高中物理-选修3-3知识点总结

合集下载

物理热学选修三知识点总结

物理热学选修三知识点总结

物理热学选修三知识点总结热学是物理学的一个重要分支,热学选修三作为高中阶段的一门物理选修课程,主要涉及了气体分子的特性、热力学循环以及热传导等内容。

在热学选修三中,学生将学习到一些重要的热学知识,本文将对热学选修三的知识点进行总结,以便帮助学生加深对这些知识的理解。

第一章气体分子的特性在热学选修三中,学生将学习到气体分子的特性,包括理想气体的状态方程、分子平均动能和气体分子的速率分布等内容。

1.1 理想气体的状态方程理想气体的状态方程可以用来描述气体的状态和性质。

在热学选修三中,学生将学习到理想气体的状态方程为PV=nRT,其中P为气体的压强,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。

通过这个状态方程,学生可以了解到气体在不同条件下的状态和性质。

1.2 分子的平均动能在热学选修三中,学生将学习到气体分子的平均动能与温度之间的关系。

根据动能定理,气体分子的平均动能与温度成正比,即Ek=3/2kT,其中Ek为气体分子的平均动能,k为玻尔兹曼常数,T为气体的温度。

通过这个关系,学生可以了解到气体分子的平均动能随温度的变化规律。

1.3 气体分子的速率分布在热学选修三中,学生还将学习到气体分子的速率分布。

根据麦克斯韦-玻尔兹曼速率分布定律,气体分子的速率分布与温度成正比,即随着温度的升高,气体分子的速率分布图向右移动,速率分布峰值变大。

通过这个定律,学生可以了解到气体分子的速率分布随温度的变化规律。

第二章热力学循环在热学选修三中,学生将学习到一些重要的热力学循环,包括卡诺循环、斯特林循环和布雷顿循环等。

2.1 卡诺循环卡诺循环是热学中最重要的循环之一,它是一个理想的热力学循环过程。

在热学选修三中,学生将学习到卡诺循环的工作原理和效率计算公式。

通过学习卡诺循环,学生可以了解到热机循环工作过程中的热量交换和功的转化规律。

2.2 斯特林循环斯特林循环是热机循环中的另一个重要循环,它是一个由等温和等容过程组成的循环过程。

最新人教版高中物理选修3-3:8.3理想气体的状态方程 知识点总结及课时练习

最新人教版高中物理选修3-3:8.3理想气体的状态方程 知识点总结及课时练习

3理想气体的状态方程记一记理想气体的状态方程知识体系一个模型——理想气体一个方程——理想气体的状态方程三个特例——p1V1T1=p2V2T2⎩⎪⎨⎪⎧T1=T2时,p1V1=p2V2V1=V2时,p1T1=p2T2p1=p2时,V1T1=V2T2辨一辨1.理想气体也不能严格地遵守气体实验定律.(×)2.实际气体在温度不太低、压强不太大的情况下,可看成理想气体.(√)3.一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍.(×)4.气体由状态1变到状态2时,一定满足方程p1V1T1=p2V2T2.(×)5.一定质量的理想气体体积增大到原来的4倍,可能是因为压强减半且热力学温度加倍.(√)想一想什么样的气体才是理想气体?理想气体的特点是什么?提示:在任何温度、任何压强下都严格遵从实验定律的气体;特点:①严格遵守气体实验定律及理想气体状态方程,是一种理想化模型.②理想气体分子本身的大小与分子间的距离相比可忽略不计,分子不占空间,可视为质点.③理想气体分子除碰撞外,无相互作用的引力和斥力.④理想气体分子无分子势能的变化,内能等于所有分子热运动的动能之和,只和温度有关.思考感悟:练一练=1.有一定质量的理想气体,如果要使它的密度减小,可能的办法是( )A .保持气体体积一定,升高温度B .保持气体的压强和温度一定,增大体积C .保持气体的温度一定,增大压强D .保持气体的压强一定,升高温度解析:由ρ=m /V 可知,ρ减小,V 增大,又由pV T =C 可知A 、B 、C 三项错,D 项对.答案:D2.对于一定质量的理想气体,下列状态变化中可能的实现是( )A .使气体体积增加而同时温度降低B .使气体温度升高,体积不变、压强减小C .使气体温度不变,而压强、体积同时增大D .使气体温度升高,压强减小、体积减小解析:由理想气体状态方程pV T =恒量得A 项中只要压强减小就有可能,故A 项正确;而B 项中体积不变,温度与压强应同时变大或同时变小,故B 项错;C 项中温度不变,压强与体积成反比,故不能同时增大,故C 项错;D 项中温度升高,压强减小,体积减小,导致pV T 减小,故D 项错误.答案:A3.一定质量的理想气体,经历一膨胀过程,这一过程可以用图上的直线ABC 来表示,在A 、B 、C 三个状态上,气体的温度T A 、T B 、T C 相比较,大小关系为( )A .TB =T A =T CB .T A >T B >T CC .T B >T A =T CD .T B <T A =T C解析:由图中各状态的压强和体积的值可知:p A · V A =p C ·V C <p B ·V B ,因为pV T =恒量,可知T A =T C <T B .答案:C4.如图所示,1、2、3为p -V 图中一定量理想气体的三种状态,该理想气体由状态1经过程1→3→2到达状态2.试利用气体实验定律证明:p 1V 1T 1=p 2V 2T 2. 证明:由题图可知1→3是气体等压过程,据盖—吕萨克定律有:V 1T 1=V 2T3→2是等容过程,据查理定律有:p 1T =p 2T 2联立解得p 1V 1T 1=p 2V 2T 2.要点一对理想气体的理解1.(多选)关于理想气体,下列说法中正确的是()A.严格遵守玻意耳定律、盖—吕萨克定律和查理定律的气体称为理想气体B.理想气体客观上是不存在的,它只是实际气体在一定程度上的近似C.和质点的概念一样,理想气体是一种理想化的模型D.一定质量的理想气体,内能增大,其温度可能不变解析:理想气体是一种理想化模型,是对实际气体的科学抽象;温度不太低、压强不太大的情况下可以把实际气体近似视为理想气体;理想气体在任何温度、任何压强下都遵从气体实验定律,A、B、C三项正确;理想气体的内能只与温度有关,温度升高,内能增大,温度降低,内能减小,D项错误.答案:ABC2.(多选)关于理想气体,下列说法正确的是()A.温度极低的气体也是理想气体B.压强极大的气体也遵从气体实验定律C.理想气体是对实际气体的抽象化模型D.理想气体实际并不存在解析:气体实验定律是在压强不太大、温度不太低的情况下得出的,温度极低、压强极大的气体在微观上分子间距离变小,趋向于液体,故答案为C、D两项.