2016届高考数学大一轮复习第二章函数与基本初等函数Ⅰ知识网络

合集下载

高考数学一轮复习 第二章 函数概念与基本初等函数I 2.

高考数学一轮复习 第二章 函数概念与基本初等函数I 2.
f(3)=ln 3-121>0, ∴x0∈(2,3).
解析答案
命题点2 函数零点个数的判断
例 2 (1)函数 f(x)=x22x--26,+xl≤n x0,,x>0 的零点个数是_2__. 解析 当 x≤0 时,令 x2-2=0,解得 x=- 2(正根舍去),
所以在(-∞,0]上有一个零点. 当 x>0 时,f′(x)=2+1x>0 恒成立, 所以f(x)在(0,+∞)上是增函数. 又因为f(2)=-2+ln 2<0,f(3)=ln 3>0, 所以f(x)在(0,+∞)上有一个零点, 综上,函数f(x)的零点个数为2.
①(0,1)
②(1,2)
③(2,4)
④(4,+∞)
解析 因为 f(1)=6-log21=6>0,f(2)=3-log22=2>0,f(4) =32-log24=-12<0, 所以函数f(x)的零点所在区间为(2,4).
解析答案
(2)函数
f

x
=x
12-
1 2

x
的零点个数为____.
解析答案
(2)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x, 则函数y=f(x)-log3|x|的零点个数是_4__. 解析 由题意知,f(x)是周期为2的偶函数. 在同一坐标系内作出函数y=f(x)及y=log3|x|的图象,如图: 观察图象可以发现它们有4个交点, 即函数y=f(x)-log3|x|有4个零点.
解析答案
题型二 函数零点的应用
(5)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有
且只有一个零点.( √ )

高考数学一轮总复习 第2章 函数的概念与基本初等函数 第二节 函数的基本性质课件(理)

高考数学一轮总复习 第2章 函数的概念与基本初等函数 第二节 函数的基本性质课件(理)

奇偶性
定义
图象特点
如果对于函数f(x)的定义域内任意一个x, 偶函数 都有 f(-x)=f(x) ,那么函数f(x)是偶 关于
y轴


函数
奇函数
如果对于函数f(x)的定义域内任意一个x, 都有 f(-x)=-f(x) ,那么函数f(x)是奇 关于
原点


函数
2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使 得当x取定义域内的任何值时,都有f(x+T)= f(x) ,那么就 称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最 小的正数,那么这个 最小 正数就叫做f(x)的最小正周期.
数f(x)在区间D上是减函数
(2)单调性、单调区间的定义 若函数f(x)在区间D上是增函数或 减函数 ,则称函数f(x)在这 一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间. 2.函数的最值
前提 设函数y=f(x)的定义域为I,如果存在实数M满足
条件
对于任意x∈I,都有 f(x)≤M ;
2
减函数,故 f(x)的单调递增区间为(-∞,-1).故选 C.
答案 C [点评] 判断函数的单调性,应首先求出函数的定义域,在定
义域内求解.
函数的奇偶性解题方略 奇偶性的判断 (1)定义法
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)[函数的单调递增(减)区间有多个时,不能用并集表示,:可
以 用 逗 号 或 “ 和 ”] 函 数
f(x)
=xBiblioteka +1 x的



高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)

高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)

