限值(k=0,1,…). a ② 对[a,b]上的非负连续函数g (x) ,若
∫
b
a
ρ ( x ) g ( x ) dx = 0 ,
则 g ( x) ≡ 0
2
= =
∑
n
x
2 i
i = 1
∞
m a x
1 ≤ i ≤ n
x
i
n与C[a,b]上范数的扩充关系 R
= = =
• 向量范数: 范数: 范数
x x x
1
∑
n
x
i = 1
i
2
∑
n∞
max
x
1 ≤ i ≤ n
实验二函数逼近与曲线拟合

《数值分析》课程设计实验报告实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t 的拟合曲线。
二、实验步骤先写出线性最小二乘法的M文件function c=lspoly(x,y,m)% x是数据点的横坐标组成的向量,y是纵坐标组成的向量% m是要构成的多项式的次数,c是多项式由高到低次的系数所组成的向量n=length(x);b=zeros(1:m+1);f=zeros(n,m+1);for k=1:m+1f(:,k)=x.^(k-1);enda=f'*f;b=f'*y';c=a\b;c=flipud(c);方法一:近似解析表达式为:y(t)=a1t+a2t2+a3t3第二步在命令窗口输入:lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44 ,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =0.0000-0.00520.26340.0178即所求的拟合曲线为y=-0.0052t2+0.2634t+0.0178在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44, 3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0052*t.^2+0.2634*t+0.0178;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-1)0102030405060拟合多项式与数据点的关系方法二:假设近似表达式为:y(t)=c0+c1t+c2t2第一步在命令窗口输入:>>lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3. 44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =-0.00240.20370.2305即所求的拟合曲线为y=-0.0024t2+0.2037t+0.2305在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0024*t.^2+0.2037*t+0.2305;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-2)拟合多项式与数据点的关系三、实验结论在利用数据的最小二乘法求拟合曲线时,选取合适的近似表达式很重要,应通过不断的试验找出较为合适的近似表达式,这样才能尽可能的提高拟合精度。
数值分析 第3章 函数逼近与曲线拟合)

在[a, b]上一致成立 。
定理:设X为一个内积空间,u1,u2,…,un∈X,矩阵
(u1, u1) (u2 , u1)
G
(u1, u2
(u1, un
) )
(u2 , u2 )
(u2 , un )
(un , u1)
(un , u2 )
(un
, un
)
称为格拉姆矩阵,则G非奇异的充分必要条件是 u1,u2,…,un线性无关 。
n1(x) (x an )n (x) n n1(x)
(n 0,1,...)
其中 0 (x) 1, -1(x) 0, n (xn (x),n (x)) /(n (x),n (x)), n (n (x),n (x)) /(n1(x),(n1(x))
(n 1,2,.....)
并且(
中找一个元素 * (x) 使 f (x) *(x) 在某种意义下
最小.
3、 范数的定义
设S为线性空间,x∈S,若存在唯一实数 || || 满足条件:
(1)‖x‖≥0;当且仅当x=0时,‖x‖=0; (正定性)
(2)‖αx‖=|α|‖x‖,α∈R; (齐次性)
(3)‖x+y‖≤‖x‖+‖y‖,x,y∈S. (三角不等式)
类较简单的便于计算的函数类B中,求函数 P(x) B , 使P(x)与f(x)
之差在某种度量意义下最小” . 函数类A通常是区间[a,b]上的连续 函数,记作C[a,b];函数类B通常是代数多项式,分式有理函数或 三角多项式.
2、函数空间 数学上常把在各种集合中引入某些不同的确定关系称为赋予
集合以某种空间结构,并将这样的集合称为空间.
1 2n n!