答案:CD要点二对理想气体状态方程的理解和应用3.(多选)一定质量的理想气体,初始状态为p、V、T,经过一系列状态变化后,压强仍为p,则下列过程中可以实现的是() A.先等温膨胀,再等容降温B.先等温压缩,再等容降温C.先等容升温,再等温压缩D.先等容降温,再等温压缩解析:根据理想气体状态方程pVT=C,若经过等温膨胀,则T不变,V增加,p减小,再等容降温,则V不变,T降低,p减小,最后压强p肯定不是原来值,A项错,同理可以确定C项也错,正确为B、D两项.答案:BD4.一定质量的气体,从初态(p0、V0、T0)先经等压变化使温度上升到32T0,再经等容变化使压强减小到12p0,则气体最后状态为()A.12p0、V0、32T0 B.12p0、32V0、34T0C.12p0、V0、34T0 D.12p0、32V0、T0解析:在等压过程中,V∝T,有V0T0=V33T02,V3=32V0,再经过一个等容过程,有:p032T0=p02T3,T3=34T0,所以B项正确.答案:B5.如图所示,一定质量的空气被水银封闭在静置于竖直平面的U形玻璃管内,右管上端开口且足够长,右管内水银面比左管内水银面高h,能使h变小的原因是()A.环境温度升高B.大气压强升高C.沿管壁向右管内加水银D.U形玻璃管自由下落解析:对于左端封闭气体,温度升高,由理想气体状态方程可知:气体发生膨胀,h增大,故A项错.大气压升高,气体压强将增大,体积减小,h减小,故B项对.向右管加水银,气体压强增大,内、外压强差增大,h将增大,所以C项错.当管自由下落时,水银不再产生压强,气体压强减小,h变大,故D项错.答案:B6.一水银气压计中混进了空气,因而在27 ℃、外界大气压为758 mmHg时,这个水银气压计的读数为738 mmHg,此时管中水银面距管顶80 mm.当温度降至-3 ℃时,这个气压计的读数为743 mmHg,求此时的实际大气压值为多少?解析:画出该题初、末状态的示意图分别写出被封闭气体的初、末状态的状态参量p1=758 mmHg-738 mmHg=20 mmHgV1=(80 mm)·S(S是管的横截面积)T1=(273+27) K=300 Kp2=p-743 mmHgV2=(738+80) mm·S-743(mm)·S=75(mm)·ST2=(273-3)K=270 K将数据代入理想气体状态方程p1V1 T1=p2V2 T2解得p=762.2 mmHg.答案:762.2 mmHg要点三理想气体变化的图象7.在下图中,不能反映理想气体经历了等温变化→等容变化→等压变化,又回到原来状态的图是()解析:根据p -V ,p -T 、V -T 图象的意义可以判断,其中D 项显示的理想气体经历了等温变化→等压变化→等容变化,与题意不符.答案:D8.图中A 、B 两点代表一定质量理想气体的两个不同的状态,状态A 的温度为T A ,状态B 的温度为T B ;由图可知( )A. T B =2T AB. T B =4T AC. T B =6T AD. T B =8T A 解析:对于A 、B 两个状态应用理想气体状态方程p A V A T A =p B V B T B可得:T B T A =p B V B p A V A =3×42×1=6,即T B =6T A ,C 项正确. 答案:C基础达标1.关于一定质量的理想气体发生状态变化时,其状态参量p 、V 、T 的变化情况不可能的是( )A .p 、V 、T 都减小B .V 减小,p 和T 增大C.p和V增大,T减小D.p增大,V和T减小解析:由理想气体状态方程pVT=C可知,p和V增大,则pV增大,T应增大.C项不可能.答案:C2.(多选)理想气体的状态方程可以写成pVT=C,对于常量C,下列说法正确的是()A.对质量相同的任何气体都相同B.对质量相同的同种气体都相同C.对质量不同的不同气体可能相同D.对质量不同的不同气体一定不同解析:理想气体的状态方程的适用条件就是一定质量的理想气体,说明常量C仅与气体的种类和质量有关,实际上也就是只与气体的物质的量有关.对质量相同的同种气体当然常量是相同的,而对质量不同的不同气体,只要物质的量是相同的,那么常量C也是可以相同的.答案:BC3.(多选)对一定质量的理想气体,下列说法正确的是() A.体积不变,压强增大时,气体分子的平均动能一定增大B.温度不变,压强减小时,气体的密度一定减小C.压强不变,温度降低时,气体的密度一定减小D.温度升高,压强和体积可能都不变解析:由pVT=C(常量)可知,V不变、p增大时T增大,故A项正确;T增大时,p与V至少有一个要发生变化,故D错误;把V=mρ代入pVT=C得pmρT=C,由此式可知,T不变时,ρ随p的减小而减小,故B项正确;p不变时,ρ随T的减小而增大,故C 项错误.答案:AB4.(多选)关于理想气体的状态变化,下列说法中正确的是()A.一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍B .一定质量的理想气体由状态1变到状态2时,一定满足方程p 1V 1T 1=p 2V 2T 2C .一定质量的理想气体体积增大到原来的4倍,可能是压强减半,热力学温度加倍D .一定质量的理想气体压强增大到原来的4倍,可能是体积加倍,热力学温度减半解析:理想气体状态方程p 1V 1T 1=p 2V 2T 2中的温度是热力学温度,不是摄氏温度,A 项错误,B 项正确;由理想气体状态方程及各量的比例关系即可判断C 项正确,D 项错误.答案:BC5.光滑绝热的轻质活塞把密封的圆筒容器分成A 、B 两部分,这两部分充有温度相同的气体,平衡时V A :V B =1:2,现将A 中气体温度加热到127 ℃,B 中气体温度降低到27 ℃,待重新平衡后,这两部分气体体积的比V A ′:V B ′为( )A .1:1B .2:3C .3:4D .2:1解析:对A 部分气体有:p A V A T A =p A ′V ′A T A ′① 对B 部分气体有:p B V B T B =p B ′V B ′T B ′② 因为p A =p B ,p A ′=p B ′,T A =T B ,所以由①②得V A V B =V A ′T B ′V B ′T A ′,所以V A ′V B ′=V A T A ′V B T B ′=1×4002×300=23答案:B6.如图所示,内壁光滑的汽缸和活塞都是绝热的,缸内被封闭的理想气体原来体积为V ,压强为p ,若用力将活塞向右压,使封闭的气体体积变为V 2,缸内被封闭气体的( )A .