近十年全国高中数学联赛试题一试(解析几何)

合集下载

2012年全国高中数学联赛一试及加试试题

2012年全国高中数学联赛一试及加试试题

2012年全国高中数学联赛一试及加试试题 参考答案及详细评分标准(A 卷word 版)一、填空题:本大题共8小题,每小题8分,共64分.把答案填在题中的横线上. 1. 设P 是函数2y x x=+(0x >)的图像上任意一点,过点P 分别向直线y x =和y 轴作垂线,垂足分别为,A B ,则PA PB ⋅的值是 .2. 设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满足3cos cos 5a Bb Ac -=, 则tan tan AB的值是 . 【答案】43.设,,[0,1]x y z ∈,则||||||M x y y z z x ---是 . 21【解析】不妨设01,x y z ≤≤≤≤则.M y x z y z x =---2[()()]2().y x z y y x z y z x ---+-=-所以2()(21)2 1.M z x z x z x --=- 当且仅当1,0,1,2y x z y x z y -=-===时上式等号同时成立.故max 2 1.M =4.抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N ,则||||MN AB 的最大值是 .【答案】1【解析】由抛物线的定义及梯形的中位线定理得.2AF BFMN +=在AFB ∆中,由余弦定理得2222cos 3AB AF BF AF BF π=+-⋅2()3AF BF AF BF =+-⋅22()3()2AF BF AF BF +≥+-22().2AF BF MN +==当且仅当AF BF =时等号成立.故MNAB的最大值为1.5.设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的侧面与底面所成的角为45,则正三棱锥Q ABC -的侧面与底面所成角的正切值是 .6. 设()f x 是定义在R 上的奇函数,且当0x ≥时,()f x x 2=.若对任意的[,2]x a a ∈+,不等式()2()f x a f x +≥恒成立,则实数a 的取值范围是 . 【答案】[2,).+∞7.满足11sin 43n π<<的所有正整数n 的和是 . 【答案】33【解析】由正弦函数的凸性,有当(0,)6x π∈时,3sin ,x x x π<<由此得131sin,sin ,1313412124πππππ<<>⨯=131sin ,sin .10103993πππππ<<>⨯=所以11sin sin sin sin sin .134********πππππ<<<<<< 故满足11sin 43n π<<的正整数n 的所有值分别为10,11,12,它们的和为33.8.某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是 .(用最简分数表示)二、解答题:本大题共3小题,共56分.解答应写出文字说明、推理过程或演算步骤. 9.(本小题满分16分)已知函数131()sin cos 2,,022f x a x x a a R a a =-+-+∈≠ (1)若对任意x R ∈,都有()0f x ≤,求a 的取值范围; (2)若2a ≥,且存在x R ∈,使得()0f x ≤,求a 的取值范围.10.(本小题满分20分)已知数列{}n a 的各项均为非零实数,且对于任意的正整数n ,都有23331212()n na a a a a a +++=+++ (1)当3n =时,求所有满足条件的三项组成的数列123,,a a a ;(2)是否存在满足条件的无穷数列{}n a ,使得20132012?a =-若存在, 求出这样的无穷数列的一个通项公式;若不存在,说明理由.11.(本小题满分20分)如图5,在平面直角坐标系XOY 中,菱形ABCD 的边长为4,且6OB OD ==. (1)求证:||||OA OC ⋅为定值;(2)当点A 在半圆22(2)4x y -+=(24x ≤≤)上运动时,求点C 的轨迹.【解析】因为,,OB OD AB AD BC CD ====所以,,O A C 三点共线 如图,连结BD ,则BD 垂直平分线段AC ,设垂足为K ,于是有()()OA OC OK AK OK AK ⋅=-+22OK AK =-2222()()OB BK AB BK =---22226420OB AB =-=-= (定值)(2)设(,),(22cos ,2sin ),C x y A αα+其中(),22XMA ππαα=∠-≤≤则2XOC α∠=. 因为2222(22cos )(2sin )8(1cos )16cos,2OA αααα=++=+=所以4cos2OA α=由(1)的结论得cos5,2OC α=所以cos5.2x OC α==从而sin5tan[5,5].22y OC αα==∈-故点C 的轨迹是一条线段,其两个端点的坐标分别为(5,5),(5,5)A B -2011年全国高中数学联合竞赛一试试题(A 卷)一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为.(用数字作答)6.在四面体ABCD中,已知︒==BDADB,3=CD,则BDCAD,2∠60∠=CDA=∠=四面体ABCD的外接球的半径为.7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于BA ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.yOPAB2010年全国高中数学联赛一 试一、填空题(每小题8分,共64分,) 1. 函数x x x f 3245)(---=的值域是 .2. 已知函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是 . 3. 双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 .4. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中3522113,,1,3b a b a b a ====,且存在常数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα .5. 