热点探究课(一) 函数的图象与性质[命题解读] 函数是中学数学的核心概念,函数的图象与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以填空题为主,既重视三基,又注重思想方法的考查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数与方程思想、数形结合思想、分类讨论思想的应用意识.热点1 函数图象的应用利用函数图象研究方程的解、不等式的解集等是高考的热点,多以填空题的形式出现,属中档题目,主要考查学生的数形结合意识以及用图象解答问题的能力.已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cos πx ,x ∈⎣⎢⎡⎦⎥⎤0,12,2x -1,x ∈⎝ ⎛⎭⎪⎫12,+∞,则不等式f (x -1)≤12的解集为________. 【导学号:62172064】⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74 [画出函数f (x )的图象,如图,当0≤x ≤12时,令f (x )=cos πx ≤12,解得13≤x ≤12;当x >12时,令f (x )=2x -1≤12,解得12<x ≤34,故有13≤x ≤34.因为f (x )是偶函数,所以f (x )≤12的解集为⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34,故f (x -1)≤12的解集为⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74.][迁移探究1] 在本例条件下,若关于x 的方程f (x )=k 有2个不同的实数解,求实数k 的取值范围.[解] 由函数f (x )的图象(图略)可知,当k =0或k >1时,方程f (x )=k 有2个不同的实数解,即实数k 的取值范围是k =0或k >1.[迁移探究2] 在本例条件下,若函数y =f (x )-k |x |恰有两个零点,求实数k 的取值范围.[解] 函数y =f (x )-k |x |恰有两个零点,即函数y =f (x )的图象与y =k |x |的图象恰有两个交点,借助函数图象(图略)可知k ≥2或k =0,即实数k 的取值范围为k =0或k ≥2.[规律方法] 1.利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.2.有关方程解的个数问题常常转化为两个熟悉的函数图象的交点个数;利用此法也可由解的个数求参数值或范围.3.有关不等式的问题常常转化为两个函数图象的上、下关系来解. [对点训练1] (2017·镇江期中)已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2,x +22x,x ≥2,若0<a <b <c ,满足f (a )=f (b )=f (c ),则abf c的范围是________.(1,2) [如图所示,∵0<a <b <c ,且f (a )=f (b )=f (c ), ∴-log 2a =log 2b ,即ab =1, 又由图可知12<f (c )<1,故1<1f c<2,∴ab f c =1f c∈(1,2).] 热点2 函数性质的综合应用对函数性质的考查,以单调性、奇偶性和周期性为主,同时融合函数的零点问题,重在考查学生的等价转化能力及数形结合意识,难度中等.熟练掌握上述性质是解此类题的关键. ☞角度1 单调性与奇偶性结合(2016·天津高考改编)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.⎝ ⎛⎭⎪⎫12,32 [因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32.]☞角度2 奇偶性与周期性结合(2017·南通二模)已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2-x-1|,则函数y=f(x)-1在区间[-2,4]上的零点个数为________.7[由f(x+2)=f(x)可知,f(x)在[0,+∞)上是周期为2的函数,又x∈[0,2)时,f(x)=|x2-x-1|,且f(x)为偶函数,故f(x)在[-2,4]上的图象如图所示.由图可知y=f(x)与y=1有7个交点,故函数y=f(x)-1在区间[-2,4]上有7个零点.]☞角度3 单调性、奇偶性与周期性结合已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25),f(11),f(80)的大小关系为________.f(-25)<f(80)<f(11) [因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,所以f(x)在区间[-2,2]上是增函数,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).][规律方法]函数性质综合应用问题的常见类型及解题方法(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.热点3 函数图象与性质的综合应用函数的零点、方程的根和函数图象的交点横坐标之间的等价转化思想和数形结合思想是解答此类问题的关键所在.因此在处理此类问题时,务必要结合题设信息实现知识转化.以填空题压轴题据多,求解时务必细心.(2015·江苏高考)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为______.4 [令h (x )=f (x )+g (x ), 则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.][规律方法] 解决分段函数与函数零点的综合问题的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式求解零点,注意取值范围内的大前提,以及函数性质和数形结合在判断零点个数时的强大功能.[对点训练2] 已知函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围是________.