2017年安徽省滁州市全椒县七年级下学期数学期末试卷与解析答案
滁州市七年级下册末数学试卷及答案

一、填空题1.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1; ③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解; ④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2. 其中正确的结论有 ___(写出所有正确结论的序号).答案:②④ 【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论. 【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④ 【分析】根据若[]x 表示不超过x 的最大整数,①取 2.5x 验证;②根据定义分析;③直接将 2.75-代入,看左边是否等于右边;④以0为分界点,分情况讨论. 【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2, ∴此时[﹣x ]与﹣[x ]两者不相等,故①不符合题意; ②若[x ]=n ,∵[x ]表示不超过x 的最大整数,∴x 的取值范围是n ≤x <n +1,故②符合题意; ③将x =﹣2.75代入4x ﹣[x ]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意; ④当﹣1<x <1时,若﹣1<x <0,[1+x ]+[1﹣x ]=0+1=1, 若x =0,[1+x ]+[1﹣x ]=1+1=2,若0<x <1,[1+x ]+[1﹣x ]=1+0=1;故④符合题意; 故答案为:②④. 【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解. 2.一副直角三角板叠放如图①,90C E ∠=∠=︒.现将含45︒角的三角板ADE 固定不动,把含30角的三角板ABC (其中30CAB ∠=︒)绕顶点A 顺时针旋转角()0180αα︒<<︒.(1)如图②,当α=______度时,边BC 和边AE 所在的直线互相垂直;(2)当旋转角α在30180α︒<<︒的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的α=______.答案:60°或105°或135°【分析】(1)根据条件只需证BC⊥AE即可,α=∠DEA-∠BAC=45°-30°=15°;(2)分情况画出图形,根据平行线的性质计算即可.【详解】解:(解析:60°或105°或135°【分析】(1)根据条件只需证BC⊥AE即可,α=∠DEA-∠BAC=45°-30°=15°;(2)分情况画出图形,根据平行线的性质计算即可.【详解】解:(1)在△ABC中,AC⊥BC,AE与AC重合,则AE⊥BC,α=∠DEA-∠BAC=45°-30°=15°,∴当α=15°时,BC⊥AE.故答案为15;(2)当BC∥AD时,∠C=∠CAD=90°,∴α=∠BAD=90°-30°=60°;如图,当AC∥DE时,∠E=∠CAE=90°,则α=∠BAD=45°+60°=105°,此时∠BAE=90°-30°=60°=∠B,则AE∥BC;如图,当AB∥DE时,∠E=∠BAE=90°,∴α=∠BAD=45°+90°=135°;综上:符合条件的α为60°或105°或135°,故答案为:(1)15;(2)60°或105°或135°.【点睛】本题考查了平行线的性质,三角板的角度计算,正确确定△ABC旋转的过程中可以依次出现几次平行的情况是关键.3.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2021的横坐标为______.答案:【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为12n ,由此问题可求解. 【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222; 故答案为20222. 【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.4.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.答案:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果. 【详解】 ∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,, 解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果. 【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1 即2021(1010,1)A 故答案为:()1010,1 【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.5.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为_____________.答案:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.6.一只电子玩具在第一象限及x ,y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点______.答案:(3,44) 【分析】由题意分析得(0,1)用的次数是1次,即次,(0,2)用的次数是8次,即次,(0,3)用的次数是9次,即次,(0,4)用的次数是24次,即次,(0,5)用的次数是25次,即次解析:(3,44) 【分析】由题意分析得(0,1)用的次数是1次,即21次,(0,2)用的次数是8次,即24⨯次,(0,3)用的次数是9次,即23次,(0,4)用的次数是24次,即46⨯次,(0,5)用的次数是25次,即25次,以此类推,(0,45)用的次数是2025次,即245次,后退4次可得2021次所对应的坐标. 【详解】由题可知,电子玩具是每次跳一个单位长度, 则(0,1)用的次数是1次,即21次, (0,2)用的次数是8次,即24⨯次, (0,3)用的次数是9次,即23次, (0,4)用的次数是24次,即46⨯次, (0,5)用的次数是25次,即25次, …以此类推,(0,45)用的次数是2025次,即245次, 2025-1-3=2021,∴第2021次时电子玩具所在位置的坐标是(3,44). 故答案为:(3,44). 【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而确定次数的规律.7.新定义一种运算,其法则为32a ca d bcb d =÷,则223x x xx--=__________ 答案:【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】故答案为: 【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解 解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x 【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.8.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.答案:20﹣. 【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为 等式右边的解析:20﹣208000=401401. 【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+=归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 9.阅读下列解题过程: 计算:232425122222++++++ 解:设232425122222S =++++++① 则232526222222S =+++++②由②-①得,2621S =-运用所学到的方法计算:233015555++++⋯⋯+=______________.答案:. 【分析】设S=,等号两边都乘以5可解决. 【详解】 解:设S=① 则5S=② ②-①得4S=, 所以S=. 故答案是:. 【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:31514-. 【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决. 【详解】解:设S=233015555++++⋯⋯+① 则5S=23303155555+++⋯⋯++② ②-①得4S=311-5, 所以S=31514-. 故答案是:31514-. 【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决. 10.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.答案:【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由 解得:x=8故答案为. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=8 18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.答案:8 【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:8 【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.若我们规定[)x 表示不小于x 的最小整数,例如[)33=,[)1.21-=-,则以下结论:①[)0.21-=-;②[)001-=;③[)x x -的最小值是0;④存在实数x 使[)0.5x x -=成立.其中正确的是______.(填写所有正确结论的序号)答案:③④ 【分析】根据的定义逐个判断即可得. 【详解】①表示不小于的最小整数,则,结论错误 ②,则,结论错误③表示不小于x 的最小整数,则,因此的最小值是0,结论正确 ④若,则 此时, 因此,存在实解析:③④ 【分析】根据[)x 的定义逐个判断即可得. 【详解】①[)0.2-表示不小于0.2-的最小整数,则[)0.20-=,结论错误 ②[)00=,则[)000-=,结论错误③[)x 表示不小于x 的最小整数,则[)0x x -≥,因此[)x x -的最小值是0,结论正确 ④若 1.5x =,则[)1.52= 此时,[)1.5 1.52 1.50.5-=-=因此,存在实数x 使[)0.5x x -=成立,结论正确 综上,正确的是③④ 故答案为:③④. 【点睛】本题考查了新定义下的实数运算,理解新定义是解题关键.13.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是___________,点2P 表示的数是___________.答案:. . 【分析】首先利用勾股定理计算出的长,再根据题意可得,然后根据数轴上个点的位置计算出表示的数即可. 【详解】解:点表示的数是,是原点, , ,以为圆心、长为半径画弧, ,解析:12-12- 【分析】首先利用勾股定理计算出AB 的长,再根据题意可得122AP AB AP ==上个点的位置计算出表示的数即可. 【详解】解:点A 表示的数是1-,O 是原点,1,1AO BO ∴==,112AB ∴=+以A 为圆心、AB 长为半径画弧, 122AP AB AP ∴== ∴点1P 表示的数是1(2)12-+-=-点2P 表示的数是12- 故答案为:12-12- 【点睛】本题考查了数轴的性质,以及应用数形结合的方法来解决问题.14.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→”的路线运动,设第n 秒运动到点n P (n 为正整数),则点2021P 的坐标是______.答案:【分析】通过观察可得,An 每6个点的纵坐标规律:,0,,0,-,0,点An 的横坐标规律:1,2,3,4,5,6,…,n ,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1解析:20213,2⎛ ⎝⎭【分析】通过观察可得,A n 每63030,30,点A n 的横坐标规律:1,2,3,4,5,6,…,n ,点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次,点P 运动n 秒的横坐标规律: 12,1,32,2,52,3,…,2n ,点P 的纵坐标3030,03,0,…,确定P 2021循环余下的点即可.【详解】解:∵图中是边长为1个单位长度的等边三角形, ∴1132A ⎛ ⎝⎭A 2(1,0) 3332A ⎛ ⎝⎭A 4(2,0) 553,2A ⎛ ⎝⎭A 6(3,0) 7732A ⎛ ⎝⎭…∴A n 中每6个点的纵坐标规律:32,0,32,0,﹣32,0, 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段, P 运动每6秒循环一次 点P 的纵坐标规律:32,0,32,0,-32,0,…, 点P 的横坐标规律: 12,1,32,2,52,3,…,2n ,∵2021=336×6+5, ∴点P 2021的纵坐标为32-, ∴点P 2021的横坐标为20212, ∴点P 2021的坐标2021322⎛⎫⎪ ⎪⎝⎭,-, 故答案为:2021322⎛⎫ ⎪ ⎪⎝⎭,-. 【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.15.如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A 、B ,则点A 表示的数为______.答案:. 【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A 的距离(即点A 的绝对值),然后根据数轴上原点左边的数为负数即可求出点A 表示的数.【详解】∵正方形的面积为3,∴正方形的边长为解析:13-.【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A的距离(即点A的绝对值),然后根据数轴上原点左边的数为负数即可求出点A表示的数.【详解】∵正方形的面积为3,∴正方形的边长为3,∴A点距离0的距离为31-∴点A表示的数为13-.【点睛】本题考查实数与数轴,解决本题时需注意圆的半径即是点A到1的距离,而求A点表示的数时,需求出A点到原点的距离即A点的绝对值,再根据绝对值的性质和数轴上点的特征求解.16.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,2),A6(0,2),A7(0,3),A8(3,3)……依此规律A100坐标为________.答案:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案. 【详解】解:∵A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)、A 5(2,2)、A 6(0,2)、A 7(0,3)、A 8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A 在x 轴上, 故A 100坐标为(34,0), 故答案为:(34,0) 【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A 的脚标数之间的联系寻找规律.17.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.答案:①④⑤ 【分析】根据题意表示大于x 的最小整数,结合各项进行判断即可得出答案. 【详解】解:①,根据表示大于x 的最小整数,故正确; ②,应该等于,故错误; ③,当x=0.5时,,故错误; ④,根据解析:①④⑤ 【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案. 【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误;③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确. 故答案为:①④⑤. 【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键.18.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.答案:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可. 【详解】 (⊕2)⊕3=⊕3=3, 故答案为3. 【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可. 【详解】(5⊕2)⊕3=5⊕3=3, 故答案为3. 【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.答案:【分析】过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.解:过点,做平行于,如下图: , , 则, 解析:153︒【分析】过点,,E F G ,做,,EH FK GJ 平行于AB ,根据平行线的传递性及性质得MEN BME DNE ∠=∠+∠,同理得出∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,通过等量关系先计算出18+=︒a b ,再根据角平分线的性质及等量代换进行求解. 【详解】解:过点,,E F G ,做,,EH FK GJ 平行于AB ,如下图://,//AB EH AB CD ,//EH CD ,则,∠=∠∠=∠BME HEM DNE HEN ,∴∠=∠+∠=∠+∠MEN HEM HEN BME DNE ,同理可得:∠=∠+∠MGN AMG CNG , 令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,则5590∠=∠+∠=+=︒MEN BME DNE a b ,18∴+=︒a b ,1801803∠=︒-∠=︒-AMF BMF a , 1801803∠=︒-∠=︒-CNF DNF b ,MG 平分AMF ∠,NG 平分CNF ∠,131390,902222AMG AMF a CNG CNF b ∴∠=∠=︒-∠=∠=︒-, 3180()1532∴∠=∠+=︒-+=︒MGN AMG CNG a b ,故答案是:153︒.本题考查了平行线的性质、角平分线的性质,解题的关键是添加适当的辅助线,找到角之间的关系,利用等量代换的思想进行计算求解.20.如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作: 第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E , 第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E , 第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E , …,第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E . 若BEC α∠=,则n E ∠的度数是__________.答案:【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:12nα⎛⎫⎪⎝⎭【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 1=12∠ABE +12∠DCE =12∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 2=12∠ABE 1+12∠DCE 1=12∠CE 1B =14∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C =18∠BEC ;…据此得到规律∠E n =n 12∠BEC ,最后求得度数.【详解】 如图1,过E 作EF ∥AB . ∵AB ∥CD , ∴AB ∥EF ∥CD , ∴∠B =∠1,∠C =∠2. ∵∠BEC =∠1+∠2, ∴∠BEC =∠ABE +∠DCE ; 如图2:∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 1=12∠ABE +12∠DCE =12∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2,∴∠BE 2C =∠ABE 2+∠DCE 2=12∠ABE 1+12∠DCE 1=12∠CE 1B =14∠BEC ;∵∠ABE 2和∠DCE 2的平分线,交点为E 3,∴∠BE 3C =∠ABE 3+∠DCE 3=12∠ABE 2+12∠DCE 2=12∠CE 2B =18∠BEC ;…以此类推,∠E n =n12∠BEC , ∵BEC α∠=,∴n E ∠的度数是12n⎛⎫⎪⎝⎭α.故答案为:12n⎛⎫⎪⎝⎭α.【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.21.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.答案:45°或135° 【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案. 【详解】 解:如图1, 过作, , , ,, , ,同理可得, 由折叠可解析:45°或135° 【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案. 【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.22.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a <4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.