函数)1,0(23)(2≠>-+=a a a ax f x x在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是 .6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 .7. 正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin .8. 方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 . 二、解答题(本题满分56分)9. (16分)已知函数)0()(23≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值.10.(20分)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.11.(20分)证明:方程02523=-+x x 恰有一个实数根r ,且存在唯一的严格递增正整数数列}{n a ,使得+++=32152a a a r r r .解 答1. ]3,3[- 提示:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为]3,3[-.2. 1223≤≤-a 提示:令t x =sin ,则原函数化为t a at t g )3()(2-+-=,即 t a at t g )3()(3-+-=.由3)3(3-≥-+-t a at ,0)1(3)1(2≥----t t at ,0)3)1()(1(≥-+--t at t 及01≤-t 知03)1(≤-+-t at 即3)(2-≥+t t a . (1)当1,0-=t 时(1)总成立;对20,102≤+<≤<t t t ;对041,012<+≤-<<-t t t .从而可知 1223≤≤-a . 3. 9800 提示:由对称性知,只要先考虑x 轴上方的情况,设)99,,2,1( ==k k y 与双曲线右半支于k A ,交直线100=x 于k B ,则线段k k B A 内部的整点的个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)99494851k k =-=⨯=∑.又x 轴上有98个整点,所以所求整点的个数为98009848512=+⨯.3 提示 :设}{n a 的公差为}{,n b d 的公比为q ,则,3q d =+ (1)2)43(3q d =+, (2)(1)代入(2)得961292++=+d d d ,求得9,6==q d .从而有βα+=-+-19log )1(63n n 对一切正整数n 都成立,即βα+-=-9log )1(36n n 对一切正整数n 都成立.从而βαα+-=-=9log 3,69log ,求得 3,33==βα,333+=+βα.5. 41- 提示:令,y a x =则原函数化为23)(2-+=y y y g ,)(y g 在3(,+)2-∞上是递增的.当10<<a 时,],[1-∈a a y ,211max 1()32822g y a a a a ---=+-=⇒=⇒=, 所以412213)21()(2min -=-⨯+=y g ;当1>a 时,],[1a a y -∈,2823)(2max =⇒=-+=a a a y g ,所以412232)(12min -=-⨯+=--y g .综上)(x f 在]1,1[-∈x 上的最小值为41-.6. 1217 提示:同时投掷两颗骰子点数和大于6的概率为1273621=,从而先投掷人的获胜概率为+⨯+⨯+127)125(127)125(1274217121442511127=-⨯=.提示:解法一:如图,以AB 所在直线为x 轴,线段AB 中点O 为原点,OC 所在直线为y 轴,建立空间直角坐标系.设正三棱柱的棱长为2,则)1,3,0(),2,0,1(),2,0,1(),0,0,1(11P A B B -,从而,)1,3,1(),0,0,2(),1,3,1(),2,0,2(1111--=-=-=-=P B A B BP BA . 设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x n =,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,03,022111111z y x BP m z x BA m ⎪⎩⎪⎨⎧=-+-=⋅=-=⋅,03,022221211z y x P B n x A B n 由此可设 )3,1,0(),1,0,1(==n m ,所以cos m n m n α⋅=⋅,即2cos cos 4αα=⇒=. 所以 410sin =α. 解法二:如图,PB PA PC PC ==11, . 设BA 1与1AB 交于点,O则1111,,OA OB OA OB A B AB ==⊥ .11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 .过O 在平面B PA 1上作P A OE 1⊥,垂足为E .连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得OEPC 1B 1A 1CBA3,2,5111=====PO O B O A PA PB . 在直角O PA 1∆中,OE P A PO O A ⋅=⋅11,即 56,532=∴⋅=⋅OE OE .又 554562,222111=+=+=∴=OE O B E B O B . 4105542sin sin 111===∠=E B O B EO B α. 8. 336675 提示:首先易知2010=++z y x 的正整数解的个数为1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类:(1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.9. 