dn dxn
{(
数值分析第四章函数逼近与拟合讲解

m
2 [P(xi )
i 1
yi
]
P( x ak
i
)
n
m
m
2
aj
x jk i
yi xik
j0
i 1
i 1
m
m
记 bk xik , ck yi xik
i1
i1
mn
2
[
a
j
x
j i
yi ]
x
k i
回归系数
i1 j0
b00
i 1
| xn | xn2
③ -范数:
x
max
1in
xi
(最大范数)
赋范线性空间
赋范线性空间 C[a, b]
线性空间 C[a, b] ,f(x)C[a, b]
① 1-范数: f ( x) 1
b a
f (x)
dx
② 2-范数: f ( x) b f 2( x) dx
(1) (u, v) (v, u)
(2) (u, v) (u, v), K
(3) (u v, w) (u, v) (u, w), w X (4) (u, u) 0 ,等号当且仅当 u = 0 时成立 称 (u, v) 为 X 上的内积,定义了内积的线性空间称为内积空间
2
a
性质
设 0, 1, , nC[a, b],则 0, 1, , n 线
性无关当且仅当 det(G) 0,其中
G G(0,1,
(0,0 )
,n
)
(1
,
0
)
函数逼近与曲线拟合

西安科技大学《数值分析》实验报告题目:函数逼近与曲线拟合院系(部):计算机科学与技术学院专业及班级:姓名:学号日期:2019/11/11一、实验名称函数逼近与曲线拟合二、实验目的及要求实验目的:⑴学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。
实验要求:⑴编写程序用最小二乘法求拟合数据的多项式,并求平方误差,做出离散函数()和拟合函数的图形;⑵用MATLAB的内部函数polyfit求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB的内部函数plot作出其图形,并与(1)结果进行比较。
三、实验中的算法描述1.设拟合多项式为:2.给点到这条曲线的距离之和,即偏差平方和:3.为了求得到符合条件的a的值,对等式右边求偏导数,因而我们得到了:4.将等式左边进行一次简化,然后应该可以得到下面的等式5.把这些等式表示成矩阵的形式,就可以得到下面的矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑=====+==+====n i i n i n i i k n i k i ni k ini k i n i k i ni in i ini k ini iy y y a a x xx x xxx x 11i 110121111112111a n6. 将这个范德蒙得矩阵化简后得到⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡n k k n n k k y y y a a a x x x x x x 21102211111 7.因为Y A X =*,那么X Y A /=,计算得到系数矩阵,同时就得到了拟合曲线。
四、课程设计内容⑴实验环境:MATLAB2010b⑵实验内容:给定的数据点( )1) 用最小二乘法求拟合数据的多项式; 2) 用MATLAB 内部函数polyfit 函数进行拟合。
数值分析实验报告--实验3--函数逼近与曲线拟合

数值分析实验三:函数逼近与曲线拟合1曲线逼近方法的比较1.1问题描述曲线的拟合和插值,是逼近函数的基本方法,每种方法具有各自的特点和特定的适用范围,实际工作中合理选择方法是重要的。
考虑实验2.1中的著名问题。
下面的MATLAB程序给出了该函数的二次和三次拟合多项式。
x=-1:0.2:1;y=1./(1+25*x.*x);xx=-1:0.02:1;p2=polyfit(x,y,2);yy=polyval(p2,xx);plot(x,y,’o’,xx,yy);xlabel(‘x’);ylabel(‘y’);hold on;p3=polyfit(x,y,3);yy=polyval(p3,xx);plot(x,y,’o’,xx,yy);hold off;实验要求:(1) 将拟合的结果与拉格朗日插值及样条插值的结果比较。
(2) 归纳总结数值实验结果,试定性地说明函数逼近各种方法的适用范围,及实际应用中选择方法应注意的问题。
1.2算法设计对于曲线拟合,这里主要使用了多项式拟合,使用Matlab的polyfit函数,可以根据需要选用不同的拟合次数。
然后将拟合的结果和插值法进行比较即可。
本实验的算法比较简单,此处不再详述,可以参见给出的Matlab脚本文件。
1.3实验结果1.3.1多项式拟合1.3.1.1多项式拟合函数polyfit和拟合次数N的关系1 / 13首先使用polyfit函数对f(x)进行拟合。
为了便于和实验2.1相比较,这里采取相同的参数,即将拟合区间[-1,1]等分为10段,使用每一段区间端点作为拟合的数据点。
分别画出拟合多项式的次数N=2、3、4、6、8、10时,f(x)和多项式函数的图像,如图1所示。
Matlab 脚本文件为Experiment3_1_1.m。
Figure 1 多项式拟合与拟合次数N的关系可以看出,拟合次数N=2和3时,拟合效果很差。
增大拟合次数,N=4、6、8时,拟合效果有明显提高,但是N太大时,在区间两端附近会出现和高次拉格朗日插值函数类似的龙格现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 函数逼近与曲线拟合1 函数的逼近与基本概念1.1问题的提出多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设()f x 是[1,1]-上的光滑函数,它的Taylor 级数0()kk k f x a x ∞==∑,()(0)!k k f a k =在[1,1]-上收敛。