答案:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平解析:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移a cm∴DE=AB=3cm,BE=a cm∴EC=BC-BE=(4-a)cm∴阴影部分周长=2+3+(4-a)+a=9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE.23.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=52∠DAE,则∠ACD的度数是_____.答案:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA 与直线MN 交于点K ,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD解析:27°.【分析】延长FA 与直线MN 交于点K ,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA 与直线MN 交于点K ,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-12∠FAD=45°-12(90°-∠AFD)=1 2∠AFD , 因为MN ∥PQ ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=1 2∠AFD=12(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°, 所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-25∠BCA=45°-18°=27°. 故∠ACD 的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.24.如图所示,12355∠=∠=∠=︒,则4∠的度数为______.答案:125°【分析】结合题意,根据对顶角相等的性质,通过证明,得,再根据补角的性质计算,即可得到答案.【详解】如图:∵,且∴∴∴∴故答案为:125°.【点睛】本题考查了解析:125°【分析】结合题意,根据对顶角相等的性质,通过证明1//2l l ,得63∠=∠,再根据补角的性质计算,即可得到答案.【详解】如图:∵52∠=∠,且12355∠=∠=∠=︒∴51∠=∠∴1//2l l∴6355∠=∠=︒∴41806125∠=︒-∠=︒故答案为:125°.【点睛】本题考查了平行线、对顶角、补角的知识;解题的关键是熟练掌握平行线的性质,从而完成求解.25.如图,四边形ABCD 的长条形纸带,AB //CD ,将长方形沿 EF 折叠,A 、D 分别于A ’、D '对应,若 ∠CFE =2∠CFD ',则∠AEF 的度数是___.答案:72゜【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE=∠D′FE,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB∥CD,解析:72゜【分析】先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠D′FE,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB∥CD,∴∠CFE=∠AEF,又∵∠DFE=∠D′FE,∠CFE=2∠CFD′,∴∠DFE=∠D′FE=3∠CFD′,∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,∴∠CFD′=36°,∴∠AEF=∠CFE=2∠CFD′=72°.故答案为:72°.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.26.已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,则∠BOD的度数为________.答案:36°【分析】先设∠EOC=2x,∠EOD=3x,根据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,根据角平分线定义得到∠AOC∠EOC72°=36°,然后根据对顶解析:36°【分析】先设∠EOC=2x,∠EOD=3x,根据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,根据角平分线定义得到∠AOC12=∠EOC12=⨯72°=36°,然后根据对顶角相等得到∠BOD=∠AOC=36°.【详解】解:设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC =2x =72°,∵OA 平分∠EOC ,∴∠AOC 12=∠EOC 12=⨯72°=36°, ∴∠BOD =∠AOC =36°.故答案为:36°【点睛】考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确:1直角=90°;1平角=180°,以及对顶角相等.27.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.①//OB AC ;②45EOC ∠=︒;③:1:3OCB OFB ∠∠=;④若OEB OCA ∠=∠,则60OCA ∠=︒.答案:①④【分析】①由BC ∥OA ,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE=∠BOE=∠BO 解析:①④【分析】①由BC ∥OA ,∠B =∠A =100°,∠AOB =∠ACB =180°-100°=80°,得到∠A +∠AOB =180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE =∠BOE =12∠BOF ,∠FOC =∠AOC =12∠AOF ,从而计算出∠EOC =∠FOE +∠FOC =40°.③由∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,得出∠OCB :∠OFB =1:2.④由∠OEB =∠OCA =∠AOE =∠BOC ,得到∠AOE -∠COE =∠BOC -∠COE ,∠BOE =∠AOC ,再得到∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°,从而计算出∠OCA =∠BOC =3∠BOE =60°.【详解】解:∵BC ∥OA ,∠B =∠A =100°,∴∠AOB =∠ACB =180°-100°=80°,∴∠A +∠AOB =180°,∴OB ∥AC .故①正确;∵OE 平分∠BOF ,∴∠FOE=∠BOE=12∠BOF,∴∠FOC=∠AOC=12∠AOF,∴∠EOC=∠FOE+∠FOC=12(∠BOF+∠AOF)=12×80°=40°.故②错误;∵∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,∴∠OCB:∠OFB=1:2.故③错误;∵∠OEB=∠OCA=∠AOE=∠BOC,∴∠AOE-∠COE=∠BOC-∠COE,∴∠BOE=∠AOC,∴∠BOE=∠FOE=∠FOC=∠AOC=14∠AOB=20°,∴∠OCA=∠BOC=3∠BOE=60°.故④正确.故答案为:①④.【点睛】本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.28.如图,△ABC沿AB方向平移3个单位长度后到达△DEF的位置,BC与DF相交于点O,连接CF,已知△ABC的面积为14,AB=7,S△BDO﹣S△COF=___.答案:2【分析】如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可.【详解】解:如图,连接CD,过点C作CG⊥AB于解析:2【分析】如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=1122DB CG CF CG⋅⋅-⋅⋅求解即可.【详解】解:如图,连接CD,过点C作CG⊥AB于G.∵S △ABC =12•AB •CG ,∴CG =2147⨯=4, ∵AD =CF =3,AB =7,∴BD =AB ﹣AD =7﹣3=4,∴S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1111443422222DB CG CF CG ⋅-⋅⋅=⨯⨯-⨯⨯=, 故答案为:2.【点睛】本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题. 29.如图,将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处,若30AEH ∠=︒,则EFC ∠等于______︒.答案:105°【分析】根据折叠得出∠DEF=∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上解析:105°【分析】根据折叠得出∠DEF =∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF +∠EFC =180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处,∴∠DEF =∠HEF ,∵∠AEH =30°, ∴1180752DEF HEF AEH ∠=∠=︒-∠=︒(), ∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DEF +∠EFC =180°,∴∠EFC =180°-75°=105°,故答案为:105°.【点睛】本题考查了平行线的性质,折叠的性质等知识点,能求出∠DEF =∠HEF 和∠DEF +∠EFC =180°是解此题的关键.30.观察等式:2111==,21342+==,213593++==,21357164+++==,……猜想13572019++++⋅⋅⋅+=______.答案:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解.【详解】解:∵从解析:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解.【详解】解:∵从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…;∴从1开始的连续n 个奇数的和:1+3+5+7+…+(2n-1)=n 2;∴2n-1=2019;∴n=1010;∴1+3+5+7…+2019=10102;故答案是:10102.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.31.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.。
滁州市七年级下学期数学期末考试试卷

滁州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)一组数据1,2,2,3.下列说法正确的是()A . 众数是3B . 中位数是2C . 极差是3D . 平均数是32. (2分)(2017·费县模拟) 有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣3|,则其结果恰为2的概率是()A .B .C .D .3. (2分)在y=x2□6x□9的空格中,任意填上“+”或“-”,可组成若干个不同的二次函数,其中其图象的顶点在x轴上的概率为()A .B .C .D . 14. (2分) (2017七下·德州期末) 在平面直角坐标系中,点(﹣3,﹣x2﹣1)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2017七下·德州期末) 如图,下列条件能判断两直线AB,CD平行的是()A . ∠1=∠2B . ∠3=∠4C . ∠1=∠5D . ∠3=∠56. (2分) (2016七下·嘉祥期末) 下列选项中正确的是()A . 27的立方根是±3B . 的平方根是±4C . 9的算术平方根是3D . 立方根等于平方根的数是17. (2分)若a>b,则下列式子正确的是()A . ﹣5a>﹣5bB . a﹣3>b﹣3C . 4﹣a>4﹣bD . a< b8. (2分) (2017七下·德州期末) 已知x,y满足方程组,则x﹣y等于()A . 9B . 3C . 1D . ﹣19. (2分) (2016七下·嘉祥期末) 如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A . 50°B . 40°C . 30°D . 60°10. (2分)已知不等式2x﹣a≤0的正整数解恰好是1,2,3,4,5,那么a的取值范围是()A . a>10B . 10≤a≤12C . 10<a≤12D . 10≤a<1211. (2分) (2017七下·德州期末) 甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x 元、y元,则下列方程组正确的是()A .B .C .D .12. (2分) (2017七下·德州期末) 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是()A . (2015,0)B . (2015,1)C . (2015,2)D . (2016,0)二、填空题 (共5题;共5分)13. (1分)从﹣3,﹣2,﹣1,0,1,2这六个数字中随机抽取一个数,记为a,a的值即使得不等式组无解,又在函数y= 的自变量取值范围内的概率为________.14. (1分) (2017八上·云南期中) 有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是________。
2017初一下学期数学期末试卷及标准答案

初一下学期数学期末试卷一.填空丄1•“;的3倍与:的二的和”用代数式表示是_________ 。
1 4 2—X—一尹=—2. 将二元一次方程」:「,用含工的代数式表示,为________ 。
」是—次单项式,它的系数是—。
3. 用四舍五入的方法把1095000保留三个有效数字所取得的近似数是---精确到位。
方程为二元一次方程;当时,该方程为一元一次方程。
6. 如果关于的方程-'--■"的解是一个负数,那么代的取值范围是⑸如■=+中户屮二一,.(一①帚(一屮尸+&加〜严二7.24x +□/-!■—7. 若-是一个完全平方式,则二二______ 。
若--1■',则二二—。
x>a十2:8. 若关于尤的不等式组I" J九一-无解,则°的取值范围是_____________ 。
9. 若’",则一I 的值是_。
二.选择1. 若一个有理数与它的相反数的差为一个负数,则()A.这个有理数一定是负数B.这个有理数一定是正数C.这个有理数可为正数,也可为负数D.这个有理数一定是零2. 如果工、‘为小于10的自然数,且''';,,则''的值有()A. 1个B. 2个C. 3个D.多于3个3. 下列结论中正确的有(),近似数4.已知关于》的方程(和3 亠(聊+2)兀+ 0 + 1)丿=腴十,当胡=时,该5. 已知找,::,则「1h—2c - 7b - la③若■■< -:,则&、’异号④若:,则* -:A. 1个B. 2个C. 3个D. 4个5.在下列多项式的乘法中,可以用平方差公式计算的是(B (P +恥一右)D . 0+1)(1 +町6.要使式子:「:'有意义,工的取值范围是()A. ■■ -B. - -C.八 -D. -■百--7.已知盘、:’两数的和,两数的积以及 :’的相反数都小于零,比较大小正确的是(a —b <a < -h < —a <h — aC. -::八1 D.八―或八1的关系是()C ah = 2D ah' = —210.甲从一个鱼摊上买了三条鱼,a+b条"元,后来他又以每条1元的价格把鱼全部卖给了乙, 结果发现赔了钱,原因是()①若-r-:,且:—』,则.1—②若> 0,匸羊 04. 已知〔」:二”:1 ,用“ ”号把T ,和…三者的大小关系表示出来的不等式是(丄 ^<^<1A.' B. ■'C. -B. —a <h<a -b <a <-b<b —aC.a-t> <-b <~a <a <b <b- a D.x <2 x >-l8.已知关于一的不等式组耳〉口丹无解,则曲的取值范围是() A. 9.已知〉I —「一(-存m 严为正整数)则曲与.之间平均每条 二元,又从另一个鱼摊上买了两条鱼,平均每A. ' -B. - " :'C. - -D.与龙和1的大小无关2. 用适当的方法解方程组:“ 2~325%x + 15%y = 1.25 (1) I /3. 解不等式,并把它的解集表示在数轴上,2x+l>0 « 54 2x > 02x- 3 > 4K4. 解不等式组'’「 '的整数解5. 利用乘法公式计算:6. 先化简,再求值[刃'一(=+刃07)][2(-—护心一工)+ 加+纣]其中X = ~2,jv = ! 5x-y = -3 x 2 + y 2 - 29 +卫古7. 已知^ ,-,求,的值8. 列方程或方程组解应用题(1)某商场出售茶壶和茶杯,茶壶每只 15元,茶杯每只3元,商场规定买一只茶壶赠一只茶杯,某人共付款 180元,共得茶壶茶杯 36只(含赠品在内)求茶壶和茶杯各买了 多少只?(2)x+y+ 2z = 17三.解答题2(1)由( 1)得7 :( 3)把(3)代入(2)得,(2)某人步行速度是10千米/时,骑自行车速度是30千米/时,他从甲地到乙地,「的33 2路程步行「的路程骑车,然后沿原路返回甲地,返回时的时间步行二的时间骑车,结果比去时快了二小时,求甲、乙两地的距离。
2017七年级数学下册期末试卷及答案

2017七年级数学下册期末试卷及答案2017年七年级数学下册的期末考试就到了,要订一个详细的复习计划。
小编整理了关于2017年七年级数学下册的期末试卷及答案,希望对大家有帮助!2017七年级数学下册期末试卷一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)1.下列运算正确的是( )A. 3﹣2=6B. m3•m5=m15C. (x﹣2)2=x2﹣4D. y3+y3=2y32.在﹣、、π、3.212212221…这四个数中,无理数的个数为( )A. 1B. 2C. 3D. 43.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选( )A. 10cmB. 30cmC. 50cmD. 70cm4.下列语句中正确的是( )A. ﹣9的平方根是﹣3B. 9的平方根是3C. 9的算术平方根是±3D. 9的算术平方根是35.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售( )A. 6折B. 7折C. 8折D. 9折6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有( )A. 4个B. 3个C. 2个D. 1个二、填空题(每小题3分,共30分)7.﹣8的立方根是.8.x2•(x2)2=.9.若am=4,an=5,那么am﹣2n= .10.请将数字0.000 012用科学记数法表示为.11.如果a+b=5,a﹣b=3,那么a2﹣b2= .12.若关于x、y的方程2x﹣y+3k=0的解是,则k= .13.n边形的内角和比它的外角和至少大120°,n的最小值是.14.若a,b为相邻整数,且a<15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=°.16.若不等式组有解,则a的取值范围是.三、解答题(本大题共10小条,102分)17.计算:(1)x3÷(x2)3÷x5(x+1)(x﹣3)+x(3)(﹣ )0+( )﹣2+(0.2)2015×52015﹣|﹣1|18.因式分解:(1)x2﹣9b3﹣4b2+4b.19.解方程组:① ;② .20.解不等式组:,并在数轴上表示出不等式组的解集.21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;△ABC的面积为;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC 于D,∠ACB=40°,求∠ADE.24.若不等式组的解集是﹣1(1)求代数式(a+1)(b﹣1)的值;若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):.结论(求证):.证明:.26.某商场用18万元购进A、B两种商品,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?2017七年级数学下册期末试卷参考答案一、选择题(每小题3分,共18分,每题有且只有一个答案正确.)1.下列运算正确的是( )A. 3﹣2=6B. m3•m5=m15C. (x﹣2)2=x2﹣4D. y3+y3=2y3考点:完全平方公式;合并同类项;同底数幂的乘法;负整数指数幂.分析:根据负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,即可解答.解答:解:A、,故错误;B、m3•m5=m8,故错误;C、(x﹣2)2=x2﹣4x+4,故错误;D、正确;故选:D.点评:本题考查了负整数指数幂,同底数幂的乘法,完全平分公式,合并同类项,解决本题的关键是熟记相关法则.2.在﹣、、π、3.212212221…这四个数中,无理数的个数为( )A. 1B. 2C. 3D. 4考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:﹣是分数,是有理数;和π,3.212212221…是无理数;故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.现有两根木棒,它们的长分别是20cm和30cm.若要订一个三角架,则下列四根木棒的长度应选( )A. 10cmB. 30cmC. 50cmD. 70cm考点:三角形三边关系.分析:首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步找到符合条件的答案.