解法一: ,23)(2c bx ax x f ++='由 ⎪⎪⎩⎪⎪⎨⎧++='++='='cb a fc b a f c f 23)1(,43)21(,)0( 得)21(4)1(2)0(23f f f a '-'+'=.所以)21(4)1(2)0(23f f f a '-'+'=)21(4)1(2)0(2f f f '+'+'≤ 8≤, 所以38≤a . 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38. 解法二:c bx ax x f ++='23)(2. 设1)()(+'=x f x g ,则当10≤≤x 时,2)(0≤≤x g .设 12-=x z ,则11,21≤≤-+=z z x . 14322343)21()(2++++++=+=c b az b a z a z g z h .容易知道当11≤≤-z 时,2)(0,2)(0≤-≤≤≤z h z h . 从而当11≤≤-z 时,22)()(0≤-+≤z h z h , 即21434302≤++++≤c b a z a , 从而 0143≥+++c b a ,2432≤z a ,由 102≤≤z 知38≤a . 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.10. 解法一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=. 线段AB 的垂直平分线的方程是)2(30--=-x y y y . (1) 易知0,5==y x 是(1)的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.由(1)知直线AB 的方程为)2(30-=-x y y y ,即2)(300+-=y y y x . (2) (2)代入x y 62=得12)(2002+-=y y y y ,即012222002=-+-y y y y . (3)依题意,21,y y 是方程(3)的两个实根,且21y y ≠,所以22200044(212)4480y y y ∆=--=-+>,32320<<-y .221221)()(y y x x AB -+-=22120))()3(1(y y y -+= ]4))[(91(2122120y y y y y -++=))122(44)(91(202020--+=y y y)12)(9(322020y y -+=. 定点)0,5(C 到线段AB 的距离 202029)0()25(y y CM h +=-+-==.2020209)12)(9(3121y y y h AB S ABC +⋅-+=⋅=∆ )9)(224)(9(2131202020y y y +-+=3202020)392249(2131y y y ++-++≤7314= . 当且仅当2202249y y -=+,即0y =,66((33A B 或66((33A B -时等号成立. 所以,ABC ∆面积的最大值为7314. 解法二:同解法一,线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.设4,,,222121222211=+>==t t t t t x t x ,则161610521222121t t t t S ABC =∆的绝对值, 2222122112))656665(21(t t t t t t S ABC --+=∆221221)5()(23+-=t t t t )5)(5)(24(23212121++-=t t t t t t3)314(23≤,所以7314≤∆ABC S , 当且仅当5)(21221+=-t t t t 且42221=+t t ,即,6571-=t6572+-=t ,A B 或A B -时等号成立. 所以,ABC ∆面积的最大值是7314. 11.令252)(3-+=x x x f ,则056)(2>+='x x f ,所以)(x f 是严格递增的.又043)21(,02)0(>=<-=f f ,故)(x f 有唯一实数根1(0,)2r ∈.所以 32520r r +-=,3152rr -=4710r r r r =++++.故数列),2,1(23 =-=n n a n 是满足题设要求的数列. 若存在两个不同的正整数数列 <<<<n a a a 21和 <<<<n b b b 21满足52321321=+++=+++ b b b a a a r r r r r r , 去掉上面等式两边相同的项,有+++=+++321321t t t s s s r r r r r r ,这里 <<<<<<321321,t t t s s s ,所有的i s 与j t 都是不同的.不妨设11t s <,则++=++<21211t t s s s r r r r r ,112111111121211=--<--=++≤++<--rr r r r s t s t ,矛盾.故满足题设的数列是唯一的.2009全国高中数学联合竞赛一试试题 (考试时间 10月11日8:00-9:40)本试卷共二个大题,满分100分,不能使用计算器一、填空题(本大题共8小题,每题7分,共56分)1、若函数)]]([[)(,1)()(2x f f f f x f x xx f n n =+=且,则=)1()99(f ; 2、已知直线L :09=-+y x 和圆M :01882222=---+y x y x ,点A 在直线L 上,B 、C 为圆M 上两点,在△ABC 中,∠BAC =45°,AB 过圆心M ,则点A 的横坐标的范围为 ;3、在坐标平面上有两个区域M ,N ,M 为⎪⎩⎪⎨⎧-≤≤≥xy x y y 20,N 是随t 变化的区域,它由不等式1+≤≤t x t 所确定,t 的取值范围是10≤≤t ,设M ,N 的公共面积是)(t f ,则)(t f =4、使不等式312007111111-<+++++a n n n 对一切正整数n 都成立的最小正整数a 的值为5、椭圆)0(12222>>=+b a b y a x 上任意两点P ,Q ,若OP ⊥OQ ,则乘积|OP|·|OQ|的最小值为6、若方程)1lg(2lg +=x kx 仅有一个实根,那么k 的取值范围是7、一个由若干数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排除的行,则最后一行的数是 (可以用指数表示)。