压强等于2pB .压强大于2pC .压强小于2pD .分子势能增大了解析:汽缸绝热,压缩气体,其温度必然升高,由理想气体状态方程pV T =C (恒量)可知,T 增大,体积变为V 2,则压强大于2p ,故B 项正确,A 、C 两项错,理想气体分子无势能的变化,D 项错.答案:B7.(多选)如图所示,一定质量的理想气体,从图示A 状态开始,经历了B 、C 状态,最后到D 状态,下列判断正确的是( )A .A →B 温度升高,压强不变B .B →C 体积不变,压强变大C .B →C 体积不变,压强不变D .C →D 体积变小,压强变大解析:由图象可知,在A →B 的过程中,气体温度升高、体积变大,且体积与温度成正比,由pV T =C ,气体压强不变,是等压过程,故A 项正确;由图象可知,在B →C 是等容过程,体积不变,而热力学温度降低,由pV T =C 可知,压强p 减小,故B 、C 两项错误;由图象可知,在C →D 是等温过程,体积减小,由pV T =C可知,压强p 增大,故D 项正确.答案:AD8.一气泡从30 m 深的海底升到海面,设水底温度是4 ℃,水面温度是15 ℃,那么气泡在海面的体积约是水底时的( )A .3倍B .4倍C .5倍D .12倍解析:根据理想气体状态方程:p 1V 1T 1=p 2V 2T 2,知V 2V 1=p 1T 2p 2T 1,其中T 1=(273+4) K =277 K ,T 2=(273+15) K =288 K ,故T 2T 1≈1,而p 2=p 0≈10ρ水 g ,p 1=p 0+p ≈40 ρ水 g ,即p 1p 2≈4,故V 2V 1≈4.故选B 项.答案:B9.(多选)如图所示,用活塞把一定质量的理想气体封闭在导热汽缸中,用水平外力F 作用于活塞杆,使活塞缓慢向右移动,由状态①变化到状态②.如果环境保持恒温,分别用p 、V 、T 表示该理想气体的压强、体积、温度.气体从状态①变化到状态②,此过程可用下图中哪几个图象表示( )解析:由题意知,由状态①到状态②过程中,温度不变,体积增大,根据pV T =C 可知压强将减小.对A 项图象进行分析,p -V图象是双曲线即等温线,且由状态①到状态②体积增大,压强减小,故A 项正确;对B 项图象进行分析,p -V 图象是直线,温度会发生变化,故B 项错误;对C 项图象进行分析,可知温度不变,但体积增大,故C 项错误;对D 项图象进行分析,可知温度不变,压强减小,D 项正确.答案:AD10.如图所示为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封闭有一定量的空气.若玻璃管中水柱上升,则外界大气的变化可能是( )A .温度降低,压强增大B .温度升高,压强不变C .温度升高,压强减小D .温度不变,压强减小解析:由题意可知,封闭空气温度与大气温度相同,封闭空气体积随水柱的上升而减小,将封闭空气近似看作理想气体,根据理想气体状态方程pV T =常量,若温度降低,体积减小,则压强可能增大、不变或减小,A 项正确;若温度升高,体积减小,则压强一定增大,B 、C 两项错误;若温度不变,体积减小,则压强一定增大,D 项错误.答案:A11.某不封闭的房间容积为20 m 3,在温度为7 ℃、大气压强为9.8×104 Pa 时,室内空气质量为25 kg.当温度升高到27 ℃、大气压强为1.0×105 Pa 时,室内空气的质量是多少?(T =273 K +t )解析:假设气体质量不变,末态体积为V 2,由理想气体状态方程有:p 1V 1T 1=p 2V 2T 2, 解得V 2=p 1V 1T 2p 2T 1=9.8×104×20×3001.0×105×280=21.0 m 3. 因为V 2>V 1,即有部分气体从房间内流出,设剩余气体质量为m 2,由比例关系有:V 1V 2=m 2m 1,m 2=m 1V 1V 2=23.8 kg.答案:23.8 kg12.图甲为1 mol 氢气的状态变化过程的V -T 图象,已知状态A 的参量为p A =1 atm ,T A =273 K ,V A =22.4×10-3 m 3,取1 atm=105 Pa ,在图乙中画出与甲图对应的状态变化过程的p -V 图,写出计算过程并标明A 、B 、C 的位置.解析:据题意,从状态A 变化到状态C 的过程中,由理想气体状态方程可得:p A V A T A =p C V C T C ,p C =1 atm ,从A 变化到B 的过程中有:p A V A T A=p B V B T B,p B =2 atm. A 、B 、C 的位置如图所示.答案:见解析13.[2019·潍坊高二检测]内燃机汽缸里的混合气体,在吸气冲程结束瞬间,温度为50 ℃,压强为1.0×105 Pa ,体积为0.93 L .在压缩冲程中,把气体的体积压缩为0.155 L 时,气体的压强增大到1.2×106 Pa.这时混合气体的温度升高到多少摄氏度?解析:气体初状态的状态参量为p 1=1.0×105 Pa ,V 1=0.93 L ,T 1=(50+273) K =323 K.气体末状态的状态参量为p 2=1.2×106 Pa ,V 2=0.155 L ,T 2为未知量.由p 1V 1T 1=p 2V 2T 2可求得T 2=p 2V 2p 1V 1T 1, 将已知量代入上式,得T 2=1.2×106×0.1551.0×105×0.93×323 K =646 K , 所以混合气体的温度t =(646-273) ℃=373 ℃.答案:373 ℃能力达标14.[2019·长春市质检]如图所示,绝热气缸开口向上放置在水平地面上,一质量m =10 kg,横截面积S=50 cm2的活塞可沿气缸无摩擦滑动;被封闭的理想气体温度t=27 ℃时,气柱长L=22.4 cm.已知大气压强为标准大气压p0=1.0×105Pa,标准状况下(压强为一个标准大气压,温度为0 ℃)理想气体的摩尔体积为22.4 L,阿伏加德罗常数N A=6.0×1023mol-1,g=10 m/s2.求:(计算结果保留两位有效数字)(1)被封闭理想气体的压强;(2)被封闭气体内所含分子的数目.解析:(1)被封闭理想气体的压强为p=p0+mg Sp=1.2×105 Pa(2)由p0V0T0=pVT得标准状况下的体积为V0=pVT0 p0T被封闭气体内所含分子的数目为N=N A V0 V m解得N=3.3×1022个答案:(1)1.2×105 Pa(2)3.3×1022。