当此级数收敛比较快时,11()()()n n n n e x f x s x a x ++=-≈。
这个误差分布是不均匀的。
当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。
为了使[1,1]-的所有x 满足()()nf x s x ε-<,必须选取足够大的n ,这显然是不经济的。
插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。
更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。
如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。
由于实验数据的误差太大,不能用过任意两点的直线逼近函数。
如果用过5个点的4次多项式逼近线性函数,显然误差会很大。
1.2范数与逼近一、线性空间及赋范线性空间要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间。
最常用的给集合赋予一种“加法”和“数乘”运算,使其构成线性空间.例如将所有实n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线性空间,记作nR ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间。
所有定义在[,]a b 上的连续函数集合,按函数加法和数与函数乘法构成数域R 上的线性空间,记作[,]C a b .类似地,记[,]pC a b 为具有p 阶连续导数的函数空间.在实数的计算问题中,对实数的大小、距离及误差界等是通过绝对值来度量的.实践中,我们常常会遇到对一般线性空间中的向量大小和向量之间的距离进行度量的问题,因此有必要在一般线性空间上,赋予“长度”结构,使线性空间成为赋范线性空间.定义1 设X 是数域K上一个线性空间,在其上定义一个实值函数g,即对于任意,x y X ∈及K α∈,有对应的实数x 和y ,满足下列条件(1) 正定性:0x ≥,而且0x =当且仅当0x =; (2)齐次性:x x αα=;实验数据 真函数 插值多项式逼近 精确的线性逼近图1(3)三角不等式:x y x y+≤+;称g为X上的范数,定义了范数的线性空间就称为赋范线性空间.以上三个条件刻划了“长度”、“大小”及“距离”的本质,因此称为范数公理.对nX上的任一种范数g,n X∀∈x,y,显然有±≥-x y x y.nR上常用的几种范数有:(1)向量的∞-范数:1max ii nx∞≤≤=x(2)向量的1-范数:11niix==∑x(3)向量的2-范数:12221()niix==∑x(4)向量的p-范数:11()np pipix==∑x其中[1,)p∈∞,可以证明向量函数()pN x x≡是n R上向量的范数.前三种范数是p-范数的特殊情况(lim pp∞→∞=x x).我们只需表明(1).事实上1111111max max maxn np pp pi i i ii n i n i ni ix x x x≤≤≤≤≤≤==⎛⎫⎛⎫≤≤≤⎪ ⎪⎝⎭⎝⎭∑∑及max1p→∞=,故由数学分析的夹逼定理有1lim maxipp i nx∞→∞≤≤==x x。
类似地对连续函数空间[,]C a b,可定义三种常用范数:(1)∞-范数:max ()a x bff x ∞≤≤=(2) 1-范数:1()baf f x dx =⎰(3) 2-范数:()1222()baff x dx=⎰可以验证这样定义的范数均满足定义1中的三个条件.二、内积与内积空间在线性空间中,仅规定了加法与数乘两种运算.为了使线性空间中的向量元素之间具有夹角的概念,我们需引入第三种运算—内积.定义2 设X 是数域K (R 或C )上的线性空间,对,u v X ∀∈有K 中一个数与之对应,记为(,)u v ,它满足以下条件——内积公理:(1)共轭对称性:(,)(,), ,u v v u u v X =∀∈(2)第一变元线性:(,)(,)(,),,,,,u v w u w v w u v w αβαβαβ+=+∀∈∀∈K X(3)正定性:(,)0u u ≥,当且仅当0u =时,(,)0u u =则称二元函数(,)u v 为X 上u 与v 的内积.定义了内积的线性空间称为内积空间.当X 实线性空间,称X 是实内积空间;当X 复线性空间,称X 是复内积空间.如果(,)0u v =,则称u 与v 正交,这是nR 中向量相互垂直概念的推广. 定理1设X 为一个内积空间,对,u v X ∀∈,有2(,)(,)(,)u v u u v v ≤ (1.1)称为Cauchy-Schwarz 不等式.证明 设0v ≠,则(,)0v v >,对如何实数λ有20(,)(,)2(,)(,)u v u v u u u v v v λλλλ≤++=++取(,)(,)u v v v λ=-,代入上式右端,得22(,)(,)(,)20(,)(,)u v u v u u v v v v -+≥即(1.1)式得证.当0v =时,(1.1)式显然成立.