【导学号:62172065】(-∞,1) [函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -1,x >0的图象如图所示,当a <1时,函数y =f (x )的图象与函数f (x )=x +a 的图象有两个交点,即方程f (x )=x +a 有且只有两个不相等的实数根.]热点探究训练(一)A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017·镇江期中)函数f (x )=12-lg x 的定义域是________. (0,10] [由12-lg x ≥0得lg x ≤12,即0<x ≤10.]2.(2017·常州期末)函数f (x )=log 2(-x 2+22)的值域为________.【导学号:62172066】⎝⎛⎦⎥⎤-∞,32 [∵-x 2+22≤22,且y =log 2x 在(0,22]上单调递增,故log 2x ≤log 222=log 2232=32.]3.(2017·如皋中学高三第一次月考)若函数f (x )=x 2e x +me x-1(e 为自然对数的底数)是奇函数,则实数m 的值为________.1 [由f (-x )=-f (x )得x 2e -x +me -x-1=-x 2e x +me x-1,即1+m e x=e x+m ,故m =1.]4.若函数f (x )=a sin 2x +b tan x +1,且f (-3)=5,则f (π+3)=________.【导学号:62172067】-3 [令g (x )=a sin 2x +b tan x ,则g (x )是奇函数,且最小正周期是π,由f (-3)=g (-3)+1=5,得g (-3)=4,则g (3)=-g (-3)=-4,则f (π+3)=g (π+3)+1=g (3)+1=-4+1=-3.]5.已知函数f (x )是(-∞,+∞)上的奇函数,当x ∈[0,2)时,f (x )=x 2,若对于任意x ∈R ,都有f (x +4)=f (x ),则f (2)-f (3)的值为________.1 [由题意得f (2)=f (-2+4)=f (-2)=-f (2), ∴f (2)=0.∵f (3)=f (-1+4)=f (-1)=-f (1)=-1, ∴f (2)-f (3)=1.]6.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是________.[-1,2) [由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a .因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解.由x =2,得a <2. 由x 2+3x +2=0,得x =-1或x =-2, 由x ≤a ,得a ≥-1.综上,a 的取值范围为[-1,2).]7.(2017·南通第一次学情检测)已知f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=2x-2,则不等式f (x -1)≤6的解集是________. 【导学号:62172068】[-2,4] [∵f (x )为R 上的偶函数, ∴当x <0时,-x >0, ∴f (-x )=2-x-2, 即f (x )=2-x -2. ∵f (x -1)≤6,∴当x -1≥0,即x ≥1时, 2x -1-2≤6,解得1≤x ≤4; 当x -1<0,即x <1时,21-x-2≤6,解得-2≤x <1.综上可知,f (x -1)≤6的解集为[-2,4].]8.已知函数f (x ),g (x )分别是定义在R 上的偶函数与奇函数,且g (x )=f (x -1),则f (2 019)的值为________.0 [g (-x )=f (-x -1),由f (x ),g (x )分别是偶函数与奇函数,得g (x )=-f (x +1),∴f (x -1)=-f (x +1),即f (x +2)=-f (x ),∴f (x +4)=f (x ),故函数f (x )是以4为周期的周期函数,则f (2 019)=f (505×4-1)=f (-1)=g (0)=0.]9.已知函数y =f (x +2)的图象关于直线x =-2对称,且当x ∈(0,+∞)时,f (x )=|log 2x |,若a =f (-3),b =f ⎝ ⎛⎭⎪⎫14,c =f (2),则a ,b ,c 的大小关系是________. b >a >c [由函数y =f (x +2)的图象关于直线x =-2对称,得函数y =f (x )的图象关于y 轴对称,即y =f (x )是偶函数.当x ∈(0,1)时,f (x )=f ⎝ ⎛⎭⎪⎫1x=|log 2x |,且x ∈[1,+∞)时,f (x )=log 2x 单调递增,又a =f (-3)=f (3),b =f ⎝ ⎛⎭⎪⎫14=f (4),所以b >a >c .] 10.(2017·南京一模)设f (x )是定义在R 上的奇函数,且f (x )=2x+m2x ,设g (x )=⎩⎪⎨⎪⎧f x ,x >1,f -x ,x ≤1,若函数y =g (x )-t 有且只有一个零点,则实数t 的取值范围是________.⎣⎢⎡⎦⎥⎤-32,32 [由f (x )为R 上的奇函数可知,f (0)=0,即1+m =0,m =-1,∴f (x )=2x-12x ,∴g (x )=⎩⎪⎨⎪⎧2x-12x ,x >1,12x-2x,x ≤1.又当x >1时,g (x )为增函数, ∴g (x )>g (1)=2-12=32,当x ≤1时,g (x )为减函数, ∴g (x )≥g (1)=-⎝ ⎛⎭⎪⎫2-12=-32. 要使g (x )-t =0有且只有一解,即函数y =g (x )与y =t 的图象只有一个交点(图略),故-32≤t ≤32.]二、解答题11.(2017·镇江期中)已知函数f (x )=log 2x4log 22x .(1)解不等式f (x )>0;(2)当x ∈[1,4]时,求f (x )的值域.[解] (1)函数f (x )=log 2x4·log 22x =(log 2x -log 24)(log 22+log 2x )=(log 2x )2-log 2x -2,x ∈(0,+∞). 令f (x )=(log 2x )2-log 2x -2>0, 则log 2x >2或log 2x <-1,故x >4或0<x <12.(2)若x ∈[1,4],则0≤log 2x ≤2,f (x )=(log 2x )2-log 2x -2=⎝⎛⎭⎪⎫log 2x -122-94,当log 2x =12即x =2时,f (x )min =-94;当log 2x =2即x =4时,f (x )max =0.