高中物理选修3-3大题知识点及经典例题

高中物理选修3-3大题知识点及经典例题

高中物理选修3-3大题知识点及经典例题气体压强的产生与计算1.产生的原因:由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强。

2.决定因素(1)宏观上:决定于气体的温度和体积。

(2)微观上:决定于分子的平均动能和分子的密集程度。

3.平衡状态下气体压强的求法(1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强。

(2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强。

(3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等。

液体内深h处的总压强p=p0+ρgh,p0为液面上方的压强。

4.加速运动系统中封闭气体压强的求法选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解。

考向1 液体封闭气体压强的计算若已知大气压强为p0,在图2-2中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强。

图2-2[解析]在甲图中,以高为h的液柱为研究对象,由二力平衡知p甲S=-ρghS+p0S所以p甲=p0-ρgh在图乙中,以B液面为研究对象,由平衡方程F上=F下有:p A S+ρghS=p0Sp乙=p A=p0-ρgh在图丙中,仍以B液面为研究对象,有p A′+ρgh sin 60°=p B′=p0所以p丙=p A′=p0-32ρgh在图丁中,以液面A为研究对象,由二力平衡得p丁S=(p0+ρgh1)S所以p丁=p0+ρgh1。

[答案]甲:p0-ρgh乙:p0-ρgh丙:p0-32ρgh1丁:p0+ρgh1考向2 活塞封闭气体压强的求解如图2-3中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下。

高中物理选修3知识点公式总结

高中物理选修3知识点公式总结

1、电荷量:电荷的多少叫电荷量,用字母Q 或q 表示。

(元电荷常用符号e自然界只存在两种电荷:正电荷和负电荷。

同号电荷相互排斥,异号电荷相互吸引。

2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。

3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间9109⨯=k N ﹒m 2/C 2。

45、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。

67、电场线的性质:a .电场线起始于正电荷或无穷远,终止于无穷远或负电荷;b .任何两条电场线不会相交;c. 静电场中,电场线不形成闭合线; d 8、匀强电场:场强大小和方向都相同的电场叫匀强电场。

电场线相互平行且均匀分布时表明是匀强电场。

9q E P ϕ= 10、等势面特点:①电场线与等势面垂直,②沿等势面移动电荷,静电力不做功。

11A B BA U ϕϕ-=( 电势差的正负表示两点间电势的高低)12、电势差与静电力做功:q WU =qU W =⇒表示A 、B 两点的电势差在数值上等于单位正电荷从A 点移到B 点,电场力所做的功。

1314、电势差与电场强度的关系:在匀强电场中,沿电场线方向的两点间的电势差等于场强与这两点间距离的Ed =15 电容的单位是法拉(F)决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。

②对于平行板电容器有关的Q 、E 、U 、C 的讨论时要注意两种情况:16、带电粒子在电场中运动:①.带电粒子在电场中平衡。

(二力平衡)②.带电粒子的加速:动力学分析及功能关系分析:经常用2022121qU mv mv -=③.带电粒子的偏转:动力学分析:带电粒子以速度V 0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动)。

高中物理选修3知识点梳理和总结

高中物理选修3知识点梳理和总结

高中物理选修 3-2 学问点梳理和总结大地二中张清泉电磁感应现象愣次定律市试验一小陈思思一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。

产生的电流叫做感应电流.2.产生感应电流的条件:闭合回路中磁通量发生变化3.磁通量变化的常见状况(Φ转变的方式):①线圈所围面积发生变化,闭合电路中的局部导线做切割磁感线运动导致Φ变化;其实质也是B 不变而 S 增大或减小②线圈在磁场中转动导致Φ变化。