解答:解:根据三角形的三边关系,得第三根木棒的长度应大于10cm,而小于50cm.故选B点评:本题考查了三角形中三边的关系求解;关键是求得第三边的取值范围.4.下列语句中正确的是( )A. ﹣9的平方根是﹣3B. 9的平方根是3C. 9的算术平方根是±3D. 9的算术平方根是3考点:算术平方根;平方根.分析:A、B、C、D分别根据平方根和算术平方根的定义即可判定.解答:解:A、﹣9没有平方根,故A选项错误;B、9的平方根是±3,故B选项错误;C、9的算术平方根是3,故C选项错误.D、9的算术平方根是3,故D选项正确.故选:D.点评:本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.5.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售( )A. 6折B. 7折C. 8折D. 9折考点:一元一次不等式的应用.分析:利用每件利润不少于2元,相应的关系式为:利润﹣进价≥2,把相关数值代入即可求解.解答:解:设打x折销售,每件利润不少于2元,根据题意可得:15× ﹣10≥2,解得:x≥8,答:最多打8折销售.故选:C.点评:此题主要考查了一元一次不等式的应用,本题的关键是得到利润的关系式,注意“不少于”用数学符号表示为“≥”.6.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有( )A. 4个B. 3个C. 2个D. 1个考点:平行线的性质;余角和补角.分析:先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.解答:解:∵∠CED=90°,EF⊥CD,∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.∵AB∥CD,∴∠DCE=∠AEC,∴∠AEC+∠EDF=90°.故选B.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(每小题3分,共30分)7.﹣8的立方根是﹣2 .考点:立方根.分析:利用立方根的定义即可求解.解答:解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.点评:本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.8.x2•(x2)2=x6 .考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法的性质,幂的乘方的性质,即可解答.解答:解:x2•(x2)2=x2•x4=x6.故答案为:x6.点评:本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.9.若am=4,an=5,那么am﹣2n= .考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;幂的乘方,底数不变指数相乘,即可解答.解答:解:am﹣2n= ,故答案为: .点评:本题考查同底数幂的除法,幂的乘方很容易混淆,一定要记准法则才能做题.10.请将数字0.000 012用科学记数法表示为 1.2×10﹣5 .考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 012=1.2×10﹣5.故答案为:1.2×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.如果a+b=5,a﹣b=3,那么a2﹣b2= 15 .考点:因式分解-运用公式法.分析:首先利用平方差公式进行分解即可,进而将已知代入求出即可.解答:解:∵a2﹣b2=(a+b)(a﹣b),∴当a+b=5,a﹣b=3时,原式=5×3=15.故答案为:15.点评:此题主要考查了运用公式法分解因式以及代数式求值,正确分解因式是解题关键.12.若关于x、y的方程2x﹣y+3k=0的解是,则k= ﹣1 .考点:二元一次方程的解.专题:计算题.分析:把已知x与y的值代入方程计算即可求出k的值.解答:解:把代入方程得:4﹣1+3k=0,解得:k=﹣1,故答案为:﹣1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.n边形的内角和比它的外角和至少大120°,n的最小值是5 .考点:多边形内角与外角.分析: n边形的内角和是(n﹣2)•180°,n边形的外角和是360度,内角和比它的外角和至少大120°,就可以得到一个不等式:(n﹣2)•180﹣360>120,就可以求出n的范围,从而求出n的最小值.解答:解:(n﹣2)•180﹣360>120,解得:n>4 .因而n的最小值是5.点评:本题已知一个不等关系,就可以利用不等式来解决.14.若a,b为相邻整数,且a<考点:估算无理数的大小.分析:估算的范围,即可确定a,b的值,即可解答.解答:解:∵ ,且<∴a=2,b=3,∴b﹣a= ,故答案为: .点评:本题考查了估算无理数的方法:找到与这个数相邻的两个完全平方数,这样就能确定这个无理数的大小范围.15.小亮将两张长方形纸片如图所示摆放,使小长方形纸片的一个顶点正好落在大长方形纸片的边上,测得∠1=35°,则∠2=55 °.考点:平行线的性质.分析:过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,故可得出∠4的度数,进而得出∠3的度数,由此可得出结论.解答:解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF.∵∠1=35°,∴∠4=∠1=35°,∴∠3=90°﹣35°=55°.∵AB∥EF,∴∠2=∠3=55°.故答案为:55.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.16.若不等式组有解,则a的取值范围是a>1 .考点:不等式的解集.分析:根据题意,利用不等式组取解集的方法即可得到a的范围.解答:解:∵不等式组有解,∴a>1,故答案为:a>1.点评:此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.三、解答题(本大题共10小条,102分)17.计算:(1)x3÷(x2)3÷x5(x+1)(x﹣3)+x(3)(﹣ )0+( )﹣2+(0.2)2015×52015﹣|﹣1|考点:整式的混合运算.分析: (1)先算幂的乘方,再算同底数幂的除法;先利用整式的乘法计算,再进一步合并即可;(3)先算0指数幂,负指数幂,积的乘方和绝对值,再算加减.解答:解:(1)原式=x3÷x6÷x5=x﹣4;原式=x2﹣2x﹣3+2x﹣x2=﹣3;(3)原式=1+4+1﹣1=5.点评:此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.18.因式分解:(1)x2﹣9b3﹣4b2+4b.考点:提公因式法与公式法的综合运用.专题:计算题.分析: (1)原式利用平方差公式分解即可;原式提取b,再利用完全平方公式分解即可.解答:解:(1)原式=(x+3)(x﹣3);原式=b(b2﹣4b+4)=b(b﹣2)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.解方程组:① ;② .考点:解二元一次方程组.分析:本题可以运用消元法,先消去一个未知量,变成一元一次方程,求出解,再将解代入原方程,解出另一个,即可得到方程组的解.解答:解:(1)①×2,得:6x﹣4y=12 ③,②×3,得:6x+9y=51 ④,则④﹣③得:13y=39,解得:y=3,将y=3代入①,得:3x﹣2×3=6,解得:x=4.故原方程组的解为: .方程②两边同时乘以12得:3(x﹣3)﹣4(y﹣3)=1,化简,得:3x﹣4y=﹣2 ③,①+③,得:4x=12,解得:x=3.将x=3代入①,得:3+4y=14,解得:y= .故原方程组的解为: .点评:本题考查了二元一次方程组的解法,利用消元进行求解.题目比较简单,但需要认真细心.20.解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x<4和x≥3,则可根据大小小大中间找确定不等式组的解集,然后利用数轴表示解集.解答:解:,解①得x<4,解②得x≥3,所以不等式组的解集为3≤x<4,用数轴表示为:点评:本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.考点:解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.分析:(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.解答:解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a= .点评:本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.22.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;△ABC的面积为 3 ;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)考点:作图-平移变换.分析: (1)根据图形平移的性质画出平移后的△A′B′C′即可;根据三角形的面积公式即可得出结论;(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.解答:解:(1)如图所示;S△ABC= ×3×2=3.故答案为:3;(3)设AB边上的高为h,则AB•h=3,即×5.4h=3,解得h≈1.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC 于D,∠ACB=40°,求∠ADE.考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAE,再根据角平分线的定义可得∠DAE= ∠CAE,进而得出∠ADE.解答:解:∵AE是△ABC边上的高,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°,∴∠DAE= ∠CAE= ×50°=25°,∴∠ADE=65°.点评:本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记定理与概念并准确识图是解题的关键.24.若不等式组的解集是﹣1(1)求代数式(a+1)(b﹣1)的值;若a,b,c为某三角形的三边长,试求|c﹣a﹣b|+|c﹣3|的值.考点:解一元一次不等式组;三角形三边关系.分析:先把a,b当作已知条件求出不等式组的解集,再与已知解集相比较求出a,b的值.(1)直接把ab的值代入即可得出代数式的值;根据三角形的三边关系判断出c﹣a﹣b的符号,再去绝对值符号.合并同类项即可.解答:解:,由①得,x< ,由②得,x>2b﹣3,∵不等式组的解集是﹣1∴ =3,2b﹣3=﹣1,∴a=5,b=2.(1)(a+1)(b﹣1)=(5+1)=6;∵a,b,c为某三角形的三边长,∴5﹣2∴c﹣a﹣b<0,c﹣3>0,∴原式=a+b﹣c+c﹣3=a+b﹣3=5+2﹣3=4.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):①②.结论(求证):③.证明:省略.考点:命题与定理;平行线的判定与性质.专题:计算题.分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC、CD⊥BC,∴AB∥CD,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,∴∠1=∠2.故答案为①②;③;省略.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.26.某商场用18万元购进A、B两种商品,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200(1)若销售完后共获利3万元,该商场购进A、B两种商品各多少件;若购进B种商品的件数不少于A种商品的件数的6倍,且每种商品都必须购进.①问共有几种进货方案?②要保证利润最高,你选择哪种进货方案?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)由题意可知本题的等量关系,即“两种商品总成本为18万元”和“共获利3万元”,根据这两个等量关系,可列出方程组,再求解;根据题意列出不等式组,解答即可.解答:解:(1)设购进A种商品x件,B种商品y件.根据题意得化简得,解得,答:该商场购进A种商品100件,B种商品60件;设购进A种商品x件,B种商品y件.根据题意得:解得:,,,,,故共有5种进货方案A B方案一 25件 150件方案二 20件 156件方案三 15件 162件方案四 10件 168件方案五 5件 174件②因为B的利润大,所以若要保证利润最高,选择进A种商品5件,B种商品174件.点评:此题考查二元一次方程组和一元一次不等式的应用,解答本题的关键是将现实生活中的事件与数学思想联系起来,读懂题意,找出等量关系,列方程求解.。
安徽省滁州市全椒县2017-2018学年七年级(下)期末数学试卷(解析版)

安徽省滁州市全椒县2017-2018学年七年级(下)期末数学试卷一、选择题(每小题4分,满分40分)1.9的平方根为()A.3B.﹣3C.±3D.2.下列计算正确的是()A.=±2B.(﹣3)0=1C.(﹣2a2b)2=4a4b2D.2a3÷(﹣2a)=﹣a33.已知一种植物种子的质量约为0.0000026千克,将数0.0000026用科学记数法表示为()A.2.6×10﹣6B.2.6×10﹣5C.26×10﹣8D.0.26x10﹣74.已知ab=2,a﹣2b=3,则4ab2﹣2a2b的值是()A.6B.﹣6C.12D.﹣125.已知关于x的不等式组的解集在数轴上表示如图,则b a的值为()A.﹣16B.C.﹣8D.6.关于x的方程﹣=2有增根,则m的值是()A.﹣5B.5C.﹣7D.27.如图,a∥b,点B在直线a上,且AB⊥BC,若∠1=56°,则∠2的度数是()A.54°B.44°C.40°D.34°8.定义=ad﹣bc,例如:=1×4﹣(﹣3)×2=10,若≥7,则非负整数x 的值有()A.5个B.4个C.3个D.0个9.如图,已知EF⊥AB,CD⊥AB,下列说法:①EF∥CD;②∠B+∠BDG=180°;③若∠1=∠2,则∠1=∠BEF;④若∠ADG=∠B,则∠DGC+∠ACB=180°,其中说法正确的是()A.①②B.③④C.①②③D.①③④10.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.=B.=C.=•D.=•二、填空题(每小题5分,满分20分)11.分解因式:2x2﹣18=.12.若关于x的不等式组无解,则m的取值范围是.13.如图,相邻两线段互相垂直,甲、乙两人同时从点A处出发到点C处,甲沿着“A→B→C”的路线走,乙沿着“A→D→E→F→C→H→C的路线走,若他们的行走速度相同,则甲、乙两人谁先到C处?.14.观察下列等式:a1=n,a2=1﹣,a3=1﹣,a4=1﹣,…根据其中的规律,猜想:a2018=.(用含n的代数式表示)三、(每小题8分满分16分)15.计算:(1)+﹣(π﹣3.14)0+(﹣)﹣2(2)[(x+2y)2﹣x(x+4y)+(﹣3xy2)2]÷2y216.解不等式:3﹣≥,并把解集在数轴上表示出来.四、(每小题8分,满分16分)17.解方程:﹣=1.18.先化简,再求值:(﹣)÷,从﹣2,0,2,3中选取一个你认为合适的数作为a的值.五、(每小题10分,满分20分19.如图,直线AB、CD相交于点O,OE平分∠BOD(1)若∠AOC=60°,求∠BOE的度数;(2)若OF平分∠AOD,试说明OE⊥OF.20.观察下面给出的等式,回答下列问题:①=1﹣②=﹣③=(1)猜想:第n个等式是(2)计算:+++……+;(3)若+++…+=,求x的值.六、(本题满分12分)21.已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?七、(本题满分12分)22.如图,直线l3,l4与l1,l2分别相交于点A、B、C、D,且∠1+∠2=180°.(1)直线l1与l2平行吗?为什么?(2)点E在线段AD上,∠ABE=30°,∠BEC=62°,求∠DCE的度数.八、(本题满分14分)23.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗.我市某食品加工厂,拥有A、B两条粽子加工生产线.原计划A生产线每小时加工粽子个数是B生产线每小时加工粽子个数的.(1)若A生产线加工4000个粽子所用时间与B生产线加工4000个粽子所用时间之和恰好为18小时,则原计划A、B生产线每小时加工粽子各是多少个?(2)在(1)的条件下,原计划A、B生产线每天均加工a小时,由于受其他原因影响,在实际加工过程中,A生产线每小时比原计划少加工100个,B生产线每小时比原计划少加工50个.为了尽快将粽子投放到市场,A生产线每天比原计划多加工3小时,B生产线每天比原计划多加工a 小时.这样每天加工的粽子不少于6300个,求a的最小值.参考答案与试题解析一、选择题(每小题4分,满分40分)1.解:9的平方根有:=±3.故选:C.2.解:(A)原式=﹣2,故A错误;(B)原式=1,故B错误;(D)原式=﹣a2,故D错误;故选:C.3.解:0.000 0026=2.6×10﹣6.故选:A.4.解:∵ab=2,a﹣2b=3,∴2b﹣a=﹣3∴4ab2﹣2a2b=2ab(2b﹣a)=2×2×(﹣3)=﹣12.故选:D.5.解:解不等式﹣x≥a,得:x≤﹣a,解不等式x﹣1≥﹣b,得:x≥1﹣b,则不等式组的解集为1﹣b≤x≤﹣a由数轴知不等式组的解集为﹣3≤x≤2,则,解得:,∴b a=4﹣2=,故选:B.6.解:由题意得:3x﹣2﹣m=2(x+1),方程的增根为x=﹣1,把x=﹣1代入得,﹣3﹣2﹣m=0解得m=﹣5,故选:A.7.解:∵a∥b,∴∠3=∠1=56°,∴∠2=180°﹣90°﹣56°=34°.故选:D.8.解:∵≥7,∴(x﹣1)(x+1)﹣x(x+2)≥7,解得:x≤﹣4,当x≤﹣4时,没有符合条件的非负整数.故选:D.9.解:∵EF⊥AB,CD⊥AB,∴∠EFB=∠CDB,∴DC∥EF,故①正确;无法得出DG∥BC,所以无法得出∠B+∠BDG=180°,故②错误;∴∠FEB=∠2,∵∠1=∠2,∴∠1=∠BEF,故③正确;∵∠ADG=∠B,∴DF∥BC,∴∠DGC+∠ACB=180°,故④正确;故选:D.10.解:设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意得=•.故选:B.二、填空题(每小题5分,满分20分)11.解:原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)12.解:解不等式x+m<0,得:x<﹣m,解不等式5﹣3x≤2,得:x≥1,∵不等式组无解,∴﹣m≤1,则m≥﹣1,故答案为:m≥﹣1.13.解:由平移的性质可知:AD+EF+GH=CB,DE+FG+HI=AB∴AB+BC=AD+EF+GH+DE+FG+HI.∴他们的行走的路程相等.∵他们的行走速度相同,∴他们所用时间相同.故答案为:甲、乙两人同时达到14.解:∵a1=n,a2=1﹣=1﹣=,a3=1﹣=1﹣=﹣,a4=1﹣=1+n﹣1=n,…∴每3个数为一周期循环,∵2018÷3=672……2,∴a2018=a2=,故答案为:.三、(每小题8分满分16分)15.解:(1)原式=4﹣2﹣1+4=5;(2)原式=(x2+4xy+4y2﹣x2﹣4xy+9x2y4)÷2y2=(4y2+9x2y4)÷2y2=2+x2y2.16.解:(1)3﹣≥,24﹣5(x+3)≥2(3x﹣1),24﹣5x﹣15≥6x﹣2,﹣5x﹣6x≥﹣2﹣24+15,﹣11x≥﹣11,解得x≤1,在数轴上表示为:.四、(每小题8分,满分16分)17.解:去分母得:x2+x﹣2=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.18.解:(﹣)÷===a+2,当a=0时,原式=0+2=2.五、(每小题10分,满分20分19.解:(1)∵直线AB、CD相交于点O,∴∠BOD=∠AOC=60°,又∵OE平分∠BOD,∴∠BOE=∠BOD=30°;(2)∵OF平分∠AOD,∴∠DOF=∠AOD,又∵OE平分∠BOD,∴∠DOE=∠BOD,∴∠EOF=∠DOF+∠DOE=(∠AOD+∠BOD)=×180°=90°.∴OE⊥OF.20.解:(1)第n个等式是=﹣,故答案为:=﹣;(2)+++……+=﹣+﹣+﹣+…+﹣=1﹣=;(3)+++…+=,﹣+﹣+…+﹣=,﹣=,=,方程两边都乘以(x+1)(x+20)得:x+20=2(x+1),解得:x=18,经检验x=18是原方程的解,所以x=18.六、(本题满分12分)21.解:方程组的解为,∵x≥0,y<1∴,解得﹣≤m<4.(2)2x﹣mx>2﹣m,∴(2﹣m)x>2﹣m,∵解集为x<1,∴2﹣m<0,∴m>2,又∵m<4,m是整数,∴m=3.七、(本题满分12分)22.解:(1)直线l1与l2平行,∵∠1+∠BAE=180°,∠1+∠2=180°,∴∠2=∠BAE,∴l1∥l2,(2)过点E作EF∥AB交BC于点F,可得:∠BEF=∠ABE=30°,∴∠FEC=62°﹣30°=32°,∵l1∥l2,∴EF∥CD,∴∠DCE=∠FEC=32°.八、(本题满分14分)23.解:(1)设原计划B生产线每小时加工粽子5x个,则原计划A生产线每小时加工粽子4x个,根据题意得+=18,∴x=100,经检验x=100为原分式方程的解∴4x=4×100=400,5x=5×100=500,答:原计划A、B生产线每小时加工粽子各是400、500个;(2)由题意得:(400﹣100)(a+3)+(500﹣50)(a+a)≥6300,解得:a≥6,∴a的最小值为6.。
滁州市七年级下册末数学试卷及答案