定理2 设X 为一个内积空间,1,,n u u X ∈L ,矩阵112111222212(,)(,)(,)(,)(,)(,)(,)(,)(,)n n n n n n u u u u u u u u u u u u G u u u u u u ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L M M M M L (1.2) 称为克莱姆(Gramer )矩阵,则G 非奇异的充分必要条件是12,,,n u u u L 线性无关.证明 G 奇异⇔存在非零向量1(,)Tna a =a L ,使得0=Ga .即111111(,)(,)0(,)(,)n n j j j j j j n n j n j j j n j j u u a a u u u u a a u u ====⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭∑∑∑∑M M 1111(,)0,1,,(,)0nj j k j nnj j j j j j nj j j a u u k na u a u a u ====⇔==⇔=⇔=∑∑∑∑L即12,,,n u u u L 线性相关. □定理3(Gram-Schmidt 正交化方法)如果12{,,,}n u u u L 是内积空间X 中一个线性无关的序列,则可按照公式1111,(,),2,,(,)i i k i i k k k k v u u u v u v i nv v -==⎧⎪⎨=-=⎪⎩∑L (1.3) 产生一个正交序列12{,,,}n v v v L ,满足(,)0i jv v = ()i j ≠,而且此序列是12span{,,,}n u u u L 的一组基.在内积空间X 上可以由内积导出一种范数,即对于X ∈,记u =容易验证它满足范数的定义,其中三角不等式可以由定理1证明. 例1n R 与nC 的内积.设T1,,(,,)n n x y R x x x ∈=L ,T 1(,,)n y y y =L ,则内积可定义为1()ni i i x y ==∑x,y(1.4)由此导出向量2-范数为2==x若给定实数0 (1,,)i i n ω>=L ,称{}i ω为权系数,则在nR上可定义加权内积为1()ni i i i x y ω==∑x,y (1.5)相应的范数为2=x不难验证(1.5)给出的()x,y满足内积定义3.2的条件.当 1 (1,,)ii n==L时,(1.5)就是(1.4).如果,nx y C∈,带权内积定义为1()ni i iix yω==∑x,y其中iω仍为正实数序列,iy为iy的共轭.也可以在[,]C a b上定义带权的内积,为此,我们先给出权函数的定义.定义3 设[,]a b是有限或无限区间,在[,]a b上的非负函数()xρ满足条件:(1)()b kax x dxρ<∞⎰存在且为有限值(0,1,)k=L;(2) 对[,]a b上的非负连续函数()g x,如果()()0bax g x dxρ=⎰,则()0g x≡.则称()xρ是区间[,]a b上的一个权函数.从定义可看出:1)()xρ为[,]a b上的非负可积函数,且当[,]a b为无限区间时,要求()xρ具有任意的衰减性;2)在[,]a b的任一子区间上()xρ不恒等于零.例2[,]C a b上的内积.设(),()[,]f xg x C a b∈,()xρ是[,]a b上给定的权函数,则可定义内积((),())()()()baf xg x x f x g x dxρ=⎰容易验证它满足内积定义的四条性质,由此内积导出的范数为112222()((),())()()baf x f x f x x f x dxρ⎡⎤==⎢⎥⎣⎦⎰分别称为带权()x ρ的内积和范数,特别常用的是()1x ρ≡的情形,即((),())()()ba f x g x f x g x dx =⎰1222()()b a f x f x dx ⎡⎤=⎢⎥⎣⎦⎰三、逼近用简单函数组成的函数类M 中“接近”于()f x 的函数()p x 近似地代替()f x ,称()p x 是()f x 的一个逼近,()f x 称为被逼近函数,两者之差()()()E x f x p x =- (1.6)称为逼近的误差或余项.这里必须表明两点:其一是函数类M的选取.何为简单函数?在数值分析中所谓简单函数主要是指可以用四则运算进行计算的函数,最常用的有多项式及有理分式函数;其二是如何确定p与f之间的度量.定义4 设X 为定义在区间[,]a b 上某类函数组成的线性赋范空间,()f x 是X 中给定的函数,若在函数类[,]M a b ⊂中,求得函数()p x M ∈,使逼近误差()()()E x f x p x =-满足下列不等式E f p ε∞∞=-≤ (1.7)则称()p x 是函数类M 中对()f x 满足精度ε的一致逼近.定义5 设X 为定义在区间[,]a b 上某类函数组成的线性赋范空间,()f x 是X 中给定的函数,若在函数类[,]M a b ⊂中,求得函数()p x M ∈,使逼近误差()()()E x f x p x =-满足下列不等式22E f p ε=-≤ (1.8)则称()p x 是函数类M 中对()f x 满足精度ε的平方逼近.定义6 设X 是一线性赋范空间,M 是X 的一个子集.如果对于X 中给定的f ,在M 中存在一元素*ϕ,使得*inf Mf f ϕϕϕ∈-=- (1.9)则称*ϕ是M 中对f 的最佳逼近.特别地,若∞⋅=⋅,称为最佳一致逼近;若2⋅=⋅,称为最佳平方逼近.本章讨论最佳一致逼近及最佳平方逼近是否存在?是否唯一?如何构造最佳逼近等.2 曲线拟合的最小二乘法在生产实际和科学实验中有很多函数,它的解析表达式是不知道的,仅能通过实验观察的方法测得一系列节点上的值iy 。