线圈面积与磁感应强度二者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ转变的结果):磁通量转变的最直接的结果是产生感应电动势,假设线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那局部导体相当于电源.电磁感应现象的实质是产生感应电动势,假设回路闭合,则有感应电流,假设回路不闭合,则只能消灭感应电动势,而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化二、感应电流方向的判定1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向(电源).用右手定则时应留意:①主要用于闭合回路的一局部导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定,②右手定则仅在导体切割磁感线时使用,应用时要留意磁场方向、运动方向、感应电流方向三者相互垂直.③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.④假设形成闭合回路,四指指向感应电流方向;假设未形成闭合回路,四指指向高电势.⑤“因电而动”用左手定则.“因动而电”用右手定则.⑥应用时要特别留意:四指指向是电源内部电流的方向(负→正).因而也是电势上升的方向;即:四指指向正极。

物理选修3知识点总结

物理选修3知识点总结

物理选修3知识点总结物理选修3知识点总结物理知识点光(除此之外复习练习册题目)1,海市蜃楼是由于光的(全反射)发生的;水底看起来变浅是由于光的(折射)发生的;光导纤维利用了光的(全反射)出现;水中放一空试管,空试管很亮是由于(全反射);阳光透过树叶间隙产生的圆形亮斑是光的(直进性)体现2,光导纤维的内芯折射率比外芯(大),光传播时,在(内心与外套)的界面发生全反射3,增透膜利用了光的(相干性),厚度等于透过光在增透膜中波长的(1/4),光在增透膜前后表面的反射光相互(抵消)4,最先观测到光的干涉现象的是(托马斯〃杨)5,若采用白光进行双缝干涉,中央亮纹是(白)色的,两侧明条纹的外侧是(红)色的,是由于红光波长较(大)的缘故6,光的衍射中条纹中央亮纹(亮)(宽),两侧亮纹(暗)(窄);采用光栅之后,条纹变(窄)变(亮)7,光的偏振现象说明光是一种(横波),电磁波是(横波)8,天空是蓝的是由于光的(色散);天空是亮的是由于光的(散射)9,泊松光板是指(圆屏做障碍物,在影子中心有一个明亮的斑点),说明了光的(波动性)10,偏振片利用了光的(偏振性),用来(减弱)周围景物反射光的强度;对于偏振片都有特定的振动方向,只有振动方向(平行)这个方向的光波才可以透过偏振片;太阳、电灯等普通光源发出的光(不是)偏振光,在经历了玻璃、水面、木质平面反射后,产生的光(是)偏振光;(电子表的液晶显示)用到了偏振光11,利用激光传递信息利用了激光的(相干性),由于激光的频率(较高),可以用激光传递更多信息;激光精确测距利用了激光的(平行度好);利用激光切割利用了激光的(亮度高)的特点;利用激光刻录磁盘、记录信息利用了激光的(平行度好)的特点;全息照相利用了光的(相干性好)12,光线发生全反射的条件是光从(玻璃)射到与(空气)的分界面上,入射角足够(大);光从空气摄入玻璃,(不会发生)全反射13,水下的人可以看到水面上的(全部景象)14,光的衍射中狭缝变窄时条纹间距变(宽)15,若地球周围不存在大气层,则人们观察到的日出时刻将(延后)16,光的直进性和反射性说明了光的(粒子性);光的反射折射同时存在说明光具有(波动性)17,测定光的折射率的时候四个大头针之间的距离应当尽量(大)些,入射角应当适当(大)些,绘制玻璃瓶面的时候(不可以)用铅笔比着玻璃砖画18,干涉实验中所用的光源是(想干)光源,因此(不可以用)自然光1/6电磁波1,麦克斯韦的电磁场理论是指(变化的磁场产生电场,变化的电场产生磁场)2,最早证明电和磁有密切关联的是(奥斯特);证明电磁波存在的是(赫兹);电磁感应现象是(法拉第);建立完整电磁场理论的科学家是(麦克斯韦)3,为了让需要传递的信息加载在电磁波上发射到远方,需要对高频振荡电流进行(调制);FM是指(调频),AM是指(调幅);无线电波中波长最小的是(微波),无线电波频率较高时,可近似认为(按直线)传播;频率较高的无线电波采用(天波)传递方式;频率较低的是采用(地波)传递;雷达传递用的是(微波)4,提高振荡电路辐射电磁波的本领应该让周期尽量变(小),电容变(小),电感变(小);在充电过程中,线圈中的电流逐渐变(小),线圈两端的电压逐渐变(大),线圈的自感作用逐渐变(大);电流为零的时候,磁场能为(零),通过电感线圈的磁通量变化率(最大),电场能为(最大值);电流增大的过程中,电流变化率变(小),电感的磁通量变化率变(小)5,太阳辐射的能量多集中在(可见光)范畴,其中(黄绿光)能量最大波粒二象性一,能量量子化1,热辐射的主要成分是(波长较长的电磁波)2,物体温度升高时,热辐射中(较短波长)的成分越来越强。

西藏高中物理选修三第三章《热力学定律》知识点总结(答案解析)