一、解答题1.如图,点A (1,n ),B (n ,1),我们定义:将点A 向下平移1个单位,再向右平移1个单位,同时点B 向上平移1个单位,再向左平移1个单位称为一次操作,此时平移后的两点记为A 1,B 1,t 次操作后两点记为A t ,B t .(1)直接写出A 1,B 1,A t ,B t 的坐标(用含n 、t 的式子表示);(2)以下判断正确的是 .A .经过n 次操作,点A ,点B 位置互换B .经过(n ﹣1)次操作,点A ,点B 位置互换C .经过2n 次操作,点A ,点B 位置互换D .不管几次操作,点A ,点B 位置都不可能互换(3)t 为何值时,A t ,B 两点位置距离最近?解析:(1)A 1(2,n ﹣1),B 1(n ﹣1,2),A t (1+t ,n ﹣t ),B t (n ﹣t ,1+t );(2)B ;(3)t =12n -或t =2n 或t =22n - 【分析】(1)根据点在平面直角坐标系中的平移规律求解可得答案;(2)由1+t =n 时t =n ﹣1,知n ﹣t =n ﹣(n ﹣1)=1,据此可得答案;(3)分n 为奇数和偶数两种情况,得出对应的方程,解之可得n 关于t 的式子.【详解】解:(1)A 1(2,n ﹣1),B 1(n ﹣1,2),A t (1+t ,n ﹣t ),B t (n ﹣t ,1+t ); (2)当1+t =n 时,t =n ﹣1.此时n ﹣t =n ﹣(n ﹣1)=1,故选:B ;(3)当n 为奇数时:1+t =n ﹣t 解得t =12n -, 当n 为偶数时:1+t =n ﹣t +1 解得t =2n , 或1+t =n ﹣t ﹣1 解得t =22n -. 【点睛】 本题主要考查坐标与图形变化—平移,解题的关键是掌握点在平面直角坐标系中的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.2.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.3.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=13∠ABF,∠CDM=13∠CDF,∠BED=α°,求∠M的度数;(3)若∠ABM=1n∠ABF,∠CDM=1n∠CDF,请直接写出∠M与∠BED之间的数量关系解析:(1)65°;(2)3606α︒-︒;(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解;(3)由(2)的方法可得到2n ∠M +∠BED =360°.【详解】解:(1)如图1,作//EG AB ,//FH AB ,连结MF ,//AB CD ,//////EG AB FH CD ∴,ABF BFH ∴∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒, 360ABE BEG GED CDE ∴∠+∠+∠+∠=︒,100BED BEG DEG ∠=∠+∠=︒,260ABE CDE ∴∠+∠=︒,ABE ∠和CDE ∠的角平分线相交于E ,130ABF CDF ∴∠+∠=︒,130BFD BFH DFH ∴∠=∠+∠=︒, BM 、DM 分别是ABF ∠和CDF ∠的角平分线,12MBF ABF ∴∠=∠,12MDF CDF ∠=∠, 65MBF MDF ∴∠+∠=︒,1306565BMD ∴∠=︒-︒=︒;(2)如图1,13ABM ABF ∠=∠,13CDM CDF ∠=∠, 3ABF ABM ∴∠=∠,3CDF CDM ∠=∠,ABE ∠与CDE ∠两个角的角平分线相交于点F ,6ABE ABM ∴∠=∠,6CDE CDM ∠=∠,66360ABM CDM BED ∴∠+∠+∠=︒,BMD ABM CDM ∠=∠+∠,6360BMD BED ∴∠+∠=︒,3606BMD α︒-︒∴∠=; (3)由(2)结论可得,22360n ABM n CDM E ∠+∠+∠=︒,M ABM CDM ∠=∠+∠, 则2360n M BED ∠+∠=︒.【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.4.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 解析:(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q =∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ;(2)180FMN GHF ∠+∠=︒;理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠,PME MGH ∴∠=∠,//GH PN ∴,GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠; 理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠, PER PFQ ∴∠=∠,//ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x R y x EPM =+∠⎧⎨=+∠⎩, 可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.5.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AEN CDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C =∠1+∠2,证明:过C 作l ∥MN ,如下图所示,∵l ∥MN ,∴∠4=∠2(两直线平行,内错角相等),∵l ∥MN ,PQ ∥MN ,∴l ∥PQ ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C =∠1+∠2;(2)∵∠BDF =∠GDF ,∵∠BDF =∠PDC ,∴∠GDF =∠PDC ,∵∠PDC +∠CDG +∠GDF =180°,∴∠CDG +2∠PDC =180°,∴∠PDC =90°-12∠CDG ,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.6.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE 上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.解析:(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.7.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.8.如图①,在平面直角坐标系中,点(0,)A a ,(,0)C b ,其中,a 是16的算术平方根,38b =,线段GO 由线段AC 平移所得,并且点G 与点A 对应,点O 与点C 对应.(1)点A 的坐标为 ;点C 的坐标为 ;点G 的坐标为 ;(2)如图②,F 是线段AC 上不同于AC 的任意一点,求证:OFC OAF AOF ∠∠∠=+;(3)如图③,若点F 满足FOC FCO ∠=∠,点E 是线段OA 上一动点(与点O 、A 不重合),连CE 交OF 于点H ,在点E 运动的过程中,2OHC ACE OEC ∠∠∠+=是否总成立?请说明理由.解析:(1)(0,4),(2,0),(2,4)-;(2)证明见解析;(3)成立,理由见解析【分析】(1)根据算术平方根、立方根得(0,4)A 、(2,0)C ;再根据直角坐标系、平移的性质分析,即可得到答案;(2)根据平移的性质,得//OG CA ;根据平行线性质,分别推导得OFC GOA AOF ∠∠∠=+,GOA OAF ∠∠=,从而完成证明;(3)结合题意,根据平行线的性质,推导得90GOA ACO ∠∠+=︒、AOF OAC ∠∠=;结合(2)的结论,通过计算即可完成证明.【详解】(1)连接GA∵a 是16的算术平方根∴4a =∴(0,4)A∴4AO =∵38b =∴2b =∴(2,0)C∴2OC =∵线段GO 由线段AC 平移所得,并且点G 与点A 对应,点O 与点C 对应∴2GA OC ==,//GA OC∴(2,4)G -故答案为:(0,4),(2,0),(2,4)-;(2)∵线段GO 由线段AC 平移所得∴//OG CA ,∴OFC GOF ∠∠=∵GOF GOA AOF ∠∠∠=+∴OFC GOA AOF ∠∠∠=+∵//OG CA∴GOA OAF ∠∠=∴OFC OAF AOF ∠∠∠=+(3)∵//OG CA∴180GOC ACO ∠+∠=︒∵GOC GOA AOC ∠∠∠=+∴180GOA AOC ACO ∠∠∠++=︒∵90AOC ∠=︒∴90180GOA ACO ∠∠+=︒+︒,即90GOA ACO ∠∠+=︒∵//OG CA∴GOA OAC ∠∠=∴90OAC ACO ∠+∠=︒∵90AOC AOF FOC ∠∠∠=+=︒∴AOF FOC OAC ACO ∠∠∠∠+=+∵FOC FCO ∠=∠,ACO FCO ∠∠=∴AOF OAC ∠∠=由(2)的结论得:OHC OEH EOH ∠∠∠=+,OEC EAC ACE ∠∠∠=+∵OEH OEC ∠∠=,EOH AOF OAC ∠∠∠==∴OHC OEC OAC ∠∠∠=+∴OHC ACE OEC OAC ACE ∠∠∠∠∠+=++∵EAC OAC ∠=∠∴OEC OAC ACE ∠∠∠=+∴2OHC ACE OEC ∠∠∠+=∴在点E 运动的过程中,2OHC ACE OEC ∠∠∠+=总成立.【点睛】本题考查了算术平方根、立方根、平行线、平移、直角坐标系的知识;解题的关键是熟练掌握直角坐标系、平移、平行线的性质,从而完成求解.9.如图,在长方形ABCD 中,AB =8cm ,BC =6cm ,点E 是CD 边上的一点,且DE =2cm ,动点P 从A 点出发,以2c m/s 的速度沿A →B →C →E 运动,最终到达点E .设点P 运动的时间为t 秒.(1)请以A 点为原点,AB 所在直线为x 轴,1cm 为单位长度,建立一个平面直角坐标系,并用t 表示出点P 在不同线段上的坐标.(2)在(1)相同条件得到的结论下,是否存在P 点使△APE 的面积等于20cm 2时,若存在,请求出P 点坐标;若不存在,请说明理由.解析:(1)建立直角坐标系见解析,当0<t ≤4时,即当点P 在线段AB 上时,其坐标为:P (2t ,0),当4<t ≤7时,即当点P 在线段BC 上时,其坐标为:P (8,2t ﹣8),当7<t ≤10时,即当点P 在线段CE 上时,其坐标为:P (22﹣2t ,6);(2)存在,当点P 的坐标分别为:P (203,0)或 P (8,4)时,△APE 的面积等于220cm . 【分析】(1)建立平面直角坐标系,根据点P 的运动速度分别求出点P 在线段AB ,BC ,CE 上的坐标;(2)根据(1)中得到的点P 的坐标以及220APE Scm =,分别列出三个方程并解出此时t的值再进行讨论.【详解】(1)正确画出直角坐标系如下:当0<t ≤4时,点P 在线段AB 上,此时P 点的横坐标为22t t ⨯=,其纵坐标为0; ∴此时P 点的坐标为:P (2t ,0);同理:当4<t ≤7时,点P 在线段BC 上,此时P 点的坐标为:P (8,2t ﹣8);当7<t ≤10时,点P 在线段CE 上,此时P 点的坐标为:P (22﹣2t ,6).(2)存在,①如图1,当0<t ≤4时,点P 在线段AB 上,126202APE S t =⨯⨯=,解得:t 103=(s ); ∴P 点的坐标为:P (203,0). ②如图2,当4<t ≤7时,点P 在线段BC 上,APE ADE ABP PCE S AB BC S S S =⨯---;∴1112048628(28)6(142)222t t =-⨯⨯-⨯⨯--⨯⨯-; 解得:t =6(s );∴点P 的坐标为:P (8,4).③如图3,当7<t ≤10时,点P 在线段CE 上,16(202)202APE S t =⨯⨯-=; 解得:t 203=(s ); ∵203<7,∴t 203=(应舍去), 综上所述:当P 点的坐标为:P (203,0)或 P (8,4)时,△APE 的面积等于220cm . 【点睛】本题考查了三角形的面积的计算公式,12S =⨯⨯三角形底高,在本题计算的过程中根据动点的坐标正确地求出三角形的底边长度和高是解题的关键.10.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒.(1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).解析:(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠=∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.11.如图1,在平面直角坐标系中,(,0),(,2)A a C b ,且满足2(2)|2|0a b ++-=,过C 作CB x ⊥轴于B .(1)求ABC ∆的面积.(2)若过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,求AED ∠的度数.(3)在y 轴上存在点P 使得ABC ∆和ACP ∆的面积相等,请直接写出P 点坐标.解析:(1)4;(2)45︒;(2)(0,3)P 或(0,1)-.【分析】(1)根据非负数的性质易得2a =-,2b =,然后根据三角形面积公式计算; (2)过E 作//EF AC ,根据平行线性质得////BD AC EF ,且1312CAB ∠=∠=∠,1422ODB ∠=∠=∠,所以112()2AED CAB ODB ∠=∠+∠=∠+∠;然后把90CAB ODB ∠+∠=︒ 代入计算即可;(3)分类讨论:设(0,)P t ,当P 在y 轴正半轴上时,过P 作//MN x 轴,//AN y 轴,//BM y 轴,利用4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形可得到关于t 的方程,再解方程求出t ; 当P 在y 轴负半轴上时,运用同样方法可计算出t .【详解】解:(1)2(2)20a b ++-=,20a ∴+=,20b -=, 2a ∴=-,2b =,CB AB ⊥(2,0)A ∴-,(2,0)B ,(2,2)C ,ABC ∆∴的面积12442=⨯⨯=;(2)解://CB y 轴,//BD AC ,5CAB ∴∠=∠,又∵590ODB ∠+∠=︒, ∴90CAB ODB ∠+∠=︒, 过E 作//EF AC ,如图①,//BD AC ,////BD AC EF ∴,31∴∠=∠,42∠=∠AE ∵,DE 分别平分CAB ∠,ODB ∠,即:132CAB ∠=∠,142ODB ∠=∠,112()452AED CAB ODB ∴∠=∠+∠=∠+∠=︒;(3)(0,1)P -或(0,3).解:①当P 在y 轴正半轴上时,如图②,设(0,)P t ,过P 作//MN x 轴,//AN y 轴,//BM y 轴,4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形,∴4(2)(2)42t t t t -+---=,解得3t =, ②当P 在y 轴负半轴上时,如图③4APC ANP CMP MNAC S S S S ∆∆∆=--=梯形∴4(2)(2)42t t t t -+-+--=,解得1t =-, 综上所述:(0,3)P 或(0,1)-. 【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了非负数的性质、坐标与图形性质以及三角形面积公式.构造矩形求三角形面积是解题关键. 12.阅读理解:定义:A ,B ,C 为数轴上三点,若点C 到点A 的距离是它到点B 的时距离的n (n 为大于1的常数)倍,则称点C 是(),A B 的n 倍点,且当C 是(),A B 的n 倍点或(),B A 的n 倍点时,我们也称C 是A 和B 两点的n 倍点.例如,在图1中,点C 是(),A B 的2倍点,但点C 不是(),B A 的2倍点.(1)特值尝试.①若2n =,图1中,点______是(),D C 的2倍点.(填A 或B )②若3n =,如图2,M ,N 为数轴上两个点,点M 表示的数是2-,点N 表示的数是4,数______表示的点是(),M N 的3倍点. (2)周密思考:图2中,一动点P 从N 出发,以每秒2个单位的速度沿数轴向左运动t 秒,若P 恰好是M 和N 两点的n 倍点,求所有符合条件的t 的值.(用含n 的式子表示) (3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的M 和N 两点的所有n 倍点P 均处于点N 的“可视距离”内,请直接写出n 的取值范围.(不必写出解答过程)解析:(1)①B ;②7或52;(2)31t n =+或31n t n =+或31n t n =-;(3)n ≥54.【分析】(1)①直接根据新定义的概念即可求出答案; ②根据新定义的概念列出绝对值方程即可求解;(2)设P 点所表示的数为4-2t ,再根据新定义的概念列出方程即可求解; (3)分31t n =+,31n t n =+,31nt n =-三种情况分别表示出PN 的值,再根据PN 的范围列出不等式组即可求解. 【详解】(1)①由数轴可知,点A 表示的数为-1,点B 表示的数为2,点C 表示的数为1,点D 表示的数为0, ∴AD =1,AC =2 ∴AD =12AC∴点A 不是(),D C 的2倍点 ∴BD =2,BC =1 ∴BD =2BC∴点B 是(),D C 的2倍点 故答案为:B ;②若点C 是点(),M N 的3倍点 ∴CM =3CN 设点C 表示的数为x ∴CM =2x +,CN =4x - ∴2x + =34x -即()234x x +=-或()234x x +=-- 解得x =7或x =52∴数7或52表示的点是(),M N 的3倍点.故答案为:7或52;(2)设点P 表示的数为4-2t , ∴PM =422t -+,PN =2t∵若P 恰好是M 和N 两点的n 倍点, ∴当点P 是(),M N 的n 倍点 ∴PM =nPN ∴422t -+=n ×2t 即6-2t =2nt 或6-2t =-2nt 解得31t n =+或31t n=- ∵n >1 ∴31t n=+ ∴当点P 是(),N M 的n 倍点 ∴PN =nPM ∴2t =n ×422t -+即2t = n ×()62t -或-2t = n ×()62t - 解得31n t n =+或31nt n =- ∴符合条件的t 值有31t n =+或31n t n =+或31nt n =-; (3)∵PN =2t ∴当31t n=+时,PN =61n +当31n t n=+时,PN =61nn +,当31nt n =-时,PN =61n n - ∵点P 均在点N 的可视距离之内 ∴PN ≤30∴6301630163011n n n nn n ⎧≤⎪+⎪⎪≤⎪+⎨⎪≤⎪-⎪⎪⎩> 解得n ≥54∴n 的取值范围为n ≥54.【点睛】此题主要考查主要方程与不等式组的应用,解题的关键是根据新定义概念列出方程或不等式求解.13.先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=,……①,237x y +=,……②,求4x y -和75x y +的值. 本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=,这样的解题思想就是通常所说的“整体思想” 解决问题:(1)已知二元一次方程组322233x y x y -=-⎧⎨-=-⎩,则x y -=______,x y +=______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,那么11*=______. 解析:(1)-1;1;(2)30元;(3)-11 【分析】(1)①+②,可得出x y -的值,①-②,得x y +的值;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用x 元、y 元、z 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元”列出方程组,再根据方程组的特征求出6x y z ++=,进一步可求出()530x y z ++=; (3)根据新定义,将数值代入新定义里,列方程组求解即可得出答案. 【详解】(1)解:322233x y x y -=-⎧⎨-=-⎩①②①+②,得555x y -=- 1x y ∴-=-;①-②,得1x y +=; 故答案为:-1,1;(2)设购买1支铅笔、1块橡皮、1本日记本分别使用x 元、y 元、z 元,根据题意,得:203232395358x y z x y z ++=⎧⎨++=⎩①②①×②-②得6x y z ++= ∴()530x y z ++=(元) 答:5本日记本共需30元.(3)353515474728a b c a b c ⨯=++=⎧⎨⨯=++=⎩①②①3⨯-②2⨯得11a b c ++=- ∴1111a b c ⨯=++=-. 【点睛】本题考查了三元一次方程组的应用,熟练读懂题干中的“整体思想”是解题的关键. 14.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.解析:(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解;(3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求. 【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +, 故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩,解得:23a b =⎧⎨=⎩;(3)在第(2)题的条件下,当正好25吨时, 可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨, 即:超过25吨的用水量(76.560)5 3.3=-÷=吨, 合计本月用水量 3.32528.3=+=吨 (4)设a 上调了x 元,b 上调了y 元, 根据题意得:1569.6x y +=, 52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.15.在平面直角坐标系xOy 中,点()4,0A -,点()0,3B ,点()3,0C .(1)ABC 的面积为______;(2)已知点()1,2D -,()2,3E --,那么四边形ACDE 的面积为______.(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m 表示格点多边形内的格点数,n 表示格点多边形边上的格点数,那么格点多边形的面积S 和m 与n 之间满足一种数量关系.