故f (x )值域为⎣⎢⎡⎦⎥⎤-94,0. 12.(2017·启东中学高三第一次月考)已知函数f (x )=-2x+m2x +1+n (其中m ,n 为参数).(1)当m =n =1时,证明:f (x )不是奇函数; (2)如果f (x )是奇函数,求实数m ,n 的值;(3)已知m >0,n >0,在(2)的条件下,求不等式f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0的解集. [解] 证明:(1)f (x )=-2x+12x +1+1,∴f (1)=-2+122+1=-15,f (-1)=-12+12=14,∵f (-1)≠-f (1),∴f (x )不是奇函数. (2)由f (x )是奇函数得f (-x )=-f (x ),即-2-x+m 2-x +1+n =--2x+m2x +1+n 对定义域内任意实数x 都成立,化简整理得关于x 的恒等式(2m -n )·22x+(2mn -4)·2x+(2m -n )=0,∴⎩⎪⎨⎪⎧2m -n =0,2mn -4=0,即⎩⎪⎨⎪⎧m =-1,n =-2或⎩⎪⎨⎪⎧m =1,n =2.(3)由题意得m =1,n =2,∴f (x )=-2x+12x +1+2=12⎝ ⎛⎭⎪⎫-1+22x +1,易判断f (x )在R 上递减,∵f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0, ∴f (f (x ))<-f ⎝ ⎛⎭⎪⎫14=f ⎝ ⎛⎭⎪⎫-14,∴f (x )>-14,∴2x<3,∴x <log 23,即所求不等式的解集为(-∞,log 23).B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f ln x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为________.⎝ ⎛⎭⎪⎫1e ,e [f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),所以⎪⎪⎪⎪⎪⎪f ln x -f ⎝ ⎛⎭⎪⎫ln 1x 2=|fln x +f ln x|2=|f (ln x )|,即原不等式可化为|f (lnx )|<f (1),所以-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,所以-1<ln x <1,解得1e<x <e.]2.(2017·泰州中学高三摸底考试)对于函数y =f (x ),若存在区间[a ,b ],当x ∈[a ,b ]时的值域为[ka ,kb ](k >0),则称y =f (x )为k 倍值函数.若f (x )=ln x +x 是k 倍值函数,则实数k 的取值范围是________.⎝⎛⎭⎪⎫1,1+1e [由题意得lnx +x =kx 有两个不同的解,k =ln x x +1,则k ′=1-ln x x 2=0⇒x =e ,因此当0<x <e 时,k ∈⎝ ⎛⎭⎪⎫-∞,1+1e ,当x >e 时,k ∈⎝ ⎛⎭⎪⎫1,1+1e ,从而要使ln x+x =kx 有两个不同的解,需k ∈⎝⎛⎭⎪⎫1,1+1e .] 3.函数f (x )=m +log a x (a >0且a ≠1)的图象过点(8,2)和(1,-1). (1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值.[解] (1)由⎩⎪⎨⎪⎧f8=2,f1=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x . (2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)] =log 2x 2x -1-1(x >1).∵x 2x -1=x -12+2x -1+1x -1=(x -1)+1x -1+2≥2x -1·1x -1+2=4.当且仅当x -1=1x -1,即x =2时,等号成立. 而函数y =log 2x 在(0,+∞)上单调递增, 则log 2x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1. 4.已知函数f (x )=x 2-1,g (x )=a |x -1|.(1)若当x ∈R 时,不等式f (x )≥g (x )恒成立,求实数a 的取值范围; (2)求函数h (x )=|f (x )|+g (x )在区间[0,2]上的最大值.[解] (1)不等式f (x )≥g (x )对x ∈R 恒成立,即x 2-1≥a |x -1|(*)对x ∈R 恒成立. ①当x =1时,(*)显然成立,此时a ∈R ;②当x ≠1时,(*)可变形为a ≤x 2-1|x -1|,令φ(x )=x 2-1|x -1|=⎩⎪⎨⎪⎧x +1,x >1,-x +1,x <1.因为当x >1时,φ(x )>2,当x <1时,φ(x )>-2, 所以φ(x )>-2,故此时a ≤-2.综合①②,得所求实数a 的取值范围是(-∞,-2]. (2)h (x )=⎩⎪⎨⎪⎧-x 2-ax +a +1,0≤x <1,0,x =1,x 2+ax -a -1,1<x ≤2.①当-a2≤0,即a ≥0时, (-x 2-ax +a +1)max =h (0)=a +1, (x 2+ax -a -1)max =h (2)=a +3. 此时,h (x )max =a +3. ②当0<-a2≤1,即-2≤a <0时,(-x 2-ax +a +1)max=h ⎝ ⎛⎭⎪⎫-a 2=a 24+a +1,(x 2+ax -a -1)max =h (2)=a +3.此时h (x )max =a +3. ③当1<-a2≤2,即-4≤a <-2时,(-x 2-ax +a +1)max =h (1)=0,(x 2+ax -a -1)max =max{h (1),h (2)}=max{0,3+a }=⎩⎪⎨⎪⎧0,-4≤a <-3,3+a ,-3≤a <-2.此时h (x )max =⎩⎪⎨⎪⎧0,-4≤a <-3,3+a ,-3≤a <-2.④当-a2>2,即a <-4时,(-x 2-ax +a +1)max =h (1)=0, (x 2+ax -a -1)max =h (1)=0. 此时h (x )max =0.11 综上:h (x )max =⎩⎪⎨⎪⎧ 3+a ,a ≥-3,0,a <-3.。