(完整word版)2.2012年全国高中数学联赛模拟卷(一)(一试+二试,附详细解答)

(完整word版)2.2012年全国高中数学联赛模拟卷(一)(一试+二试,附详细解答)

2012年全国高中数学联赛模拟卷(一)第一试(考试时间:80分钟 满分:120分)姓名:_____________考试号:______________得分:____________一、填空题(本大题共8小题,每小题8分,共64分)1229x <+的解集为 . 解析: 由0211≠+-x 得0,21≠-≥x x ,原不等式可变为()922112+<++x x解得845<x 故原不等式的解集为145,00,28⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦U2.过正方体外接球球心的截面截正方体所得图形可能为______________. ①三角形 ②正方形 ③梯形 ④五边形 ⑤六边形答案:②⑤,解:由对称性可知,所得图形应为中心对称图形,且②⑤可以截得3.直线2kx y -=||1x =-有两个不同的交点,则实数k 的取值范围是__ _______.提示:44[2,)(,2]33--⋃, 曲线为两个半圆,直线过定点(0,−2),数形结合可得.4.复数z ,使322z z z +=,则z 的所有可能值为 _____ ____.答案:0,1,12,12i i -+-- 解:322z z z+==2z z ⋅,∴2(12)0z z z +-=当 0z =时,满足条件,当 0z ≠时,2120z z +-=设 22(,),212()z a bi a b R a b abi a bi =+∈-++--则∴ 22120(1)220(2)a b a ab b ⎧-+-=⎨+=⎩ ,由(2) 2(1)0b a +=1)0b = 代入(1) 整理得:2(1)01a a -=⇒=2)0b ≠,则 1a =- 代入(1) 得:242b b =⇒=±,经检验复数1,12z i =-±均满足条件. ∴ z 的所有可能值为0,1,12,12i i -+--.5.所有的满足条件11a b a b a b a b a b ---=⋅++的正整数对(,)a b 的个数为 .解:显然1a b >≥.由条件得11a a b a a b -->⋅1b a b -⇒>11b a b -⇒≥+,从而有bab b b ≥+即b b ab b ≤-,再结合条件及以上结果,可得11a b a b a b a b a b --⋅++=-aa ab b ≥-+,整理得11a a b a ab a a b --+≥-⋅()11a b a a b --=⋅-1a a -≥,从而()211a a a a a a ab a -=+-≥+≥即31a a-≤,所以23a ≤≤.当2a =时,1b =,不符合;当3a =时,2b =(1b =不符合).综上,满足本题的正整数对(),a b 只有()32,,故只有1解.6.设,,a b c 为方程3120x k x k --=的根(121k k +≠),则111111a b ca b c+++++=--- __. 答案:1212331k k k k ++--,由题意,312()()()x k x k x a x b x c --=--- 由此可得0a b c ++=,1ab bc ca k ++=-,2abc k =以及121(1)(1)(1)k k a b c --=---1113()()3111(1)(1)(1)a b c a b c ab bc ca abc a b c a b c +++-++-+++++=------1212331k k k k ++=--7.将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b . 则使不等式0102>+-b a 成立的事件发生的概率等于 .提示:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个,由不等式a −2b +10>0得2b <a +10,于是,当b =1、2、3、4、5时,每种情形a 可取1、2、…、9中每一个值,使不等式成立,则共有9×5=45种;当b =6时,a 可取3、4、…、9中每一个值,有7种;当b =7时,a 可取5、6、7、8、9中每一个值,有5种;当b =8时,a 可取7、8、9中每一个值,有3种;当b =9时,a 只能取9,有1种。

高中数学联赛高中数学竞赛一试试题和答案

高中数学联赛高中数学竞赛一试试题和答案

与双曲线
x2
y2
1交于不同两点 C , D
,问是否存在直线 l
,使得向量 AC BD
0 ,若存在,指出这样的
4 12
直线有多少条?若不存在,请说明理由.
2.(本小题满分 15 分)已知 p , q ( q 0 )是实数,方程 x2 px q 0 有两个实根 , ,数列an 满足