例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:形内格点数m 边界格点数n格点多边形面积SABC6 11 四边形ACDE 8 11 五边形ABCDE208②中六边形FGHIJK 的面积为______(本大题无需写出解题过程,写出正确答案即可). 解析:(1)10.5;(2)12.5;(3)10.5,12.5,23;12nm +-;30 【分析】(1)画出图形,根据三角形的面积公式求解; (2)画出图形,利用割补法求解;(3)设S =am +bn +c ,其中a ,b ,c 为常数,根据表中数据列方程组求出a ,b ,c ,然后根据公式即可求出六边形FGHIJK 的面积. 【详解】(1)如图1,ABC 的底为7,高为3,所以面积为0.57310.5⨯⨯=, 故答案为:10.5;(2)如图2,0.523320.5310.52236 1.5212.5S =⨯⨯+⨯+⨯⨯+⨯⨯=+++=,故答案为:12.5;(3)由(1)、(2)可填表格如下:形内格点数m 边界格点数n 格点多边形面积S ABC6 11 10.5 四边形ACDE 8 11 12.5 五边形ABCDE2082361110.581112.520823a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩, 解得 1121a b c =⎧⎪⎪=⎨⎪=-⎪⎩,∴皮克公式为12nS m =+-,∵六边形FGHIJK 中,m =27,n =8, ∴六边形FGHIJK 的面积为82712S =+-=30.【点睛】本题考查了坐标与图形的性质,三角形的面积,三元一次方程组的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.在平面直角坐标系xOy 中,把线段AB 先向右平移h 个单位,再向下平移1个单位得到线段CD (点A 对应点C ),其中()(),,,A a b B m n 分别是第三象限与第二象限内的点.(1)若|3|10,2a b h ++=,求C 点的坐标; (2)若1b n =-,连接AD ,过点B 作AD 的垂线l ①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接DE ,且DE 的最小值为1,若点B ,D 及点(),s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(),x y 为坐标的点,试判断()()s m t n -+-是正数、负数还是0?并说明理由.解析:(1)(-1,-2);(2)①结论:直线l ⊥x 轴.证明见解析;②结论:(s -m )+(t -n )=0.证明见解析 【分析】(1)利用非负数的性质求出a ,b 的值,可得结论. (2)①求出A ,D 的纵坐标,证明AD ∥x 轴,可得结论.②判断出D (m +1,n -1),利用待定系数法,构建方程组解决问题即可. 【详解】解:(1)|3|10a b +++, 又|3|0a +10b +,3a ∴=-,1b =-,(3,1)A ∴--,点A 先向右平移2个单位,再向下平移1个单位得到点C ,(1,2)C ∴--.(2)①结论:直线l x ⊥轴. 理由:1b n =-,(,1)A a n ∴-,(,)B m n ,向右平移h 个单位,再向下平移1个单位得到点D ,(,1)D m h n ∴+-,A ,D 的纵坐标相同,//AD x ∴轴,直线l AD ⊥,∴直线l x ⊥轴.②结论:()()0s m t n -+-=.理由:E 是直线l 上一点,连接DE ,且DE 的最小值为1,(1,1)D m n ∴+-,点B ,D 及点(,)s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(,)x y 为坐标的点,∴()()11p m q n k pm qn k ps qt k ++-=⎧⎪+=⎨⎪+=⎩①②③, ①-②得到0p q -=,p q ∴=,③-②得到,()()0p s m q t n -+-=,0pq ≠,0p q ∴=≠,()()0s m t n ∴-+-=.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.17.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()282122a b c -+-=-+,(1)直接写出点A ,B ,C 的坐标及ABC 的面积; (2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点,①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.解析:(1)()0,8A ,()6,0B ,()0,2C -,30ABC S=;(2)n 的取值范围为40n -≤≤;(3)①4324x y +=;②()3,4M【分析】(1)根据()28212a b -+-=a 、b 、c 的值,由此求解即可;(2)分当D 点在直线l 上位于y 轴左侧时和当D 点在直线l 上位于y 轴右侧时讨论求解即可得到答案;(3)①由由AOB AON BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯,由此求解即可;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=,化简得,315x y +=,然后联立4324315x y x y +=⎧⎨+=⎩求解即可. 【详解】解:(1)∵()28212a b -+-=∴()28212a b -+-,∴80a -=,2120b -=,20c +=,∴8a =,6b =,2c =-,∴()0,8A ,()6,0B ,()0,2C -,∴AC =10,OB =6, ∴1302ABC S AC OB ==;(2)当D 点在直线l 上位于y 轴左侧时,由题意得,()()111510222ACD S AC m m =⨯⨯-=⨯⨯-≤△, 解得,32m ≥-, 当32m =-时,3,02D ⎛⎫- ⎪⎝⎭, 结合图形可知,当32m ≥-时,0n ≤;同理可得,当D 点在直线l 上位于y 轴右侧时,32m ≤, 当32m =时,3,2D n ⎛⎫⎪⎝⎭,12//,D D AB22,ACD BCD S S ∴=()()13113156262222222n n ⎛⎫⨯+⨯--⨯⨯-⨯⨯--= ⎪⎝⎭,解得,4n =-, 结合图形可知,当32m ≤时,4n ≥-,∴n 的取值范围为40n -≤≤;(3)①由AOB AOM BOM S S S =+得, 1118668222x y ⨯+⨯=⨯⨯, 化简得,4324x y +=;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=, 化简得,315x y +=,联立方程组4324315x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, ∴()3,4M【点睛】本题主要考查了绝对值和算术平方根的非负性,三角形面积,解二元一次方程组,坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.18.如图,正方形ABCD 的边长是2厘米,E 为CD 的中点,Q 为正方形ABCD 边上的一个动点,动点Q 以每秒1厘米的速度从A 出发沿A B C D →→→运动,最终到达点D ,若点Q 运动时间为x 秒.(1)当1x =时,AQE S ∆= 平方厘米;当32x =时,AQE S ∆= 平方厘米;(2)在点Q 的运动路线上,当点Q 与点E 相距的路程不超过14厘米时,求x 的取值范围;(3)若AQE ∆的面积为13平方厘米,直接写出x 值.解析:(1)1;32 (2)192144x ≤≤ (3)11416,,333x x x === 【分析】(1)根据三角形的面积公式即可求解;(2)根据题意列出不等式组故可求解;(3)分Q 点在AB 上、BC 上和CD 上分别列出方程即可求解.【详解】(1)当1x =时,AQE S ∆=1122⨯⨯=1平方厘米; 当32x =时,AQE S ∆=13222⨯⨯=32平方厘米; 故答案为1;32; (2)解:根据题意,得154154x x ⎧-≤⎪⎪⎨⎪-≤⎪⎩ 解得192144x ≤≤, 故x 的取值范围为192144x ≤≤; (3)当Q 点在AB 上时,依题意可得11223x ⨯⨯= 解得13x =; 当Q 点在BC 上时,依题意可得111122(2)2(4)1212223x x ⨯-⨯-⨯-⨯-⨯-⨯⨯= 解得193x =>6,不符合题意; 当Q 点在AB 上时,依题意可得()115223x ⨯-⨯=或()115223x ⨯-⨯= 解得143x =或163x =;。
滁州市七年级下学期数学期末考试试卷
滁州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2017七下·西城期中) 下列各式中,正确的是()A . ± =±B . ± = ;C . ± =±D . =±2. (2分) (2017九下·东台期中) 如果点P(m+3,m+1)在x轴上,则点P的坐标为()A . (0,2)B . (2,0)C . (4,0)D . (0,﹣4)3. (2分)下列说法错误的是()。
A . 的平方根是B . 是最小的正整数C . 两个无理数的和一定是无理数D . 实数与数轴上的点一一对应4. (2分) (2019七下·孝义期末) 如图,在一张半透明的纸上画一条直线,在直线外任取一点,折出过点且与直线垂直的直线,这样的直线只能折出一条,理由是()A . 连接直线外一点与直线上各点的所有线段中,垂线段最短B . 两点之间线段最短C . 在平面内,过一点有且只有一条直线与已知直线垂直D . 经过直线外一点有且只有一条直线与已知直线平行5. (2分) (2016七下·五莲期末) 下列说法正确的是()A . 两条直线被第三条直线所截,内错角相等B . 直线外一点到这条直线的垂线段,叫做点到直线的距离C . 若a⊥b,b⊥c,则a⊥cD . 不相等的角不是对顶角6. (2分) (2019八上·贵州期中) 如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A . 90°B . 120°C . 150°D . 180°7. (2分)方程组的解为,则a、c满足()A . 4a+c=9B . 2a+c=9C . 4a﹣c=9D . 2a﹣c=98. (2分)下列说法正确的是A . 一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B . 为了了解全国中学生的心理健康状况,应采用普查的方式C . 一组数据0,1,2,1,1的众数和中位数都是1D . 若甲组数据的方差甲=0.2 ,乙组数据的方差乙=0.5,则乙组数据比甲组数据稳定9. (2分) (2019八上·吉林期末) 下列长度的三条线段能组成三角形的是()A . 3,4,8B . 4,5,9C . 4,5,8D . 3a , 3a , 6a(a>0)10. (2分) (2020九下·卧龙模拟) 在平面直角坐标系中,将点绕原点O逆时针旋转180°,得到的对应点的坐标是()A .B .C .D .11. (2分) (2019七下·伊通期末) 已知a>b,下列不等式变形不正确的是()A . a+2>b+2B . a﹣2>b﹣2C . 2a>2bD . 2﹣a>2﹣b12. (2分)(2018·遵义模拟) 在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()A . 22B . 20C . 22或20D . 1813. (2分) (2020七下·龙岗期中) 在△ABC中,若∠A:∠B:∠C=1:3:5,则△ABC是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 无法确定14. (2分) (2017七下·朝阳期中) 如图所示,直线截直线,,给出下列以下条件:① ;② ;③ ;④ .其中能够说明a∥b的条件有()A . 个B . 个C . 个D . 个二、填空题 (共4题;共4分)15. (1分) (2020八上·广元期末) 如图,已知中,,于D ,于E , BD、CE交于点F ,、的平分线交于点O ,则的度数为________.16. (1分)某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.则本次抽样调查的书籍有________本.17. (1分)如图所示是轰炸机机群的一个飞行队形,如果其中两架轰炸机的平面坐标分别表示为A(﹣2,3)和B(2,1),那么轰炸机C的平面坐标是________.18. (1分) (2018八上·芜湖期中) 点A与点B(−1,3)关于y轴对称,则线段AB的长为________.三、解答题 (共8题;共75分)19. (10分)(2019·越城模拟)(1)计算:;(2)解方程组:20. (5分)(2018·姜堰模拟) 解不等式组,并把解集在数轴上表示出来.21. (5分)解方程组:22. (10分)(2018·北部湾模拟) 如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C'顺时针旋转90°,得到△A″B″C′,(1)请你画出△A′B′C′和△A″B″C′(不要求写画法).(2)求出线段A′C′在旋转过程中所扫过的面积.(结果保留)23. (15分)(2019·天心模拟) 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线上是否存在点M,使得∠MAC=2∠MCA,若存在,求出M点坐标.若不存在,说明理由.24. (15分)某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本)123456789人数(名)126712x7y1请根据以上信息回答下列问题:(1)分别求出统计表中的x、y的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.25. (5分)(2018·凉州) 《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.26. (10分) (2017九上·芜湖期末) 如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为;若存在,指出其中的一种平移方式;若不存在,请说明理由.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、26-1、26-2、。
七年级下册数学期末考试卷及答案2017
⼀、选择题(本⼤题共12⼩题,每⼩题3分,共36分) 1.﹣12的值是( )A.1B.﹣1C.2D.﹣2 【考点】有理数的乘⽅. 【分析】根据乘⽅运算,可得幂,根据有理数的乘法运算,可得答案. 【解答】解:原式=﹣1, 故选;B. 【点评】本题考查了有理数的乘⽅,注意底数是1. 2.已知3xa﹣2是关于x的⼆次单项式,那么a的值为( )A.4B.5C.6D.7 【考点】单项式. 【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可. 【解答】解:∵3xa﹣2是关于x的⼆次单项式, a﹣2=2, 解得:a=4, 故选A. 【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解. 3.在下列⽴体图形中,只要两个⾯就能围成的是( )A.长⽅体B.圆柱体C.圆锥体D.球 【考点】认识⽴体图形. 【分析】根据各⽴体图形的构成对各选项分析判断即可得解. 【解答】解:A、长⽅体是有六个⾯围成,故本选项错误; B、圆柱体是两个底⾯和⼀个侧⾯组成,故本选项错误; C、圆锥体是⼀个底⾯和⼀个侧⾯组成,故本选项正确; D、球是由⼀个曲⾯组成,故本选项错误. 故选C. 【点评】本题考查了认识⽴体图形,熟悉常见⼏何体的⾯的组成是解题的关键. 4.如图,是由四个相同的⼩正⽅体组成的⼏何体,该⼏何体从上⾯看得到的平⾯图形为( ) A. B. C. D. 【考点】简单组合体的三视图. 【分析】根据从上⾯看得到的图形是俯视图,可得答案. 【解答】解:从上⾯看第⼀层左边⼀个,第⼆层中间⼀个,右边⼀个,故B符合题意, 故选;B. 【点评】本题考查了简单⼏何体的三视图,从上⾯看的到的视图是俯视图. 5.全球每秒钟约有14.2万吨污⽔排⼊江河湖海,把14.2万⽤科学记数法表⽰为( )A.142103B.1.42104C.1.42105D.0.142106 【考点】科学记数法表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a10n的形式,其中1|a|10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5. 【解答】解:14.2万=142 000=1.42105. 故选C. 【点评】此题考查科学记数法表⽰较⼤的数的⽅法,准确确定a与n值是关键. 6.导⽕线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点⽕后能够跑到150m外的安全地带,导⽕线的长度⾄少是( )A.22cmB.23cmC.24cmD.25cm 【考点】⼀元⼀次不等式的应⽤. 【分析】设⾄少为xcm,根据题意可得跑开时间要⼩于爆炸的时间,由此可列出不等式,然后求解即可. 【解答】解:设导⽕线⾄少应有x厘⽶长,根据题意 , 解得:x24, 导⽕线⾄少应有24厘⽶. 故选:C. 【点评】此题主要考查了⼀元⼀次不等式的应⽤,关键是读懂题意,找到符合题意的不等关系式. 7.已知实数x,y满⾜,则x﹣y等于( )A.3B.﹣3C.1D.﹣1 【考点】⾮负数的性质:算术平⽅根;⾮负数的性质:偶次⽅. 【专题】常规题型. 【分析】根据⾮负数的性质列式求出x、y的值,然后代⼊代数式进⾏计算即可得解. 【解答】解:根据题意得,x﹣2=0,y+1=0, 解得x=2,y=﹣1, 所以,x﹣y=2﹣(﹣1)=2+1=3. 故选A. 【点评】本题考查了算术平⽅根⾮负数,平⽅数⾮负数的性质,根据⼏个⾮负数的和等于0,则每⼀个算式都等于0列式是解题的关键. 8.如图是丁丁画的⼀张脸的⽰意图,如果⽤(0,2)表⽰靠左边的眼睛,⽤(2,2)表⽰靠右边的眼睛,那么嘴的位置可以表⽰成( )A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1) 【考点】坐标确定位置. 【专题】数形结合. 【分析】根据左右的眼睛的坐标画出直⾓坐标系,然后写出嘴的位置对应的点的坐标. 【解答】解:如图, 嘴的位置可以表⽰为(1,0). 故选A. 【点评】本题考查了坐标确定位置:平⾯直⾓坐标系中点与有序实数对⼀⼀对应;记住平⾯内特殊位置的点的坐标特征. 9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是( ) A. B. C. D. 【考点】利⽤平移设计图案. 【分析】根据平移的性质,结合图形,对选项进⾏⼀⼀分析,排除错误答案. 【解答】解:A、属于旋转所得到,故错误; B、属于轴对称变换,故错误; C、形状和⼤⼩没有改变,符合平移的性质,故正确; D、属于旋转所得到,故错误. 故选C. 【点评】本题考查了图形的平移,图形的平移只改变图形的位置,⽽不改变图形的形状和⼤⼩,学⽣易混淆图形的平移与旋转或翻转,⽽误选. 10.如图,⼀扇窗户打开后,⽤窗钩AB可将其固定,这⾥所运⽤的⼏何原理是( )A.三⾓形的稳定性B.两点之间线段最短C.两点确定⼀条直线D.垂线段最短 【考点】三⾓形的稳定性. 【分析】根据加上窗钩,可以构成三⾓形的形状,故可⽤三⾓形的稳定性解释. 【解答】解:构成△AOB,这⾥所运⽤的⼏何原理是三⾓形的稳定性. 故选:A. 【点评】本题考查三⾓形的稳定性在实际⽣活中的应⽤问题.三⾓形的稳定性在实际⽣活中有着⼴泛的应⽤. 11.已知x=2,y=﹣3是⼆元⼀次⽅程5x+my+2=0的解,则m的值为( )A.4B.﹣4C.D.﹣ 【考点】⼆元⼀次⽅程的解. 【专题】计算题;⽅程思想. 【分析】知道了⽅程的解,可以把这对数值代⼊⽅程,得到⼀个含有未知数m的⼀元⼀次⽅程,从⽽可以求出m的值. 【解答】解:把x=2,y=﹣3代⼊⼆元⼀次⽅程5x+my+2=0,得 10﹣3m+2=0, 解得m=4. 故选A. 【点评】解题关键是把⽅程的解代⼊原⽅程,使原⽅程转化为以系数m为未知数的⽅程,再求解. ⼀组数是⽅程的解,那么它⼀定满⾜这个⽅程,利⽤⽅程的解的定义可以求⽅程中其他字母的值. 12.如图,下列条件中不能判定AB∥CD的是( )A.3=4B.1=5C.1+4=180D.3=5 【考点】平⾏线的判定. 【分析】由平⾏线的判定定理易知A、B都能判定AB∥CD; 选项C中可得出1=5,从⽽判定AB∥CD; 选项D中同旁内⾓相等,但不⼀定互补,所以不能判定AB∥CD. 【解答】解:3=5是同旁内⾓相等,但不⼀定互补,所以不能判定AB∥CD. 故选D. 【点评】正确识别三线⼋⾓中的同位⾓、内错⾓、同旁内⾓是正确答题的关键,只有同位⾓相等、内错⾓相等、同旁内⾓互补,才能推出两被截直线平⾏. ⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分) 13.若A=6620,则A的余⾓等于 2340 . 【考点】余⾓和补⾓. 【分析】根据互为余⾓的两个⾓的和等于90列式计算即可得解. 【解答】解:∵A=6620, A的余⾓=90﹣6620=2340, 故答案为:2340. 【点评】本题主要考查了余⾓的定义,是基础题,熟记互为余⾓的两个⾓的和等于90是解题的关键. 14.绝对值⼤于2且⼩于5的所有整数的和是 0 . 【考点】绝对值. 【分析】⾸先根据绝对值的⼏何意义,结合数轴找到所有满⾜条件的数,然后根据互为相反数的两个数的和为0进⾏计算. 【解答】解:根据绝对值性质,可知绝对值⼤于2且⼩于5的所有整数为3,4. 所以3﹣3+4﹣4=0. 【点评】此题考查了绝对值的⼏何意义,能够结合数轴找到所有满⾜条件的数. 15.如图,已知a∥b,⼩亮把三⾓板的直⾓顶点放在直线b上.若1=40,则2的度数为 50 . 【考点】平⾏线的性质;余⾓和补⾓. 【专题】探究型. 【分析】由直⾓三⾓板的性质可知3=180﹣1﹣90,再根据平⾏线的性质即可得出结论. 【解答】解:∵1=40, 3=180﹣1﹣90=180﹣40﹣90=50, ∵a∥b, 2=3=50. 