一、选择题1.关于热学现象和热学规律,下列说法中正确的是()A.布朗运动就是液体分子的热运动B.用油膜法测分子直径的实验中,应使用纯油酸滴到水面上C.第一类永动机不可能制成是因为它违背了能量守恒定律D.用活塞压缩汽缸里的空气,对空气做功3.0×105 J,同时空气的内能增加2.2×105 J,则空气从外界吸热5.2×105 J2.关于元器件,下列说法错误的是()A.太阳能电池板是将光能转化为电能B.电热水壶烧水是利用电流的热效应C.电容器是用来储存电荷的装置D.微波炉加热食物是利用电磁感应原理3.下列说法正确的是()A.布朗运动是悬浮在液体中固体颗粒的分子无规则运动的反映B.内能不同的物体,它们分子热运动的平均动能可能相同C.知道某物质的摩尔质量和密度可求出阿伏加德罗常数D.没有摩擦的理想热机可以把吸收的能量全部转化为机械能4.一定质量的理想气体(不考虑气体分子势能),在温度升高的过程中()A.气体分子的平均动能可能不变B.外界一定对气体做功C.气体一定从外界吸收热量D.气体的内能一定增加5.A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同.将两管抽成真空后,开口向下竖直插人水银槽中(插入过程没有空气进入管内),水银柱上升至图示位置停止.假设这一过程水银与外界没有热交换,则下列说法正确的是A.A中水银的内能增量大于B中水银的内能增量B.B中水银的内能增量大于A中水银的内能增量C.A和B中水银体积保持不变,故内能增量相同D.A和B中水银温度始终相同,故内能增量相同6.下列过程中可能发生的是 ()A.某种物质从高温热源吸收20 kJ的热量,全部转化为机械能,而没有产生其他任何影响B.打开一高压密闭容器,其内气体自发溢出后又自发溢进去,恢复原状C.利用其他手段,使低温物体温度更低,高温物体的温度更高D.将两瓶不同液体混合,然后它们又自发地各自分开7.一定质量的理想气体状态发生了一次循环变化,其压强p随热力学温度T变化的关系如图所示,O 、a 、b 在同一直线上,bc 与横轴平行则A .a 到b 过程,气体的体积减小B .b 到c 过程,外界对气体做功C .b 到c 过程,气体从外界吸收热量D .b 到c 过程,气体向外界放出热量8.下列说法中正确的是( )A .温度低的物体内能小B .外界对物体做功时,物体的内能一定增加C .温度低的物体分子运动的平均动能小D .做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大 9.如图描述了一定质量的理想气体压强p 随体积V 变化的图像,O 、a 、b 在同一直线上,ac 与横轴平行,下列说法正确的是( )A .a 到b 过程,外界对气体做功B .c 到a 过程,气体向外界放出热量大于气体内能的减少量C .b 到c 过程,气体释放的热量大于气体内能的减少D .a 点时气体的内能等于b 点时气体的内能10.以下关于热学的说法正确的是( )A .物体温度升高时,物体内所有分子的动能都增大B .水表面层的分子间的作用表现为相互吸引C .气体产生压强是由于分子间相互排斥D .符合能量守恒定律的过程都能自发进行11.带有活塞的汽缸内封闭一定量的理想气体。

人教版高中物理选修3-3课件3.理想气体的状态方程


学温度,不是摄氏温度,A错误,B正确;将数据代入公式
中即可判断C正确,D错误.
答案: BC
如图甲所示,水平放置的汽缸内壁光滑,活塞厚度不计, 在A、B两处设有限制装置,使活塞只能在A、B之间运动,B左 面汽缸的容积为V0,A、B之间的容积为0.1V0.开始时活塞在B处, 缸内气体的压强为0.9p0(p0为大气压强),温度为297K,现缓慢加 热汽缸内气体,直至399.3K.求:
思路点拨:
解析: 对A部分气体: 初态:pA=1.8×105 Pa,VA=2V,TA=400 K 末态:p′A=?,V′A=?,T′A=300 K 由状态方程得pTAVAA=p′TA′V′A A 即1.8×410005×2V=p′3A0V0′A① 对B部分气体: 初态:pB=1.2×105 Pa,VB=V,TB=300 K 末态:p′B=? V′B=? T′B=300 K
空白演示
在此输入您的封面副标题
3.理想气体的态方程
一、理想气体
1.定义:在任何温度任何下压都强严格遵从三个的气体.实验 定律2.理想气体与实际气体
3.理想气体的分子模型
(1)分子本身的大小和它们之间的距离相比较可忽略不计.
(2)理想气体分子除碰撞外,无相互作用的引力和斥力,故
无,分一子定势质能量的理想气体内能只与有关.
【特别提醒】 (1)一些不易液化的气体,如氢气、氧气、 氮气、氦气、空气等,在通常温度、压强下,它们的性质很近 似于理想气体,把它们看作理想气体处理.
(2)对一定质量的理想气体来说,当温度升高时,其内能增 大.
关于理想气体的性质,下列说法中正确的是( ) A.理想气体是一种假想的物理模型,实际并不存在 B.理想气体的存在是一种人为规定,它是一种严格遵守气 体实验定律的气体 C.一定质量的理想气体,内能增大,其温度一定升高 D.氦是液化温度最低的气体,任何情况下均可视为理想气 体

高中物理 第8章 气体 第3节 理想气体的状态方程课件 新人教版选修3-3

(1)活塞右侧气体的压强; (2)活塞左侧气体的温度。 答案:(1)1.5×105 Pa (2)900 K
24
解析:(1)对于管道右侧气体,因为气体做等温变化,则有:p0V1=p2V2 V2=23V1 解得 p2=1.5×105 Pa (2)对于管道左侧气体,根据理想气体状态方程, 有p0VT10′ =p2′TV2′ V2′=2V1′ 当活塞 P 移动到最低点时,对活塞 P 受力分析可得出两部分气体的压强 p2′=p2 解得 T=900 K
11
『想一想』 如图所示,某同学用吸管吹出一球形肥皂泡,开始时,气体在口腔中的温 度为 37 ℃,压强为 1.1 标准大气压,吹出后的肥皂泡体积为 0.5 L,温度为 0 ℃, 压强近似等于 1 标准大气压。则这部分气体在口腔内的体积是多少呢?
12
解析:T1=273+37 K=310 K,T2=273 K 由理想气体状态方程pT1V1 1=pT2V2 2 V1=pp2V1T2T2 1=1×1.10.×5×273310 L=0.52 L 答案:0.52 L
2.表达式 pT1V1 1=__p_T2V_2_2__或pTV=__恒__量____ 3.适用条件 一定__质__量____的理想气体。
8
辨析思考 『判一判』 (1)实际气体在温度不太高,压强不太大的情况下,可看成理想气体。( × ) (2)能用气体实验定律来解决的问题不一定能用理想气体状态方程来求解。 (× ) (3)对于不同的理想气体,其状态方程pTV=C(恒量)中的恒量 C 相同。( × )
16
1.理想气体 (1)含义 为了研究方便,可以设想一种气体,在任何温度、任何压强下都遵从气体 实验定律,我们把这样的气体叫做理想气体。 (2)特点 ①严格遵守气体实验定律及理想气体状态方程。 ②理想气体分子本身的大小与分子间的距离相比可以忽略不计,分子可视 为质点。 ③理想气体分子除碰撞外,无相互作用的引力和斥力,故无分子势能,理 想气体的内能等于所有分子热运动动能之和,一定质量的理想气体内能只与温 度有关。