7.一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个 数,第一行是前 100 个正整数按从小到大排成的行,则最后一行的数是
(可以用指数表示).
8.某车站每天 8∶00—9∶00,9∶00—10∶00 都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时
一、填空题(每小题 8 分,共 64 分,)
1. 函数 f (x) x 5 24 3x 的值域是
.
2. 已知函数 y (a cos2 x 3) sin x 的最小值为 3 ,则实数 a 的取值范围是
.
3. 双曲线 x 2 y 2 1 的右半支与直线 x 100 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)
点,在△ ABC 中,BAC 45 , AB 过圆心 M ,则点 A 横坐标范围为

y 0
3.在坐标平面上有两个区域
M
和N,M Nhomakorabea为:
y
x
N 是随 t 变化的区域,它由不等式 t x t 1所确
y 2 x
定, t 的取值范围是 0 t 1 ,设 M 和 N 的公共面积是函数 f t ,则 f t
11.(20 分)证明:方程 2x3 5x 2 0 恰有一个实数根 r ,且存在唯一的严格递增正整数数列{an } ,使得

高中数学解析几何测试题(答案版)

高中数学解析几何测试题(答案版)

解析几何练习题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12- C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .211.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --=B .50x y -+=C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A. 304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,,C. ⎡⎢⎣⎦ D. 203⎡⎤-⎢⎥⎣⎦, 二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是 。