故答案为:50. 【点评】本题考查的是平⾏线的性质,⽤到的知识点为:两直线平⾏,同位⾓相等. 16.如果点P(a,2)在第⼆象限,那么点Q(﹣3,a)在 第三象限 . 【考点】点的坐标. 【分析】由第⼆象限的坐标特点得到a0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进⾏判断. 【解答】解:∵点P(a,2)在第⼆象限, a0, 点Q的横、纵坐标都为负数, 点Q在第三象限. 故答案为第三象限. 【点评】题考查了坐标:直⾓坐标系中点与有序实数对⼀⼀对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点. 17.将⽅程2x﹣3y=5变形为⽤x的代数式表⽰y的形式是 y= . 【考点】解⼆元⼀次⽅程. 【分析】要把⽅程2x﹣3y=5变形为⽤x的代数式表⽰y的形式,需要把含有y的项移到等号⼀边,其他的项移到另⼀边,然后合并同类项、系数化1就可⽤含x的式⼦表⽰y的形式:y= . 【解答】解:移项得:﹣3y=5﹣2x 系数化1得:y= . 【点评】本题考查的是⽅程的基本运算技能:移项、合并同类项、系数化为1等. 18.如图,将三⾓尺的直⾓顶点放在直尺的⼀边上,1=30,2=50,则3= 20 . 【考点】平⾏线的性质;三⾓形的外⾓性质. 【专题】计算题. 【分析】本题主要利⽤两直线平⾏,同位⾓相等和三⾓形的外⾓等于与它不相邻的两内⾓之和进⾏做题. 【解答】解:∵直尺的两边平⾏, 2=4=50, ⼜∵1=30, 3=4﹣1=20. 故答案为:20. 【点评】本题重点考查了平⾏线的性质及三⾓形外⾓的性质,是⼀道较为简单的题⽬. 19.在扇形统计图中,其中⼀个扇形的圆⼼⾓是216,则这年扇形所表⽰的部分占总体的百分数是 60% . 【考点】扇形统计图. 【专题】计算题. 【分析】⽤扇形的圆⼼⾓360即可. 【解答】解:扇形所表⽰的部分占总体的百分数是216360=60%. 故答案为60%. 【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分⽐等于该部分所对应的扇形圆⼼⾓的度数与360的⽐. 20.⼀个多边形的每⼀个外⾓都等于36,则该多边形的内⾓和等于 1440 度. 【考点】多边形内⾓与外⾓. 【专题】计算题. 【分析】任何多边形的外⾓和等于360,可求得这个多边形的边数.再根据多边形的内⾓和等于(n﹣2)180即可求得内⾓和. 【解答】解:∵任何多边形的外⾓和等于360, 多边形的边数为36036=10, 多边形的内⾓和为(10﹣2)180=1440. 故答案为:1440. 【点评】本题需仔细分析题意,利⽤多边形的外⾓和求出边数,从⽽解决问题. 三、计算题(本⼤题共4⼩题,每⼩题7分,共28分) 21.计算:(﹣1)2014+|﹣ |(﹣5)+8. 【考点】有理数的混合运算. 【分析】先算乘⽅和绝对值,再算乘法,最后算加法,由此顺序计算即可. 【解答】解:原式=1+ (﹣5)+8 =1﹣1+8 =8. 【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定. 22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2. 【考点】整式的加减化简求值. 【专题】计算题. 【分析】原式去括号合并得到最简结果,将a与b的值代⼊计算即可求出值. 【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b, 当a=﹣1,b=2时,原式=﹣(﹣1)+52=1+10=11. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.解⽅程组: . 【考点】解⼆元⼀次⽅程组. 【分析】观察原⽅程组,两个⽅程的y系数互为相反数,可⽤加减消元法求解. 【解答】解:, ①+②,得4x=12, 解得:x=3. 将x=3代⼊②,得9﹣2y=11, 解得y=﹣1. 所以⽅程组的解是 . 【点评】对⼆元⼀次⽅程组的考查主要突出基础性,题⽬⼀般不难,系数⽐较简单,主要考查⽅法的掌握. 24.解不等式组:并把解集在数轴上表⽰出来. 【考点】解⼀元⼀次不等式组;在数轴上表⽰不等式的解集. 【分析】⾸先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表⽰出来即可. 【解答】解:解x﹣20得:x2; 解不等式2(x+1)3x﹣1得:x3. 不等式组的解集是:2 【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴. 四、解答题(本⼤题共3⼩题,25、26各10分,27题12分,共32分) 25.根据所给信息,分别求出每只⼩猫和⼩狗的价格. 买⼀共要70元, 买⼀共要50元. 【考点】⼆元⼀次⽅程组的应⽤. 【专题】图表型. 【分析】根据题意可知,本题中的相等关系是1猫+2狗=70元和2猫+1狗=50,列⽅程组求解即可. 【解答】解:设每只⼩猫为x元,每只⼩狗为y元,由题意得 . 解之得 . 答:每只⼩猫为10元,每只⼩狗为30元. 【点评】解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组,再求解.利⽤⼆元⼀次⽅程组求解的应⽤题⼀般情况下题中要给出2个等量关系,准确地找到等量关系并⽤⽅程组表⽰出来是解题的关键. 26.丁丁参加了⼀次智⼒竞赛,共回答了30道题,题⽬的评分标准是这样的:答对⼀题加5分,⼀题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他⾄少要答对多少题? 【考点】⼀元⼀次不等式的应⽤. 【专题】应⽤题. 【分析】设他⾄少要答对x题,由于他共回答了30道题,其中答对⼀题加5分,⼀题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)100,解此不等式即可求解. 【解答】解:设他⾄少要答对x题,依题意得 5x﹣(30﹣x)100, x , ⽽x为整数, x21.6. 答:他⾄少要答对22题. 【点评】此题主要考查了⼀元⼀次不等式的应⽤,解题的关键⾸先正确理解题意,然后根据题⽬的数量关系列出不等式即可解决问题. 27.为了调查市场上某品牌⽅便⾯的⾊素含量是否符合国家标准,⼯作⼈员在超市⾥随机抽取了某品牌的⽅便⾯进⾏检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表⾊素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表⽰的是抽查的⽅便⾯中⾊素含量分布的袋数,图2的扇形图表⽰的是抽查的⽅便⾯中⾊素的各种含量占抽查总数的百分⽐.请解答以下问题: (1)本次调查⼀共抽查了多少袋⽅便⾯? (2)将图1中⾊素含量为B的部分补充完整; (3)图2中的⾊素含量为D的⽅便⾯所占的百分⽐是多少? (4)若⾊素含量超过0.15%即为不合格产品,某超市这种品牌的⽅便⾯共有10000袋,那么其中不合格的产品有多少袋? 【考点】条形统计图;扇形统计图. 【分析】(1)根据A8袋占总数的40%进⾏计算; (2)根据(1)中计算的总数和B占45%进⾏计算; (3)根据总百分⽐是100%进⾏计算; (4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进⾏计算. 【解答】解:(1)840%=20(袋); (2)2045%=9(袋),即 (3)1﹣10%﹣40%﹣45%=5%; (4)100005%=500(袋), 即10000袋中不合格的产品有500袋. 【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分⽐;条形统计图能够清楚地反映各部分的具体数⽬.注意:⽤样本估计总体的思想.。
七年级下册滁州数学期末试卷测试卷 (word版,含解析)
七年级下册滁州数学期末试卷测试卷 (word 版,含解析)一、选择题1.25的算数平方根是A .5B .±5C .5±D .52.下列各组图形可以通过平移互相得到的是( )A .B .C .D . 3.在平面直角坐标系中,点()1,0所在的位置是( )A .x 轴B .y 轴C .第一象限D .第四象限 4.下列四个命题:①5是25的算术平方根;②()24-的平方根是-4;③经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是( ). A .0个 B .1个 C .2个 D .3个5.如图,//AB CD ,DCE ∠的角平分线CG 的反向延长线和ABE ∠是角平分线BF 交于点F ,48E F ∠-∠=︒,则F ∠等于( )A .42°B .44°C .72°D .76°6.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数都有平方根和立方根D .任何数的立方根都只有一个7.如图,ABC 中,32A ∠=︒,50B ∠=︒,将BC 边绕点C 按逆时针旋转一周回到原来位置,在旋转过程中,当//CB AB '时,求BC 边旋转的角度,嘉嘉求出的答案是50°,琪琪求出的答案是230°,则下列说法正确的是( )A .嘉嘉的结果正确B .琪琪的结果正确C .两个人的结果合在一起才正确D .两个人的结果合在一起也不正确 8.如图,动点P 从点()3,0出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为()0,3……第2021次碰到长方形边上的坐标为( )A .()7,4B .()5,0C .()8,3D .()1,4二、填空题9.若x =x ,则x 的值为______.10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,DB 是ABC 的高,AE 是角平分线,26BAE ∠=,则BFE ∠=______.12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.16.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长的速度运动,运动时间为t 秒.若t =2021秒,则点P 所在位置的点的坐标是_____.三、解答题17.计算:(13981-(223427(3)--(32(23)(4353325+18.求下列各式中的x 值:(1)25x 2-64=0(2)x 3-3=3819.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别是线段AB 、BC 上的点,AE 平分BAC ∠,BED C ∠=∠,//DF AE ,交BC 于点F .求证:DF 平分BDE ∠.证明:AE ∵平分BAC ∠(已知)12∠∠∴=( )BED C ∠=∠(已知)//AC DE ∴( )13∠∠∴=( )23∴∠=∠(等量代换)//DF AE ( )25∴∠=∠( )34∠=∠( )45∴∠=∠( )DF ∴平分BDE ∠( )20.如图,在正方形网格中,三角形ABC 的三个顶点和点D 都在格点上(正方形网格的交点称为格点).点A ,B ,C 的坐标分别为()2,4-,()4,0-,()0,1.平移三角形ABC ,使点A 平移到点D ,点E ,F 分别是B ,C 的对应点.(1)请画出平移后的三角形DEF ,并分别写出点E 、F 的坐标;(2)求ABC 的面积;(3)在x 轴上是否存在一点M ,使得BCM ABC S S =△△,若存在,请求出M 的坐标,若不存在,请说明理由.21.解下列问题:(1)已知235150x y x y --+-=223x y +(2)已知22,33a b 22a - 二十二、解答题22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:2 1.414≈,3 1.732≈)二十三、解答题23.如图1,AB //CD ,点E 、F 分别在AB 、CD 上,点O 在直线AB 、CD 之间,且100EOF ∠=︒.(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.24.如图1,E 点在BC 上,∠A =∠D ,AB ∥CD .(1)直接写出∠ACB 和∠BED 的数量关系 ;(2)如图2,BG 平分∠ABE ,与∠CDE 的邻补角∠EDF 的平分线交于H 点.若∠E 比∠H 大60°,求∠E ;(3)保持(2)中所求的∠E 不变,如图3,BM 平分∠ABE 的邻补角∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说理由.25.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC .(1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小;(3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .26.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、选择题1.D解析:D【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i 的平方是-1,i 是一个虚数,是复数的基本单位.【详解】=,5∴25的算术平方根是:5.故答案为5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.2.B【分析】根据平移的定义逐项分析判断即可.【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故解析:B【分析】根据平移的定义逐项分析判断即可.【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故本选项错误.故选:B.【点睛】本题考查了图形的平移,正确掌握平移的定义和性质是解题关键.3.A【分析】1,0的纵坐标为0,则可判断点(1,0)在x轴上.由于点()【详解】1,0的纵坐标为0,解:点()故在x轴上,故选:A.【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点.4.C【分析】根据相关概念逐项分析即可.【详解】①5是25的算术平方根,故原命题是真命题;②()24-的平方根是4±,故原命题是假命题;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题;④两直线平行,同旁内角互补,故原命题是假命题;故选:C.【点睛】本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键.5.B【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=48°,即可得到∠E的度数.【详解】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,即∠E+2∠BFC=180°,①又∵∠E-∠BFC=48°,∴∠E =∠BFC+48°,②∴由①②可得,∠BFC+48°+2∠BFC=180°,解得∠BFC=44°,故选:B.【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.6.D【分析】根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断.【详解】A 、一个数的立方根只有1个,故本选项错误;B 、负数有立方根,故本选项错误;C 、负数只有立方根,没有平方根,故本选项错误;D 、任何数的立方根都只有一个,故本选项正确.故选:D .【点睛】本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念.7.C【分析】分两种情况进行讨论,根据平行线的性质,周角的性质,三角形内角和的性质求解即可.【详解】解:当点B '在点C 的右边时,如下图:B CB '∠为CB 旋转的角度,∵//B C AB '∴50B B CB '∠=∠=︒,即旋转角为50︒当点B '在点C 的左边时,如下图:∵//B C AB '∴32A B CA '∠=∠=︒根据三角形内角和可得18098ACB A B ∠=︒-∠-∠=︒旋转的角度为360230B CA ACB '︒-∠-∠=︒综上所述,旋转角度为50︒或230︒故选C【点睛】此题考查了平行线的性质,三角形内角和的性质,周角的性质,熟练掌握相关基本性质是解题的关键.8.A【分析】该题属于找规律题型,只要把运动周期找出来即可解决.【详解】由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3解析:A【分析】该题属于找规律题型,只要把运动周期找出来即可解决.【详解】由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环,2021÷6=366……5,∴第2021次碰到长方形的边的点的坐标为(7,4),故选:A.【点睛】本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答.二、填空题9.0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0=0,1=1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x 的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.10.1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE 是对顶角,故可求得∠BFE的度数.【详解】∵AE是角平分线,∠BAE=26°,∴∠FAD=∠B解析:64【分析】由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.【详解】∵AE是角平分线,∠BAE=26°,∴∠FAD=∠BAE=26°,∵DB是△ABC的高,∴∠AFD=90°−∠FAD=90°−26°=64°,∴∠BFE=∠AFD=64°.故答案为64°.【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.13.32°【分析】连接EQ,根据A、E、Q、H在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,∵A、E、Q、H在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32° 故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵91516<<,∴3154<<,∵a、b为两个连续的整数,15<<,a bb=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),由题意:•|1-m|•2=5,∴m=-4或6,∴P(-4解析:(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),•|1-m|•2=5,由题意:12∴m=-4或6,∴P(-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.16.(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P 点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2), D(1,-2)∴AB= CD= 2,AD= BC= 3,∴四边形ABCD 的周长= AB+ AD+BC+CD= 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3)2+;(4)【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式.【详解】解:(11-=3+2+1=6;(2=2-3-3=-4;(33)=2+;(4+=故答案为(1)6;(2)-4;(3)2+4)【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.18.(1)x=±;(2)x=.【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=±85;(2)x=32.【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得.【详解】解:(1)∵25x2-64=0,∴25x2=64,则x2=64 25,∴x=±85;(2)∵x3-3=38,∴x 3=278, 则x=32. 故答案为:(1)x=85±;(2)x=32. 【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x 3=a 或x 2=a(a 为常数)的形式及平方根、立方根的定义.19.见解析【分析】根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(解析:见解析【分析】根据平行线的性质,角平分线的定义填写理由即可.【详解】证明:AE ∵平分BAC ∠(已知)12∠∠∴=(角平分线的定义)BED C ∠=∠(已知)//AC DE ∴(同位角相等,两直线平行)13∠∠∴=(两直线平行,内错角相等)23∴∠=∠(等量代换)//DF AE (已知)25∴∠=∠(两直线平行,同位角相等)34∠=∠(两直线平行,内错角相等)45∴∠=∠(等量代换)DF ∴平分BDE ∠(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)画图见解析,E (2,-2),F (6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF ,并写出点E ,F 的坐标; (2)利用割补法计解析:(1)画图见解析,E (2,-2),F (6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF ,并写出点E ,F 的坐标; (2)利用割补法计算即可;(3)根据△ABC 的面积得到△BCM 的面积,从而计算出BM ,可得点M 的坐标;【详解】解:(1)如图,三角形DEF 即为所求,点E (2,-2),F (6,-1);(2)S △ABC =11144423241222⨯-⨯⨯-⨯⨯-⨯⨯=7;(3)∵7BCM ABC S S ==△△,点C 的坐标为(0,1),∴BM =72114⨯÷=,∵B (-4,0),∴点M 的坐标为(10,0)或(-18,0).