高三大一轮复习数学(文)课件第二章 函数概念与基本初等函数Ⅰ 2.9ppt版本

高三大一轮复习数学(文)课件第二章 函数概念与基本初等函数Ⅰ 2.9ppt版本

B.y=x2-1
C.y=2x-2
D.y=log2x
解析:选 D.根据 x=0.50,y=-0.99,代入计算,可以排除 A; 根据 x=2.01,y=0.98,代入计算,可以排除 B,C;将各数据代 入函数 y=log2x,可知满足题意.故选 D.
2.(2016·高考四川卷)某公司为激励创新,计划逐年加大研发
解析:选 D.根据图像知,消耗 1 升汽油,乙车最多行驶的里 程大于 5 千米,故选项 A 错;以相同速度行驶时,甲车燃烧效率 最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故 选项 B 错;甲车以 80 千米/小时的速度行驶时燃油效率为 10 千米 /升,行驶 1 小时,里程为 80 千米,消耗 8 升汽油,故选项 C 错; 最高限速 80 千米/小时,丙车的燃油效率比乙车高,因此相同条件 下,在该市用丙车比用乙车更省油,故选项 D 对.
() A.10.5 万元
B.11 万元
C.43 万元
D.43.025 万元
解析 设公司在 A 地销售该品牌的汽车 x 辆,则在 B 地销售 该品牌的汽车(16-x)辆,所以可得利润 y=4.1x-0.1x2+2(16-x) =-0.1x2+2.1x+32=-0.1x-2212+0.1×2412+32.
5.(2017·江西上饶模拟)一水池有 2 个进水口,1 个出水口, 两个进水口的进水速度如图甲、乙所示,出水口的排水速度如图 丙所示,某天 0 点到 6 点,该 个论断:①0 点到 3 点只进水不出水;②3 点到 4 点不进水只出水;③4 点到 6 点不进水不出水.则一定正确的论断 序号是________.
[方法引航] 求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.