2015年全国高中数学联赛一试二试试题及详细解析

2015年全国高中数学联赛一试二试试题及详细解析

一、填空题(本大题共8小题,每小题8分,共64分)1.设,a b 为不相等的实数,若二次函数2()f x x ax b =++满足()()f a f b =,则(2)f 的值是 .【答案】4【解析】由已知条件及二次函数图象的轴对称性,可得22a b a+=-,即20a b +=,所以 (2)424f a b =++=2.若实数θ满足cos tan θθ=,则41cos sin θθ+的值为 . 【答案】2【解析】由条件知,2cos sin αα=,反复利用此结论,并注意到22cos sin 1αα+=,得2242221cos sin cos sin (1sin )(1cos )2sin cos 2sin sin αααααααααα++=+=++-=+-= 3.已知复数数列{}n z 满足111,1(1,2,)n n z z z ni n +==++=,其中i 为虚数单位, n z 表示n z 的共轭复数,则2015z 的值是 .【答案】2015+1007i【解析】由已知得,对一切正整数n,有211(1)1(1)2n n n n z z n i z ni n i z i ++=+++=++++=++ 于是201511007(2)20151007z z i i =++=+ z 学科xx 网k4.在矩形ABCD 中,2,1AB AD ==,边DC 上(包括点,)D C 的动点P 与CB 延长线上(包括点)B 的动点Q 满足||||DP BQ =,则向量PA 与向量PQ 的数量积PA PQ ⋅的最小值为 .【答案】3422133(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥当t=12时,min 3()4PA PQ ⋅= 5.在正方体中随机取三条棱,它们两两异面的概率为 . 【答案】255【解析】设正方体为ABCD-EF GH ,它共有12条棱,从中任意选出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数,由于正方体的棱共确定3个互不平行的方向(即AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能,当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH.由上可知,3条棱两两异面的取法数为4×2=8,故所求的概率为8222055=. z 学科xx 网k 6.在平面直角坐标系xOy 中,点集{(,)|(|||3|6)(|3|||6)0}K x y x y x y =+-+-≤所对应的平面区域的面 积为 . 【答案】247.设ω为正实数,若存在,(2)a b a b ππ≤<≤,使得sin sin 2a b ωω+=,则实数ω的取值范围是 【答案】9513[,][,)424w ∈+∞ 【解析】由sin sin 2wa wb +=知sin sin 1wa wb ==,而[,][,2],wa wb w w ππ⊆故题目条件等价于:存在整数()k l k l <,,使得222.22w k l w ππππππ≤+<+≤ ⑴当4w ≥时,区间[,2]w w ππ的长度不小于4π,故必存在k,l 满足(1)式. 当04w <<时,注意到[,2]0,8w w πππ⊆(),故仅需考虑如下几种情况: 5)2,22i w w ππππ≤<≤(此时15,24w w ≤≥且无解;59)2,22ii w w ππππ≤<≤(此时有95;42w ≤≤913()222iii w w ππππ≤<≤,此时有13913,4424w w ≤≤≤<得.综合)()(),i ii iii (、、并注意到4w ≥亦满足条件,可知9513[,][,)424w ∈+∞. z 学科xx 网k8.对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若,,a b b c c d <><,则称abcd 为Q 类数,用()N P 与()N Q 分别表示P 类数与Q 类数的个数,则()()N P N Q -的值为【答案】285下面计算0||:A 对任一四位数00,abc A b ∈可取0,19⋅⋅⋅,,,对其中每个b , 由9b a <≤及9b c <≤知,a 和c 分别有9-b 种取法,从而992200191019||=(9)285.6b k b k ==⨯⨯-===∑∑A 因此()()285.N P N Q -=二、解答题(本大题共3个小题,共56分.解答应写出文字说明、证明过程或演算步骤.) 9. (本题满分16分)若实数,,a b c 满足242,424a b c a b c +=+=,求c 的最小值. 【解析】将2,2,2a b c 分别记为,,x y z ,则,,0x y z >由条件知,222,,x y z x y z +=+=故 2222224()2z y x z y z y z y -==-=-+ 因此,结合均值不等式可得,4223321111113(2)3222444y y y y y y y y y +=++≥⋅⋅⋅=z= 当212=y y ,即312y =时,z 的最小值为3324.此时相应的x 值为3124,符合要求. 由于2,z c=log 故c 的最小值为32235log (2)log 3.43=- 10.(本题满分20分)设1234,,,a a a a 是四个有理数,使得{|14}i j a a i j ≤<≤,31{24,2,,,1,3}28=---- 求1234a a a a +++的值.2231412113{,}{,24}{2,},82a a a a a a =--=-- z 学科xx 网k 结合1,a Q ∈只可能11.4a =±由此易知,123411,4,642a a a ==-==-,a 或者123411,4,642a a a =-==-=,a . 经检验知这两组解均满足问题的条件,故12349.4a a a ++=±+a11.(本题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2212x y +=的左,右焦点,设不经过焦点1F 的直线l 与椭圆C 交于两个不同的点,A B ,焦点2F 到直线l 的距离为d .如果直线11,,AF l BF 的斜率成等差数列,求d 的取值范围.22222=4)4(21)(22)8(21)0km k m k m ∆-+-=+->(, 即2221.(2)k m +>由直线11AF l BF 、、的斜率121211y yk x x ++、、依次成等差数列知, 12112212+2,,11y yk y kx m y kx m x x ==+=+++又,所以122112)(1))(1)2(1)(1).kx m x kx m x k x x +++++=++(( 化简并整理得,12)(2)0m k x x -++=(假如m=k ,则直线L 的方程为y=kx+k,即l 经过点11,0F (-),不符合条件.