【点睛】本题考查了作图-平移变换,三角形的面积,解决本题的关键是掌握平移的性质. 21.(1);(2).【分析】(1)直接利用非负数的性质得出x ,y 的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a ,b 的值,进而得出答案.【详解】原式.解析:(1)5;(2)3-.【分析】(1)直接利用非负数的性质得出x ,y 的值,再利用立方根的定义求出答案; (2)直接估算无理数的取值范围得出a ,b 的值,进而得出答案.【详解】()12350x y --23500x y ⎧--=⎪∴⎨= 2350150x y x y --=⎧∴⎨+-=⎩ 105x y =⎧∴⎨=⎩5== ()22223<<2a ∴=5336<<5b ∴=∴原式=3=-.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键. 二十二、解答题22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足.【分析】(1(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可.【详解】解:(16分米;(2)设长方形的长为4a 分米,则宽为3a 分米.则4324a a ⋅=, 解得:2a =,∴长为4 5.6566a ≈<,宽为3 4.242 6.a ≈<∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.二十三、解答题23.(1) ;(2)的值为40°;(3).【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解; (2)过点M 作MK ∥AB ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53. 【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即可得关于n 的方程,计算可求解n 值.【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD ,∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,,∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒,即360BEO EOF DFO ∠+∠+∠=︒,∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO ,设BEM OEM x CFN OFN y ∠=∠=∠=∠=,,∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒,∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD ,∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,,∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠()x KMN HNM y =+∠-∠-=x -y=40°,故EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD ,∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠,∴KFD EHK AEG ∠=∠+∠,∵50EHK NMF ENM ∠=∠-∠=︒,∴50KFD AEG ∠=︒+∠,即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠. ∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ , 1AEO AEG OEG AEG AEG n∠=∠+∠=∠+∠, ∵260BEO DFO ∠+∠=︒,∴100AEO CFO ∠+∠=︒, ∴11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即(180)1KFD AEG n ⎛⎫ ⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫ ⎪⨯⎭︒︒⎝+=, 解得53n = .经检验,符合题意, 故答案为:53. 【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 24.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据ABCD 可得∠DFB=∠D ,则∠DFB=∠A ,可得ACDF ,根据平行线的性质得∠A解析:(1)∠ACB +∠BED =180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据AB //CD 可得∠DFB =∠D ,则∠DFB =∠A ,可得AC //DF ,根据平行线的性质得∠ACB +∠CEF =180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠, ∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.25.(1)见解析;(2)∠BGD =;(3)2∠BGD+∠BFD =360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.26.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF )=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;②∠F=12∠BED ,理由是:分别过E 、F 作EN//AB ,FM//AB ,∵EN//AB ,∴∠BEN=∠ABE ,∠DEN=∠CDE ,∴∠BED=∠ABE+∠CDE ,∵DF 、BF 分别是∠CDE 的角平分线与∠ABE 的角平分线,∴∠ABE=2∠ABF ,∠CDE=2∠CDF ,即∠BED=2(∠ABF+∠CDF );同理,由FM//AB ,可得∠F=∠ABF+∠CDF ,∴∠F=12∠BED ;(3)2∠F+∠BED=360°.如图,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,∵AB ∥CD ,EG ∥AB ,∴CD ∥EG ,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE ),即∠BED=360°-(∠ABE+∠CDE ),∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
滁州市七年级下册末数学试卷及答案
一、解答题1.如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0).正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t<4.(1)点F的坐标为;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动.连接AP,AE.①求t为何值时,AP所在直线垂直于x轴;②求t为何值时,S=S△APE.解析:(1)(3,4);(2)①t=32时,AP所在直线垂直于x轴;②当t为107或145时,S=S△APE.【分析】(1)根据直角坐标系得出点F的坐标即可;(2)①根据AP所在直线垂直于x轴,得出关于t的方程,解答即可;②分713t≤≤和71033t≤≤两种情况,利用面积公式列出方程即可求解.【详解】(1)由直角坐标系可得:F坐标为:(3,4);故答案为:(3,4);(2)①要使AP所在直线垂直于x轴.如图1,只需要P x=A x,则t+3=3t,解得:32t =, 所以即32t =时,AP 所在直线垂直于x 轴;②由题意知,OH =7,所以当73t =时,点D 与点H 重合,所以要分以下两种情况讨论: 情况一:当713t ≤≤时, GD =3t ﹣3,PF =t ,PE =4﹣t ,∵S =S △APE ,∴BC ×GD =()12y y PE E A ⨯-, 即:2×(3t ﹣3)=()1422t -⨯, 解得:107t =; 情况二:当71033t ≤≤时,如图2, HD =3t ﹣7,PF =t ,PE =4﹣t ,∵S =S △APE ,∴BC ×CH =()12y y PE E A ⨯-, 即:2×[2﹣(3t ﹣7)]=()1422t -⨯, 解得:145t =, 综上所述,当t 为107或145时,S =S △APE . 【点睛】 本题考查了平面直角坐标系中点的移动,一元一次方程的应用等问题,理解题意,分类讨论是解题关键.2.如图,在下面直角坐标系中,已知()0,A a ,(),0B b ,(),C b c 三点,其中a ,b ,c 满足关系式()22340a b c ---=.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点1,2P m ⎛⎫ ⎪⎝⎭,请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.解析:(1)a=2,b=3,c=4;(2)S 四边形ABOP = 3-m ;(3)存在,P (-3,12). 【分析】(1)根据非负数的性质,即可解答;(2)四边形ABOP 的面积=△APO 的面积+△AOB 的面积,即可解答;(3)存在,根据面积相等求出m 的值,即可解答.【详解】解:(1)由已知()22340a b c ---=可得:a-2=0,b-3=0,c-4=0,解得:a=2,b=3,c=4;(2)∵a=2,b=3,c=4,∴A (0,2),B (3,0),C (3,4),∴OA=2,OB=3,∵S △ABO =12×2×3=3,S △APO =12×2×(-m )=-m ,∴S 四边形ABOP =S △ABO +S △APO =3+(-m )=3-m(3)存在,∵S △ABC =12×4×3=6,若S 四边形ABOP =S △ABC =3-m=6,则m=-3,∴存在点P (-3,12)使S 四边形ABOP =S △ABC . 【点睛】本题考查了坐标与图形性质,解决本题的关键是根据非负数的性质求出a ,b ,c . 3.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -+.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.解析:(1)(0,4)A ,0()6,B -; (2)4(0,)D -;(3)()8,8P --【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由ABO ACO BCO S S S ∆∆∆=+列方程组,求出点C 坐标,进而由△ACD 面积求出D 点坐标.(3)由平行线间距离相等得到20PAB EAB S S ∆∆==,继而求出E 点坐标,同理求出F 点坐标,再由GE=12求出G 点坐标,根据PGE OEF GPFO S S S ∆∆=+梯形求出PG 的长即可求P 点坐标.【详解】解:(1)40a -≥ 60b +, ∴460a b -+=,40a ∴-=60b +,4a ∴=,6b =-,()0,4A ∴,()6,0B -,(2)由BCM DOM S S ∆∆=∴ABO DOM S S ∆∆=,ABO ACD S S ∆∆∴=,1122ABO S AO BO ∆=⨯⨯=,如图1,连CO ,作CE y ⊥轴,CF x ⊥轴,ABO ACO BCO S S S ∆∆∆=+, 即()11641222m m ⨯⨯+⨯⨯-= 53212n m n m -=⎧∴⎨-=⎩, 32m n =-⎧∴⎨=⎩, ()3,2C ∴-,而12ACD S CE AD ∆=⨯⨯, ()134122OD =⨯⨯+=, 4OD ∴=,()0,4D ∴-,(3)如图2:∵EF ∥AB ,∴20PAB EAB S S ∆∆==,∴1202AO BE ⨯=,即()4640OE ⨯+=, 4OE ∴=,()4,0E ∴,12GE =,8GO ∴=,()8,0G ∴-,20ABF PBA S S ∆∆==,()11642022ABF S BO AF OF ∆∴=⨯⨯=⨯⨯+=, 83OF ∴=, 80,3F ⎛⎫∴- ⎪⎝⎭, PGE OEF GPFO S S S ∆∆=+梯形,11818128422323PG PG ⎛⎫∴⨯⨯=⨯+⨯+⨯⨯ ⎪⎝⎭, 8PG ∴=,()8,8P ∴--,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.4.如图,在平面直角坐标系中,已知△ABC,点A 的坐标是(4,0),点B 的坐标是(2,3),点C 在x 轴的负半轴上,且AC=6.(1)直接写出点C 的坐标.(2)在y 轴上是否存在点P ,使得S △POB =23S △ABC 若存在,求出点P 的坐标;若不存在,请说明理由.(3)把点C 往上平移3个单位得到点H ,作射线CH,连接BH ,点M 在射线CH 上运动(不与点C 、H 重合).试探究∠HBM ,∠BMA ,∠MAC 之间的数量关系,并证明你的结论.解析:(1)C(-2,0);(2)点P 坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM ,证明见解析.【分析】(1)由点A 坐标可得OA=4,再根据C 点x 轴负半轴上,AC=6即可求得答案;(2)先求出S △ABC =9,S △BOP =OP ,再根据S △POB =23S △ABC ,可得OP=6,即可写出点P 的坐标; (3)先得到点H 的坐标,再结合点B 的坐标可得到BH//AC ,然后根据点M 在射线CH 上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得.【详解】(1)∵A(4,0),∴OA=4,∵C点x轴负半轴上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=12×6×3=9,S△BOP=12OP×2=OP,又∵S△POB=23S△ABC,∴OP=23×9=6,∴点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明如下:∵把点C往上平移3个单位得到点H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如图1,当点M在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如图2,当点M在射线CH上但不在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;综上,∠BMA=∠MAC±∠HBM.【点睛】本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键.5.如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程22132a a+--=的解,且△OAB的面积为6.(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,△BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K,若PK=83,求t的值及△BPQ的面积.解析:(1)B(0,3);(2)S=()()2603263t tt t⎧-+⎪⎨-⎪⎩<<;>(3)4【分析】(1)解方程求出a的值,利用三角形的面积公式构建方程求出b的值即可解决问题;(2)分两种情形分别求解:当点P在线段OB上时,当点P在线段OB的延长线上时;(3)过点K作KH⊥OA用H.根据S△BPK+S△AKH=S△AOB-S长方形OPKH,构建方程求出t,即可解决问题;【详解】解:(1)∵221 32a a+--=,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴12•4•OB=6,∴OB=3,∴B(0,3).(2)当点P在线段OB上时,S=12•PQ•PB=12×4×(3-t)=-2t+6.当点P在线段OB的延长线上时,S=12•PQ•PB=12×4×(t-3)=2t-6.综上所述,S=()()2603 263t tt t⎧-+⎪⎨-⎪⎩<<>.(3)过点K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S长方形OPKH,∴12PK•BP+12AH•KH=6-PK•OP,∴12×83×(3-t)+12(4-83)•t=6-83•t,解得t=1,∴S△BPQ=-2t+6=4.【点睛】本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.6.已知A(0,a)、B(b,0),且5a-+(b﹣4)2=0.(1)直接写出点A、B的坐标;(2)点C为x轴负半轴上一点满足S△ABC=15.①如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标;②如图2,若点F(m,10)满足S△ACF=10,求m.(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值.解析:(1)A (0,5),B (4,0);(2)①E (0,﹣52);②﹣2或6;(3)24. 【分析】(1)根据二次根式和偶次幂的非负性得出a ,b 解答即可;(2)①根据三角形的面积公式得出点C 的坐标,根据平行线的性质解答即可;②延长CA 交直线l 于点H (a ,10),过点H 作HM ⊥x 轴于点M ,根据三角形面积公式解答即可;(3)平移GH 到DM ,连接HM ,根据三角形面积公式解答即可.【详解】解:(1)∵25(4)0a b -+-=,且50a -≥,(b ﹣4)2≥0,∴a ﹣5=0,b ﹣4=0,解得:a =5,b =4,∴A (0,5),B (4,0);(2)①连接BE ,如图1,∵111||515222ABC A S OA BC y BC BC ∆=⨯⨯=⨯⨯=⨯⨯=, ∴BC =6,∴C (﹣2,0),∵AB ∥CE ,∴S △ABC =S △ABE ,∴1141522ABE S AE OB AE ∆=⨯⨯=⨯=, ∴AE =152, ∴OE =52, ∴E (0,﹣52); ②∵F (m ,10),∴点F 在过点G (0,10)且平行于x 轴的直线l 上,延长CA 交直线l 于点H (a ,10),过点H 作HM ⊥x 轴于点M ,则M (a ,0),如图2, ∵S △HCM =S △ACO +S 梯形AOMH , ∴111(2)1025(510)222a a +⨯=⨯⨯+⨯+⋅, 解得:a =2,∴H (2,10),∵S △AFC =S △CFH ﹣S △AFH ,∴1(105)102FH ⋅-=, ∴FH =4,∵H (2,10),∴F (﹣2,10)或(6,10),∴m =﹣2或6;(3)平移GH 到DM ,连接HM ,则GD ∥HM ,GD =HM ,如图3,四边形BDHG 的面积=△BHM 的面积,当BH ⊥HM 时,△BHM 的面积最大,其最大值=1118624222BH HM BH GD ⋅=⋅=⨯⨯=. 【点睛】本题主要考查图形与坐标及平移的性质,熟练掌握图形与坐标及平移的性质是解题的关键.7.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.8.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.解析:(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122°【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠; (3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】 解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.理由如下:过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒,180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠=,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒, DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒,1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.9.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)解析:(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠,BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠,BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+. 答:BFD ∠的度数为1118022αβ︒-+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 10.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示).解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED =∠BET -∠DET =∠B -∠D .(3)如图,设∠ABE =∠EBM =x ,∠CDE =∠EDM =y ,∵AB ∥CD ,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m , ∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型.11.