高一数学必修一第二章基本初等函数知识点总结

合集下载

高一数学必修一知识点总结

高一数学必修一知识点总结

高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a∉A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

② 语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∉R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B⊆ A①任何一个集合是它本身的子集。

(2020-1-8)高中数学必修1第二章-基本初等函数告知知识点小结

(2020-1-8)高中数学必修1第二章-基本初等函数告知知识点小结

下列函数中不是幂函数的是( )
A. y 3x
B. y x
C. y 3 x
D. y x0
幂函数的图像过点

2,
1 4

,则它的单调递增区间是(

A. (0, )
B.[0, )
C. (, 0)
D. (, )
B
在 y 2 x , y log 2 x, y x 2 , 这三个函数中,
方根是一个负数,这时,a的n次方根用符号 n a 表示.
(2)当n为偶数时,正数的n次方根有两个,它们互为相反
数,这时,正数的正的n次方根用符号 n a 表示,负的n次 方根用符号 n a表示.正负两个n次方根可以合写为 n a
(a>0)
(3) n a n a (4)当n为奇数时,n a n a ;当n为偶数时,
1
y=x3 y x 2
y=x-1
R [0,+∞) {x|x≠0}
R [0,+∞) {y|y≠Leabharlann }奇 非奇非偶 奇增
(0,+∞)减

(-∞,0)减
(1,1)
图 2.3-1 是幂函数 y x 在第一象限的图像,
已知 取 2, 1 四个值, 则相应于曲线 2
C1, C2 , C3, C4 的 的值依次是_______________.
2.二次函数f(x)=ax2+bx+c(a≠0)的图象与性质
二次函数 y ax2 bx c
1、定义域 2、值域 3、单调性
4、图象
a>0
a<0
R
4ac b2
[
, )

高一数学必修一必修二知识点

高一数学必修一必修二知识点

必修1知识点第一章、集合与函数概念 §1.1.1、集合1、集合三要素:确定性、互异性、无序性。

2、常见集合:正整数集合:*N 或+N ; 整数集合:Z ;有理数集合:Q ; 实数集合:R . 3、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆. 2、如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集. 空集是任何非空集合的真子集. 4、如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A Y .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A I . 3、全集、补集:{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、一个函数的构成要素为:定义域、对应关系、值域.2、如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法 解析法、图象法、列表法. 求解析式的方法:1.换元法2.配凑法3.待定系数法4.方程组法 §1.3.1、单调性与最大(小)值注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…五个步骤:取值,作差,化简,定号,小结 §1.3.2、奇偶性1、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数 §2.1.1、指数与指数幂的运算1、一般地,如果a x n =,那么x 叫做a 的n 次方根。

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。

高一数学必修一第二章基本初等函数知识点总结

高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)

a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x

高一数学必修1第一章第二节基本初等函数

高一数学必修1第一章第二节基本初等函数

精心整理第二章:函数及其表示第一讲:函数的概念:知识点一:函数的概念:典型例题:判断下列对应关系是否为集合A到集合B的函数:A=z,B=Z,A=Z,B=Z,A={-1,1},B={0},f:)))巩固练习:已知函数f(-3),的值时,求知识点三:函数相等:如果两个函数的定义域相等,并且对应关系完全一致,那么我们称这两个函数一致。

典型例题3:下列函数中,f(x)与g(x)相等的是()A、B、C、D、巩固练习:)(2))(4)知识点四:区间的表示:零售量是否为月份的函数?为什么?知识点二:分段函数:典型例题1:作出下列函数的图像:(1)f(x)=2x,x∈Z,且|x|≤2(2)y=|x|典型例题2:某市“招手即停”公共汽车票价按下列规则制定:(1)5公里以内(含5公里),票价2元(2)5公里以上,每增加5公里,票价增加一元(不足5公里按5f:(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点所代表的实数对应。

(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x ∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x|x是三角形};集合B={x|x是圆};对应关系f:每个三角形都有对应它的内切圆。

课堂练习:1、如图,把截面半径为25cm的圆形木头据成矩形木料,如果中元素作业布置:1、求下列函数的定义域:(1)2、下列哪一组中的函数f(x)与g(x)相等?3、画出下列函数的图像,并说明函数的定义域和值域(1)y=3x(2)(3)y=-4x+5(4)x2-6x+74、已知函数f(x)=3x2-5x+2,求的值。

高中数学必修一基本初等函数知识点与典型例题总结

高中数学必修一基本初等函数知识点与典型例题总结

( a ,c ( 0 ,1 ) U ( 1 , ) ,b 0 )
c
2) 对数恒等式
a lo g a N N ( a 0 且 a 1 , N 0 )
3) 四个重要推论
①logabllggabllnnab; ②logamNnm nlogaN;
③logablog1ba;
④ lo g ab lo g bc lo g ac.
由f x是奇函数,图像关于原点对称.
所以f x在( ,- a )是增函数,
在(- a ,0)是减函数.
综上,函数 f x x a(a>0)的单调
区间是
x f x在(- a ,0),(0, a )是减函数.
在( ,- a ),( a ,+)是增函数,
单调区间的分界点为: a的平方根
5.函数f x x a (a>0)的值域
①找不到证明问题的切入口.如第(1)问,很 多考生不知道求其定义域.
②不能正确进行分类讨论.若对数或指数的 底数中含有参数,一般要进行分类讨论.
一般地,函数 y x x 是 自 变 量 , 是 常 数
叫做幂函数
y
y x, y x2, y x3,
1
y x2, y x1
的图象.
O
x
幂函数的性质
当x1x2 >a时,由x1,x2是任意的,知x1,x2可 无限接近.而x1,x2在同一个区间取值, 知x1,x2 ( a,+)时,x1x2 >a都成立. 此时,f(x2 )>f (x1). 所以x ( a,+)时,f(x)是增函数.
同时可知,x (0, a )时,f(x)是减函数.
⑵. 当x∈ (-∞,0)时,确定某单调区间