高考数学大一轮复习第二章函数概念与基本初等函数I2.1函数及其表示课件

高考数学大一轮复习第二章函数概念与基本初等函数I2.1函数及其表示课件

C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
A中两个函数的定义域不同; B中y=x0的x不能取0; C中两函数的对应关系不同.故选D.
题型二 函数的定义域问题
命题点1 求函数的定义域
例2 (2016·临安中学一模)(1)函数f(x)=
答案
解析
1-2x+
思维升华
函数的值域可由定义域和对应关系唯一确定,当且仅当定义域和对应 关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就 结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义 域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数 值是否相同).
跟踪训练1 (1)下列所给图象中函数图象的个数为 答案 解析
答案
解析
由函数y=f(x+1)的定义域为[0,2], 得函数y=f(x)的定义域为[1,3], 令1x-≤12≠x≤03,, 得12≤x≤32且 x≠1, ∴g(x)的定义域为[12,1)∪(1,32].
命题点2 已知函数的定义域求参数范围 例3 (1)若函数f(x)= 2x22axa 的1 定 义 域 为 R , 则 a 的 取 值 范 围 为 _[_-__1_,0_]__. 答案 解析
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f:A→B,其值域是集合B.( ×) (2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ×) (3)映射是特殊的函数.( × ) (4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( ×) (5)分段函数是由两个或几个函数组成的.( ×)
令1x=t(t≠0),则 f(t)=t12+51t =5t+t2 1, 5x+1

高考数学大一轮复习第2章函数的概念与基本初等函数Ⅰ第1讲函数及其表示课件理

高考数学大一轮复习第2章函数的概念与基本初等函数Ⅰ第1讲函数及其表示课件理

理科数学 第二章:函数的概念与基本初等函数Ⅰ
C方法帮∙素养大提升
方法 分类讨论思想在函数中的应用
方法 分类讨论思想在函数中的应用
理科数学 第二章:函数概念与基本初等函数Ⅰ
素养提升 当自变量不确定时,要根据定义域分成的不同子集进行分类讨论.
理科数学 第二章:函数概念与基本初等函数Ⅰ
叫作函数值,函数值的集合{f(x)|x∈A}叫作值域. 定义域、对应关系、值域是构成函数的三要素.
说明 若两个函数的定义域相同,并且对应关系完全一致,则这两个函数 是相同函数.
理科数学 第二章:函数的概念与基本初等函数Ⅰ
3.函数的表示法 函数的表示法有三种,分别为解析法、列表法和图象法.
注意 函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用 这个特征可以判断一个图形能否作为一个函数的图象.
注意 (1)函数f(g(x))的定义域指的是x的取值范围,而不是g(x)的取值 范围; (2)求函数的定义域时,对函数解析式先不要化简; (3)求出函数的定义域后,一定要将其写成集合或区间的形式;
归纳总结 y=f(x)的定义域的类型及方法
理科数学 第二章:函数概念与基本初等函数Ⅰ
注意 (1)分式中,分母不为0; (2)偶次方根中,被开方数非负;
示例3 已知二次函数f(2x+1)=4x2-6x+5,则f(x)=
.
思维导引 已知复合函数f(g(x))求f(x),可用换元法或配凑法求解.由于f(x)
是二次函数,也可采用待定系数法求解.
理科数学 第二章:函数概念与基本初等函数Ⅰ
理科数学 第二章:函数概念与基本初等函数Ⅰ
方法总结
理科数学 第二章:函数概念与基本初等函数Ⅰ
考点2 分段函数(重点)