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒.(1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).解析:(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图, 由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠= ∴PND CDM DMQ α∠=∠=∠=, 又∵14CDM CDE ∠=∠,∴33,MDE CDM α∠=∠= ∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+= 又∵PN ∥AB , ∴4,PNB NBA α∠=∠=∵14ABN ABE ∠=∠,∴44416,ABM ABN αα∠=∠=⨯= 又∵AB ∥QM , ∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-. 【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.12.如图1,AB //CD ,点E 、F 分别在AB 、CD 上,点O 在直线AB 、CD 之间,且100EOF ∠=︒.(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53.【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即可得关于n 的方程,计算可求解n 值. 【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD , ∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,, ∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒, 即360BEO EOF DFO ∠+∠+∠=︒, ∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO , 设BEM OEM x CFN OFN y ∠=∠=∠=∠=,, ∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒, ∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD , ∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,, ∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠() x KMN HNM y =+∠-∠-=x -y =40°,EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD , ∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠, ∴KFD EHK AEG ∠=∠+∠, ∵50EHK NMF ENM ∠=∠-∠=︒, ∴50KFD AEG ∠=︒+∠, 即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠.∴1180180CFO DFK OFK KFD KFD n ∠=︒-∠-∠=︒-∠-∠ ,1AEO AEG OEG AEG AEG n ∠=∠+∠=∠+∠,∵260BEO DFO ∠+∠=︒, ∴100AEO CFO ∠+∠=︒,∴11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即(180)1KFD AEG n ⎛⎫⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫⎪⨯⎭︒︒⎝+=, 解得53n = . 经检验,符合题意, 故答案为:53.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 13.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 解析:(1)120°;(2)90°-12x °;(3)不变,12;(4)45° 【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN =180°-x °,根据角平分线的定义知∠ABP =2∠CBP 、∠PBN =2∠DBP ,可得2∠CBP +2∠DBP =180°-x °,即∠CBD =∠CBP +∠DBP =90°-12x °; (3)由AM ∥BN 得∠APB =∠PBN 、∠ADB =∠DBN ,根据BD 平分∠PBN 知∠PBN =2∠DBN ,从而可得∠APB :∠ADB =2:1;(4)由AM ∥BN 得∠ACB =∠CBN ,当∠ACB =∠ABD 时有∠CBN =∠ABD ,得∠ABC +∠CBD =∠CBD +∠DBN ,即∠ABC =∠DBN ,根据角平分线的定义可得∠ABP =∠PBN =12∠ABN =2∠DBN ,由平行线的性质可得12∠A +12∠ABN =90°,即可得出答案. 【详解】解:(1)∵AM ∥BN ,∠A =60°, ∴∠A +∠ABN =180°, ∴∠ABN =120°; (2)∵AM ∥BN , ∴∠ABN +∠A =180°, ∴∠ABN =180°-x °, ∴∠ABP +∠PBN =180°-x °, ∵BC 平分∠ABP ,BD 平分∠PBN , ∴∠ABP =2∠CBP ,∠PBN =2∠DBP , ∴2∠CBP +2∠DBP =180°-x °,∴∠CBD =∠CBP +∠DBP =12(180°-x °)=90°-12x °; (3)不变,∠ADB :∠APB =12. ∵AM ∥BN ,∴∠APB =∠PBN ,∠ADB =∠DBN ,∵BD 平分∠PBN , ∴∠PBN =2∠DBN , ∴∠APB :∠ADB =2:1, ∴∠ADB :∠APB =12; (4)∵AM ∥BN , ∴∠ACB =∠CBN ,当∠ACB =∠ABD 时,则有∠CBN =∠ABD , ∴∠ABC +∠CBD =∠CBD +∠DBN , ∴∠ABC =∠DBN ,∵BC 平分∠ABP ,BD 平分∠PBN , ∴∠ABP =2∠ABC ,∠PBN =2∠DBN , ∴∠ABP =∠PBN =2∠DBN =12∠ABN , ∵AM ∥BN , ∴∠A +∠ABN =180°, ∴12∠A +12∠ABN =90°, ∴12∠A +2∠DBN =90°,∴14∠A +∠DBN =12(12∠A +2∠DBN )=45°. 【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键. 14.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.解析:(1)90°;(2)∠PFC =∠PEA +∠P ;(3)∠G =12α 【分析】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN =∠PEA +∠FPE ,进而可得∠PFC =∠PEA +∠FPE ,即可求解;(3)令AB 与PF 交点为O ,连接EF ,根据三角形的内角和定理可得∠GEF +∠GFE =1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC =∠PEA +∠P , ∴∠PEA =∠PFC -α,∵∠OFE +∠OEF =180°-∠FOE =180°-∠PFC ,∴∠GEF +∠GFE =12(∠PFC −α)+12∠PFC +180°−∠PFC =180°−12α, ∴∠G =180°−(∠GEF +∠GFE )=180°−180°+12α=12α. 【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 15.已知A 、B 两点的坐标分别为()2,1A -,()4,1B --,将线段AB 水平向右平移到DC ,连接AD ,BC ,得四边形ABCD ,且12ABCD S =四边形.(1)点C 的坐标为______,点D 的坐标为______;(2)如图1,CG x ⊥轴于G ,CG 上有一动点Q ,连接BQ 、DQ ,求BQ DQ +最小时Q 点位置及其坐标,并说明理由;(3)如图2,E 为x 轴上一点,若DE 平分ADC ∠,且DE HC ⊥于E ,14ABH ABC ∠=∠.求BHC ∠与A ∠之间的数量关系.解析:(1)()2,1C -,()4,1D ;(2)12,2Q ⎛⎫⎪⎝⎭,理由见解析;(3)4180BHC A ∠-∠=︒【分析】(1)根据已知条件求出AD 和BC 的长度,即可得到D 、C 的坐标; (2)连接BD 与直线CG 相交,其交点Q 即为所求,然后根据BNDBQCQCND S SS =+梯形求出QC 、QG 后即可得到Q 点坐标;(3)过H 作HF ∥AB ,过C 作CM ∥ED ,则根据已知条件、平行线的性质和角的有关知识可以得到4180BHC A ∠-∠=︒ . 【详解】(1)解:由题意可得四边形ABCD 是平行四边形,且AD 与BC 间距离为1-(-1)=2, ∴平行四边形ABCD 的高为2, ∴AD=BC=S 四边形ABCD ÷2=12÷2=6,∴C 点坐标为(-4+6,-1)即(2,-1),D 点坐标为(-2+6,1)即(4,1); (2)解:如图,连接BD 交CG 于Q ,∵BQ DQ BD +=,∴此时BQ DQ +最小(两点之间,线段最短), 过D 作DN BC ⊥于N ,∵()4,1B --,()2,1C -,()4,1D , ∴2DN =,6BC =,2CN =, 设QC a =,∴8BND S =△,3BQC S a =△,2QCND S a =+梯形, 又∵BNDBQCQCND SSS =+梯形,∴()832a a =++, ∴32a =, ∴31122QG a GC =-=-=, ∴12,2Q ⎛⎫⎪⎝⎭.(3)∵//AD BC ,//AB DC ,∴180A ABC ∠+∠=︒,180A ADC ∠+∠=︒, ∴ABC ADC ∠=∠.∵DE 平分ADC ∠,∴12ADE CDE ADC ∠=∠=∠.又∵14ABH ABC ∠=∠,设ABH x ∠=︒,则4ABC ADC x ∠=∠=︒, ∴()1804A x ∠=-︒,2ADE CDE x ∠=∠=︒, 过H 作//FH AB ,又∵//AB DC ,∴//FH DC ,∴////FH AB DC ,∴ABH BHF x ∠=∠=︒. 过C 作//CM DE ,∴HED HCM ∠=∠,2EDC DCM x ∠=∠=︒. ∵DE HC ⊥于E ,∴90HED HCM ∠=∠=︒, ∴()902HCD HCM DCM x ∠=∠-∠=-︒,∴()()90290BHC BHF FHC x x x ∠=∠+∠=+-︒=-︒, 又∵()1804A x ∠=-︒, ∴4180BHC A ∠-∠=︒. 【点睛】本题考查平行线的综合应用,熟练掌握平行线的判定与性质、平移坐标变换规律、两点之间线段最短的性质、角的有关知识和运算是解题关键 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年安徽省滁州市全椒县七年级(下)期末数学试卷一、选择题(每小题4分,共40分)1.(4分)实数、﹣、0.1010010001、、π、中,无理数的个数是()A.1 B.2 C.3 D.42.(4分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.(4分)若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.﹣a<﹣b C.﹣2a>﹣2b D.a<b4.(4分)计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a45.(4分)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n26.(4分)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个7.(4分)若a2=9,=﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.±5或±118.(4分)把分式中的x和y都扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍9.(4分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2 D.4ab10.(4分)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0二、填空题(每小题5分,共20分)11.(5分)分解因式:4a2﹣25b2=.12.(5分)分式的值为0,那么x的值为.13.(5分)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为°.14.(5分)若关于x的分式方程+=1有增根,则m=.三、解答题(每小题8分,共16分)15.(8分)解不等式组:.16.(8分)解分式方程:.四、(每小题8分,共16分)17.(8分)先化简,再求值:(a+1)2﹣(a+3)(a﹣3),其中a=﹣3.18.(8分)如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)三角形A1B1C1的面积为.五、(每小题10分,共20分)19.(10分)已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.20.(10分)2017年,长清区政府提出了倡导绿色出行的口号,为了响应区政府的号召,杨老师上班由驾车改为骑自行车.已知杨老师家距离学校10千米,他驾车速度是骑自行车速度的4倍,他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟.那么杨老师骑自行车平均每小时行驶多少千米?21.(12分)某超市规定:凡一次购买大米160kg以上可以按原价打折出售,购买160kg(包括160kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要600元;若多买40kg,则按打折价格付款,恰巧需要也是600元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?22.(12分)用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料原料维生素C含量(单位/千克)50080原料价格(元/千克)164现配制这种饮料10千克,要求至少含有2900单位的维生素C,且费用不超过136元,试写出所需甲种原料的质量x(kg)应满足的不等式,并求出x的范围.23.(14分)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠B的度数.2016-2017学年安徽省滁州市全椒县七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)实数、﹣、0.1010010001、、π、中,无理数的个数是()A.1 B.2 C.3 D.4【解答】解:﹣、0.1010010001、是有理数,、、π是无理数,故选:C.2.(4分)估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵2<<3,∴3<+1<4,即+1在3和4之间,故选:B.3.(4分)若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.﹣a<﹣b C.﹣2a>﹣2b D.a<b【解答】解:A、两边都减3,不等号的方向不变,故A不符合题意;B、两边都乘以﹣1,不等号的方向改变,故B符合题意;C、两边都乘以﹣2,不等号的方向改变,故C不符合题意;D、两边都除以3,不等号的方向不变,故D不符合题意;故选:B.4.(4分)计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a4【解答】解:(﹣3a2)2=32a4=9a4.故选:C.5.(4分)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n2【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.6.(4分)不等式4﹣x≤2(3﹣x)的正整数解有()A.1个 B.2个 C.3个 D.无数个【解答】解:去括号得:4﹣x≤6﹣2x,移项得:﹣x+2x≤6﹣4,合并同类项得:x≤2,∴不等式的正整数解是:2、1,故选:B.7.(4分)若a2=9,=﹣2,则a+b=()A.﹣5 B.﹣11 C.﹣5或﹣11 D.±5或±11【解答】解:∵a2=9,=﹣2,∴a=3或﹣3,b=﹣8,则a+b=﹣5或﹣11,故选:C.8.(4分)把分式中的x和y都扩大3倍,分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍【解答】解:分别用3x和3y去代换原分式中的x和y,得==3×,故选:B.9.(4分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2 D.4ab【解答】解:12ab3c+8a3b=4ab(3b2+2a2),4ab是公因式,故选:D.10.(4分)若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0 D.q+2p=0【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.二、填空题(每小题5分,共20分)11.(5分)分解因式:4a2﹣25b2=(2a+5b)(2a﹣5b).【解答】解:原式=(2a+5b)(2a﹣5b),故答案为:(2a+5b)(2a﹣5b)12.(5分)分式的值为0,那么x的值为3.【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.13.(5分)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为135°.【解答】解:∵∠1=45°,∴∠3=90°﹣∠1=90°﹣45°=45°,∴∠4=180°﹣45°=135°,∵直尺的两边互相平行,∴∠2=∠4=135°.故答案为:135.14.(5分)若关于x的分式方程+=1有增根,则m=2.【解答】解:∵关于x的分式方程+=1有增根,∴x﹣1=0,解得:x=1,方程+=1去分母得:3x﹣1﹣m=x﹣1①,把x=1代入方程①得:3﹣1﹣m=1﹣1,解得:m=2,故答案为:2.三、解答题(每小题8分,共16分)15.(8分)解不等式组:.【解答】解:,由①得,x>﹣1,由②得,x≤2,所以,原不等式组的解集是﹣1<x≤2.16.(8分)解分式方程:.【解答】解:方程两边同乘以2(3x﹣1),去分母,得:﹣2﹣3(3x﹣1)=4,解这个整式方程,得x=﹣,检验:把x=﹣代入最简公分母2(3x﹣1)=2(﹣1﹣1)=﹣4≠0,∴原方程的解是x=﹣(6分)四、(每小题8分,共16分)17.(8分)先化简,再求值:(a+1)2﹣(a+3)(a﹣3),其中a=﹣3.【解答】解:原式=a2+2a+1﹣a2+9=2a+10,当a=﹣3时,原式=﹣6+10=4.18.(8分)如图:在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1.(2)三角形A1B1C1的面积为.【解答】解:(1)如图所示;(2)S=×3×3=.△A1B1C1故答案为:.五、(每小题10分,共20分)19.(10分)已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.20.(10分)2017年,长清区政府提出了倡导绿色出行的口号,为了响应区政府的号召,杨老师上班由驾车改为骑自行车.已知杨老师家距离学校10千米,他驾车速度是骑自行车速度的4倍,他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟.那么杨老师骑自行车平均每小时行驶多少千米?【解答】解:设杨老师骑自行车平均每小时行驶x千米,则驾车每小时行驶4x 千米,由题意得﹣=,解得x=15.经检验x=15是原方程的解且符合题意.答:杨老师骑自行车平均每小时行驶15千米.21.(12分)某超市规定:凡一次购买大米160kg以上可以按原价打折出售,购买160kg(包括160kg)以下只能按原价出售.小明家到超市买大米,原计划买的大米,只能按原价付款,需要600元;若多买40kg,则按打折价格付款,恰巧需要也是600元.(1)求小明家原计划购买大米数量x(千克)的范围;(2)若按原价购买4kg与打折价购买5kg的款相同,那么原计划小明家购买多少大米?【解答】解:(1)由题意可得:120<x≤160,即小明家原计划购买大米的数量范围是120<x≤160;(2)设小明家原来准备买大米x千克,原价为元,折扣价为元.据题意列方程为:4×=5×,解得:x=160,经检验x=160是方程的解;答:小明家原来准备买160千克大米.22.(12分)用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:原料甲种原料乙种原料原料维生素C含量(单位/千克)50080原料价格(元/千克)164现配制这种饮料10千克,要求至少含有2900单位的维生素C,且费用不超过136元,试写出所需甲种原料的质量x(kg)应满足的不等式,并求出x的范围.【解答】解:设所需甲种原料的质量xkg,由题意得:,解得:5<x≤8,答:x的范围是5<x≤8.23.(14分)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠B的度数.【解答】证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF +BF 的最小值为_________。