数学必修一基本初等函数知识点

数学必修一基本初等函数知识点

数学必修一基本初等函数知识点
1. 线性函数:y = kx + b(k和b为常数),其中k称为斜率,b称为截距。

2. 幂函数:y = x^n(n为常数),其中n可以是正整数、零、负整数。

3. 指数函数:y = a^x(a为正实数且a≠1)。

4. 对数函数:y = loga(x)(a为正实数且a≠1),其中x为正实数。

5. 三角函数(正弦函数、余弦函数、正切函数、余切函数等):y = sinx,y = cosx,y = tanx,y = cotx等。

6. 反三角函数(反正弦函数、反余弦函数、反正切函数、反余切函数等):y = arcsinx,y = arccosx,y = arctanx,y = arccotx等。

7. 绝对值函数:y = |x|。

8. 双曲函数(双曲正弦函数、双曲余弦函数、双曲正切函数等):y = sinh(x),y = cosh(x),y = tanh(x)等。

9. 分段函数:根据不同条件定义函数的不同表达式,例如:y = f(x) =
{ x+1, (x≤0)
{ x^2, (0<x≤1)
{ 2x-1, (x>1)
10. 复合函数:将一个函数的输出作为另一个函数的输入进行运算,例如:f(g(x))。

以上是数学必修一中较为基本的初等函数知识点,只覆盖了一部分内容。

学习初等函数的重点是掌握其基本性质、图像和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章基本初等函数知识点整理
〖2.1〗指数函数
2.1.1指数与指数幂的运算
(1)根式的概念 ①如果,,,1n
x
a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n
表示;当n 是偶数时,正数a 的正的n
n
次方根用符号表示;0的n 次方根是0;负数
a 没有n 次方根.
n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.
③根式的性质:n a =;当n
a =;当n 为偶数时,
(0)
|| (0) a a a a a ≥⎧==⎨-<⎩

(2)分数指数幂的概念
①正数的正分数指数幂的意义是:0,,,m
n
a
a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数
指数幂的意义是: 1()0,,,m m n
n a
a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底
数取倒数,指数取相反数. (3)分数指数幂的运算性质
①(0,,)r
s r s a
a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r a
b a b a b r R =>>∈
2.1.2指数函数及其性质
(4)指数函数
〖2.2〗对数函数
【2.2.1】对数与对数运算
(1)对数的定义
①若(0,1)x
a
N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x
N =,其中a 叫做底数,N
叫做真数.
②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.
(2)几个重要的对数恒等式: log 10a =,log 1a
a =,log
b a a b =.
(3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).
(4)对数的运算性质 如果0,1,0,0a
a M N >≠>>,那么
①加法:log log log ()a
a a M N MN += ②减法:log log log a a a
M
M N N
-=
③数乘:log log ()n
a
a n M M n R =∈ ④log a N
a
N =
⑤log log (0,)b n
a a n M M
b n R b
=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =
>≠且
【2.2.2】对数函数及其性质
(5)对数函数
(6)反函数的概念
设函数
()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中
的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函
数()x
y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.
(7)反函数的求法
①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;
③将1()x
f y -=改写成1()y f x -=,并注明反函数的定义域.
(8)反函数的性质
①原函数
()y f x =与反函数1()y f x -=的图象关于直线y x =对称.
②函数
()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.
③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.
④一般地,函数
()y f x =要有反函数则它必须为单调函数.
〖2.3〗幂函数
(1)幂函数的定义 一般地,函数
y x α=叫做幂函数,其中x 为自变量,α
是常数.
(2)幂函数的图象
(3)幂函数的性质
①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于
y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.
②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α
>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)
+∞上为减函数,在第一象限内,图象无限接近x 轴与
y 轴.
④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q
p
α
=
(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q
p
y x
=是奇函数,若
p 为奇数q 为偶数时,则q
p
y x =是偶函数,若
p 为偶数q 为奇数时,

q p
y x
=是非奇非偶函数.
⑤图象特征:幂函数
,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象
在直线
y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.
〖补充知识〗二次函数
(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:
12()()()(0)f x a x x x x a =--≠
(2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.
②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.
(3)二次函数图象的性质
①二次函数
2
()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2b
x a
=-顶点坐标是24(,)24b ac b a a --
②当0a >时,抛物线开口向上,函数在(,]2b a -∞-
上递减,在[,)2b a
-+∞上递增,当2b
x a =-时,2
min 4()4ac b f x a
-=
;当0a <时,抛物线开口向下,函数在(,]2b a -∞-
上递增,在[,)2b
a
-+∞上递减,当2b
x a
=-
时,2max 4()4ac b f x a -=.
③二次函数
2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点
11221212(,0),(,0),||||||
M x M x M M x x a =-=
. (4)一元二次方程2
0(0)ax
bx c a ++=≠根的分布
一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程2
0(0)ax
bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方
面来分析此类问题:①开口方向:a ②对称轴位置:2b
x a
=-
③判别式:∆ ④端点函数值符号. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值

()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01
()2
x p q =
+. (Ⅰ)当0a >时(开口向上)
①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a
=- ③若2b
q a ->,则()m f q =
①若02b x a -≤,则()M f q = ②0
x ->,则()M f p =
(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a
=- ③若2b
q a ->,则()M f q =
①若02b x a -≤,则()m f q = ②02b x a
->,则()m
f p =.
x
x
x
x
x x
(q)0x x
f
x
f
x x
x。

相关文档
最新文档