高考数学一轮复习 第二章 函数的概念、基本初等函数(Ⅰ)及函数的应用 2.2 函数的单调性与最大(小

第二章 函数的概念、基本初等函数(Ⅰ)及函数的应用
§2.2 函数的单调性与 最大(小)值
1.函数的单调性
(1)增函数与减函数
一般地,设函数 f(x)的定义域为 I:
①如果对于定义域 I 内某个区间 D 上的
自变量的值 x1,x2,当
x1<x2 时,都有 f(x1)<f(x2),那么就说函数 f(x)在区间 D 上是
上是增函数.
解法二:求导可得 f′(x)=1-xa2. 令 f′(x)>0,则 1-xa2>0,解得 x> a或 x<- a(舍). 令 f′(x)≤0,则 1-xa2≤0,解得- a≤x≤ a. ∵x>0,∴0<x≤ a. ∴f(x)在(0, a]上是减函数;在( a,+∞)上是增函数.
【点拨】求函数的单调区间和判断函数的单调性方法一 致.通常有以下几种方法:(1)复合函数法:f(g(x))的单调性遵 循“同增异减”的原则;(2)定义法:先求定义域,再利用单调 性定义求解;(3)图象法:可由函数图象的直观性写出它的单调 区间;(4)导数法:利用导数取值的正负确定函数的单调区间.特 别注意:单调区间必为定义域的子集.

②如果对于定义域 I 内某个区间 D 上的
自变量的值 x1,x2,当
x1<x2 时,都有 f(x1)>f(x2),那么就说函数 f(x)在区间 D 上是

(2)单调性与单调区间
如果函数 y=f(x)在区间 D 上是增函数或减函数,那么就说函数 y=f(x)
在这一区间具有(严格的)
,区间 D 叫做 y=f(x)的
=f(x)在(-∞,-2)上单调递增.故填(-∞,-2).
设 a 为常数,函数 f(x)=x2-4x+3.若
f(x+a)在[0,+∞)上是增函数,则 a 的取值范围是

全国版版高考数学大一轮备考复习第2章函数概念与基本初等函数Ⅰ第1讲函数及其表示课件文


.
1
1
解析(1)由-1≤1-2x≤2,得- ≤x≤1,所以函数f(1-2x)的定义域为[- ,1].
2
2
(2)因为函数f(1-2x)的定义域为[-1,2],所以-1≤x≤2,所以-3≤1-2x≤3.
所以函数f(x)的定义域为[-3,3].
考法1 求函数的定义域
(3)因为函数f(2x)的定义域为[-1,1],
考法1 求函数的定义域
log 1 (2−) > 0, 0 < 2− < 1, 1 < < 2,
3
3
解析(1)要使函数有意义,则൝ 2
⇒൝
⇒൝

≠ .
2−3 ≠ 0
2
2
3
3
所以函数的定义域为(1, )∪( ,2).
2
2
(2)当a>1时,由loga(x-1)>0,得x-1>1,所以x>2;
通思想· 方法指导
思想方法 分类与整合思想在函数中的应用
考情解读
考点内容
课标
要求
考题取样
情境
载体
对应
考法
预测
热度
核心
素养
2020北京,T11 课程学习 考法1
1.函数的概
念及表示
2.分段函数
了解
★☆☆
2015全国Ⅱ,T10课程学习 考法2
理解 2018全国Ⅰ,T12课程学习 考法3,4
★★★
数学运算
2.构成函数的三要素
在函数y=f(x),x∈A中,自变量 x的取值范围A叫作定义域,与x的值对应的y值
叫作函数值,函数值的集合{f(x)|x∈A}叫作值域.
定义域、对应关系、值域是构成函数的三要素.