高中物理选修3-3课件:第七章分子动理论-2分子的热运动


A.当过一段时间可以发现上面瓶中的气体也变成了 淡红棕色 B.二氧化氮由于密度较大,不会跑到上面的瓶中,
所以上面瓶不会出现淡红棕色
C.上面的空气由于重力作用会到下面的瓶中,于是 将下面瓶中的二氧化氮排出了一小部分,所以会发现上 面瓶中的瓶口处显淡红棕色,但在瓶底处不会出现淡红 棕色 D.由于气体分子在运动着,所以上面的空气会到下 面的瓶中,下面的二氧化氮也会自发地运动到上面的瓶 中,所以最后上、下两瓶气体的颜色变得均匀一致
知识点一 扩散现象 提炼知识 1.定义:不同的物质彼此进入对方的现象. 2.产生原因:物质分子的无规则运动. 3.应用举例:在高温条件下通过分子的扩散,在纯 净半导体材料中掺入其他元素. 4.扩散现象的实质:扩散现象是物质分子永不停息 地做无规则运动的证明.
判断正误 1 .扩散现象说明了分子是永不停息地做无规则运 动.(√) 2. 扩散现象说明了分子间存在间隙.(√) 3.扩散现象只能发生在气体与气体之间.(×)
特别说明 (1)热运动是分子运动,布朗运动是微粒 的运动. (2)热运动永不停息,液体变成固体时,其中微粒的 布朗运动会停止. (3)分子及布朗运动的微粒用肉眼不能直接观察到. (4)热运动是对大量分子而言的,对个别分子无意义.
【典例 2】 关于布朗运动下列说法正确的是(
)
A.悬浮在液体或气体中的小颗粒的无规则运动就是 分子的无规则运动. B.温度越低时,布朗运动越明显 C.悬浮在液体或气体中的颗粒越小,布朗运动越明 显 D.布朗运动是悬浮在液体中的花粉分子的运动,反 映了液体分子对固体颗粒撞击的不平衡性.
原因
直接原因:大量液体 (或气体)分子对悬浮微 物质分子永不 粒的撞击而导致的不 停息地做无规 平衡; 则运动 根本原因:液体(或气 体)分子的无规则运动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修3—3考点汇编 一、分子动理论 1、物质是由大量分子组成的 〔1〕单分子油膜法测量分子直径油膜法估测分子大小:V=Sd (S—单分子油膜的面积,V—滴到水中的纯油酸的体积) 〔2〕阿伏伽德罗常数: 1mol任何物质含有的微粒数相同2316.0210ANmol 〔3〕对微观量的估算 ①分子的两种模型:球形和立方体〔固体液体通常看成球形,空气分子占据的空间看成立方体〕 Ⅰ.球体模型直径d= 36V0π. Ⅱ.立方体模型边长d= 3V0. ②利用阿伏伽德罗常数联系宏观量与微观量 Ⅰ.微观量:分子体积V0、分子直径d、分子质量m0. Ⅱ.宏观量:物体的体积V、摩尔体积Vm,物体的质量m、摩尔质量M、物体的密度ρ. 联系:AVMvm a.分子质量:AmolNMm0=AmolNV b.分子体积:AmolNVv0=MρNA〔气体分子除外〕 c.分子数量: AAAAmolmolmolmolMvMvnNNNNMMVV 特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。分子的体积V0=VmNA,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间。 2、对于气体分子,d=3V0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离. 2、分子永不停息的做无规那么的热运动〔布朗运动 扩散现象〕 〔1〕扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。可以发生在固体、液体、气体任何两种物质之间 〔2〕布朗运动:它是悬浮在液体〔或气体〕中的固体小微粒的无规那么运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规那么运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规那么运动对固体微小颗粒......各个方向撞击的不均

匀性造成的。 布朗运动路线示意图,不是固体微粒运动的轨迹。 ③布朗运动间接地反映了液体分子的无规那么运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规那么运动。 〔3〕热运动:分子的无规那么运动与温度有关,简称热运动,温度越高,运动越剧烈

3、分子间的相互作用力 〔1〕分子间同时存在引力和斥力,两种力的合力又叫做分子力。 〔2〕分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的减小而增大。但总是斥力变化得较快。 〔3〕图像:两条虚线分别表示斥力和引力; 实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。

0r位置叫做平衡位置,

0r的数量级为1010m。

理解+记忆: (1)当r=r0时,F引=F斥,F=0; (2)当r

但引F<斥F,F表现为斥力;

(3)当0rr时,引F和斥F都随距离的增大而减小,但引F>斥F,F表现为引力; (4)当010rr ( m)时,引F和斥F都已经十分微弱,可以认为分子间没有相互作用力(F=0). 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志〔温度相同平均动能相同,但平均速率一般不等〔分子质 量越大平均速率越小〕。热力学温度与摄氏温度的关系:273.15TtK 5、内能 ①分子势能 :分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,称为分子势能。分子势能的大小与分子间距离有关。 (1)一般规定无穷远处分子势能为零, (2)分子力做正功分子势能减少,分子力做负功分子势能增加。分子势能的大小变化可通过宏观量体积来反映。〔0rr时分子势能最小但不是无〕 当0rr时,分子力为引力,当r增大时,分子力做负功,分子势能增加 当0rr时,分子力为斥力,当r减少时,分子力做负功,分子是能增加 当r=r0时,分子势能最小,但不为零,为负值,因为选两分子相距无穷远时分子势能为零。 ②物体的内能: 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规那么热运动并且相互作用着的分子组成,因此任何物体都是有内能的。〔理想气体的内能只取决于温度〕 ③改变内能的方式 做功与热传递都使物体的内能改变 特别提醒: (1)物体的体积越大,分子势能不一定就越大,如0 ℃的水结成0 ℃的冰后体积变大,但分子势能却减小了. (2)理想气体分子间相互作用力为零,故分子势能忽略不计,一定质量的理想气体内能只与温度有关. (3)内能都是对宏观物体而言的,不存在某个分子的内能的说法。由物体内部状态决定:物质的量〔分子数量〕、温度〔分子平均动能〕、体积〔分子间距〕决定,与宏观机械运动无关,与机械能无必然联系。 二、气体 6、分子热运动速率的统计分布规律 (1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能到达的整个空间. (2)分子做无规那么的运动,速率有大有小,且时刻变化,大量分子的速率按“中间多,两头少〞规律分布. (3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均..