高考数学一轮总复习第2章函数的概念与基本初等函数第一节函数的概念课件理

解析 f(x)定义域为(-∞,1)∪[1,+∞)=R. 当x≥1时,f(x)≤f(1)=1, 当x<1时,f(x)≤f(0)=2,所以f(x)的最大值为2. 答案 R 2
函数定义域的求解方法
(1)当f(x)是整式时,其定义域为R. (2)当f(x)是分式时,其定义域是使得分母不为0的实数的集合. (3)当f(x)是偶次根式时,其定义域是使得根号内的式子大于或 等于0的实数的集合. (4)对于x0,x不能为0,因为00无意义.
►两个基本概念:函数;映射. (1)[掌握函数与映射的概念时,要把握其本质]有下列命题: ①y= 2-x+ x-3是函数; ②函数是特殊的映射; ③与 x 轴垂直的直线和一个函数的图象至多有一个交点. 其中正确的有________.
解析 ①x∈∅,不是函数;由函数与映射的概念知②,③
正确. 答案 ②③
【例 1】 (1)(2016·山东淄博月考)函数 f(x)= l2g-x x的定义域是
()
A.(0,2)
B.(0,1)∪(1,2)
C.(0,2]
D.(0,1)∪(1,2]
(2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域.
(1)解析 要使函数有意义,则有2x>-0x≥ ,0,即xx≤ >20, , lg x≠0, x≠1.
关系 f,使对于集合 A 中的 任意 一个元素 x,在集合 B 中都有唯一确定的元素 y 与之对应
名称
称 f:A―→B 为从集 合 A 到集合 B 的一 个函数
称对应 f:A―→B 为从集合 A 到集合 B 的一个映射
记法
y=f(x)(x∈A) 对应 f:A―→B 是一个映射
2.函数的有关概念
(1)函数的定义域、值域 在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函 数的 定义域 ;与x的值相对应的y值叫做函数值,函数值的 集合{f(x)|x∈A}叫做函数的值域,显然,值域是集合B的子集. (2)函数的三要素: 定义域 、 值域 和对应关系. 3.函数的表示方法 表示函数的常用方法有: 解析法 、 列表法 、 图象法 .

2016届高三数学一轮总复习课件:第二章 函数、导数及其应用2-8


A.y=f(|x|) C.y=f(-|x|)


B.y=|f(x)|
D.y=-f(|x|)
第十六页,编辑于星期五:二十点 十三分。
解析 y=f(-|x|)=ff-x,x,x<x0≥. 0, 答案 C
第十七页,编辑于星期五:二十点 十三分。
知识点三 用图 4.若关于x的方程|x|=a-x只有一个解,则实数a的取值范围 是________.
第四十四页,编辑于星期五:二十点 十三分。
【规律方法】 (1)从图象的左右分布,分析函数的定义域; 从图象的上下分布,分析函数的值域;从图象的最高点、最低 点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶 性;从图象的走向趋势,分析函数的单调性、周期性等.
(2)利用函数的图象可解决方程和不等式的求解问题,比如判 断方程是否有解,有多少个解,数形结合是常用的思想方法.
则当直线y=x+a过点(1,0)时,a=-1; 当直线y=x+a与抛物线y=-x2+4x-3相切时,
第四十三页,编辑于星期五:二十点 十三分。
由yy= =x-+xa2+,4x-3, 得x2-3x+a+3=0. 由Δ=9-4(3+a)=0,得a=-34. 由图象知当a∈-1,-34时,方程至少有三个不等实根.
第七页,编辑于星期五:二十点 十三分。
归纳拓展:(1)平移变换: y=f(x)hh><―00, ,―右 左→移 移y=f(x-h); y=f(x)kk><―00, ,―上 下→移 移y=f(x)+k. (2)伸缩变换: y=f(x)0<ω―ω><1―,1→,缩伸y=f(ωx); y=f(x)0<A―A><1―,1,→伸缩y=Af(x);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档