速率..将增大〔并不是每个

分子的速率都增大〕,但速率分布规律不变.

7、气体实验定律 ①玻意耳定律:pVC〔C为常量〕→等温变化 微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,体积减少时,分子的密集程度增大,气体的压强就增大。 适用条件:压强不太大,温度不太低

图象表达:1pV〔图1〕

②查理定律:pCT〔C为常量〕→ 等容变化 微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情况下,温度升高时,分子的平均动能增大,气体的压强就增大。 适用条件:温度不太低,压强不太大

图象表达:pV〔图2〕

③盖吕萨克定律:VCT〔C为常量〕→等压变化 微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分子的密集程度减少,才能保持压强不变 适用条件:压强不太大,温度不太低 图象表达:VT〔图3〕

V1>V2 -273℃ 图2

TⅢ>TⅡ>TⅠ T2>T1

图1 8、理想气体 宏观上:严格遵守三个实验定律的气体,实际气体在常温常压下〔压强不太大、温度不太低〕实验气体可以看成理想气体 微观上:理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.故一定质量的理想气体的内能只与温度有关,与体积无关〔即理想气体的内能只看所用分子动能,没有分子势能〕 理想气体状态方程:pVCT,可包含气体的三个实验定律: 几个重要的推论 (1)查理定律的推论:Δp=p1T1ΔT (2)盖—吕萨克定律的推论:ΔV=V1T1ΔT (3)理想气体状态方程的推论:p0V0T0=p1V1T1+p2V2T2+…… 应用状态方程或实验定律解题的一般步骤 (1)明确研究对象,即某一定质量的理想气体; (2)确定气体在始末状态的参量p1、V1、T1及p2、V2、T2; (3)由状态方程或实验定律列式求解; (4)讨论结果的合理性. 9、气体压强的微观解释 大量分子频繁的撞击器壁的结果 影响气体压强的因素:①气体的平均分子动能〔宏观上即:温度〕②分子的密集程度即单位体积内的分子数〔宏观上即:体积〕 F= N f (F为单位面积上的作用力,反映压强大小,N为单位时间单位面积撞击分子数,与温度和体积有关,f为单个分子撞击力大小,与温度有关) 三、物态和物态变化 10、晶体:外观上有规那么的几何外形,有确定的熔点,一些物理性质表现为各向异性 非晶体:外观没有规那么的几何外形,无确定的熔点,一些物理性质表现为各向同性 ①判断物质是晶体还是非晶体的主要依据是有无固定的熔点 ②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体〔石英→玻璃〕 11、单晶体 多晶体 如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体〔单晶硅、单晶锗〕 如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规那么的几何外形,但同单晶体一样,仍有确定的熔点。 12、晶体的微观结构: 固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规那么振动。 晶体内部,微粒按照一定的规律在空间周期性地排列〔即晶体的点阵结构〕,不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质〔即晶体的各向异性〕。 13、外表张力 当外表层的分子比液体内部稀疏时,分子间距比内部大,外表层的分子表现为引力。如露珠 (1)作用:液体的外表张力使液面具有_收缩_的趋势. (2)方向:外表张力跟液面相切,跟这局部液面的分界线_垂直_. (3)大小:液体的温度越高,外表张力越小;液体中溶有杂质时,外表张力变小;液体的密度越大,外表张力越大.

P1>P2 P1>P2 -273℃ 图3 14、液晶 分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性 各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去那么是杂乱无章的 15、饱和汽 湿度 〔1〕饱和汽:与液体处于动态平衡的蒸汽. 〔2〕未饱和汽:没有到达饱和状态的蒸汽. 〔3〕饱和汽压 ①定义:饱和汽所具有的压强. ②特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关. 〔4〕湿度 ①定义:空气的干湿程度. ②描述湿度的物理量 a.绝对湿度:空气中所含水蒸气的压强. b.相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比. c.相对湿度公式 相对湿度=水蒸气的实际压强同温度水的饱和汽压(B=pps×100%). 15、改变系统内能的两种方式:做功和热传递 ①热传递有三种不同的方式:热传导、热对流和热辐射 ②这两种方式改变系统的内能是等效的 ③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体〔或物体的不同局部〕之间内能的转移 16、热力学第一定律 ①表达式uWQ ② 几种特殊情况 (1)假设过程是绝热的,那么Q=0,W=ΔU,外界对物体做的功等于物体内能的增加. (2)假设过程中不做功,即W=0,那么Q=ΔU,物体吸收的热量等于物体内能的增加. 〔3〕假设过程的始末状态物体的内能不变,即ΔU=0,那么W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量. 17、热力学第二定律 〔1〕常见的两种表述 ①克劳修斯表述(按热传递的方向性来表述):热量不能自发地从__低温__物体传到_高温_物体. ②开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从__单一热源__吸收热量,使之完全变成功,而不产生其他影响. a、“自发地〞指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助. b、“不产生其他影响〞的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等. 〔2〕热力学第二定律的实质:自然界中进行的涉及热现象的宏观过程都具有方向性的。 〔3〕热力学过程方向性实例

相关文档
最新文档