因此必有122=0x x ++,故由方程(1)及韦达定理知,z 学科xx 网k12241()2,.(3)212km x x m k k k=-+==++即 由22212321=2k m k k +>+()、()知,(),化简得221,4k k >这等价于2||2k > 反之当m,k 满足(3)及2||2k >l 必不经过点1F (否则将导致,m k =与(3)矛盾),21313()().(4)222t t t t⋅+=⋅+d= z 学科xx 网k考虑到函数13()()2f t t t=⋅+在[1,3]上单调递减,故由(4)得,(3)(1),f d f <<即(3,2)d ∈.一.(本题满分40分)设12,,,(2)n a a a n ≥是实数,证明:可以连取12,,,{1,1}n εεε∈-使得222111()()(1)()nnni i i i i i i a a n a ε===+≤+∑∑∑【证明】我们证明:[]2222111[]12()()(1)()(1)nnnni i j i n i i i j a a a n a ====++-≤+∑∑∑∑1,,[],1;[]1,,,122i i n ni i n εε=⋅⋅⋅==+⋅⋅⋅=-即对取对取符合要求,[].)x x (这里,表示实数的整数部分1事实上,()的左边为[][]222211[]1[]122(+)+()nn nni j i j nn i i j j a a a a ===+=+-∑∑∑∑[]2221[]12=2(+2)nni j n i j a a ==+∑∑)([]2221[]122[]([]))(22n ni j n i j n n a a ==+≤∑∑)+2(n-(柯西不等式)[]2221[]12++=2[](+]))([]])2222n ni j ni j n n a a n ==+-=∑∑n 1n 1)2([(利用[ z 学科xx 网k[]2221[]12()([]n ni j n i j n a a x x ==+≤≤∑∑)+(n+1)(利用)[]221n+1(1.ni i a =≤∑()),所以()得证,从而本题得证 二、(本题满分40分)设12{,,,}n S A A A =,其中12,,,n A A A 是n 个互不相同的有限集合(2)n ≥,满足对任意,i j A A S ∈,均有ij A A S ∈,若1min ||2i i nk A ≤≤=≥,证明:存在1n i i x A =∈,使得x 属于12,,,n A A A 中的至少nk个集合(这里||X 表示有限集合X 的元素个数)1121212={,}.,,k n s A A A A A A A B B B ⋅⋅⋅⋅⋅⋅⋅⋅⋅设,,在,,中除去,,,12,t C C C n s t ⋅⋅⋅--,,后,在剩下的个集合中,设包含 i k),n-s-t i a x ≤≤的集合有个(1由于剩下的个集合中1i A a 每个集合与的交非空,即包含某个,从而12+.k x x x n s t +⋅⋅⋅+≥--111max ,,i i kn s tx x x n s t k≤≤--=≥--不妨设则由上式知即在剩下的个集合中,1112(1,,),,i t n s tA C i t C C C k--⊆=⋅⋅⋅⋅⋅⋅包含a 的集合至少有个,又由于故,,都 11,a a 包含因此包含的集合个数至少为(1)+(2)n s t n s k t n s t t k k k k ---+--+=≥≥利用()nt s k≥≥利用 三、(本题满分50分)如图,ABC ∆内接于圆,O P 为BC 上一点,点K 在线段AP 上,使得BK 平分ABC ∠,过,,K P C 三点的圆Ω与边AC 交于点D ,连结BD 交圆Ω于点E ,连结PE 并延长与边AB 交于点F ,证明:2ABC FCB ∠=∠四、(本题满分50分)求具有下述性质的所有正整数k :对任意正整数(1)1,2k n n -+不整除()!!kn n . 【解析】对正整数m,设2()v m 表示正整数m 的标准分解中素因子2的方幂,则熟知2(!)(),(1)v m m s m =- z 学科xx 网k().s m m 这里表示正整数在二进制表示下的数码之和1)12)!)!2()(1),!!k n kn kn v k n n n -+≤-(((由于不整除等价于即22(()!)(!),1kn v kn n v n -≥-进而由()知,本题等价于 ≥求所有正整数k,使得s(kn)s(n)对任意正整数n 成立.(0,1,2,).a a =⋅⋅⋅我们证明,所有符号条件的k 为2(2)()a S n S n n =一方面,由于对任意正整数成立,故2.a k =符合条件 22,0,1.a k k q a q =⋅≥另一方面,若不是的方幂,设是大于的奇数 )().)=2)(),a n S kn S n S kn S qn S qn <=下面构造一个正整数,使得(因为(( ,)().mq m S m S q<因此问题等价于我们选取的一个倍数使得( z 学科xx 网k212102,u u u u q q --<<由于故正整数的二进制表示中的最高次幂小于,由此2121(01),22t tu u lu ju i j i j t q qαα++--≤<≤-⋅⋅易知,对任意整数,数与的二进制表示中没有相同的项.210,20,1,,1)1tu lu t l t qαα+->⋅=⋅⋅⋅-又因为故(的二进制表示中均不包含,故(0,1,2,).a a =⋅⋅⋅综合上述的两个方面可知,所求的k 为2 z 学科xx 网k。

2024年全国高中数学联赛(一试)

2024年全国高中数学联赛(一试)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试试题(A )一、填空题:本大题共8小题,每小题8分,满分64分.1.若实数m >1满足98m log log =2024,则32m log log 的值为.2.设无穷等比数列{a n }的公比q 满足0<q <1.若{a n }的各项和等于{a n }各项的平方和,则a 2的取值范围是.3.设实数a ,b 满足:集合A ={x ∈R |x 2-10x +a ≤0}与B ={x ∈R |bx ≤b 3}的交集为4,9 ,则a +b 的值为.4.在三棱锥P -ABC 中,若PA ⏊底面ABC ,且棱AB ,BP ,BC ,CP 的长分别为1,2,3,4,则该三棱锥的体积为.5.一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为a ,b .若事件a +b =7发生的概率为17,则事件“a =b ”发生的概率为.6.设f (x )是定义域为R 、最小正周期为5的函数.若函数g (x )=f (2x )在区间0,5 上的零点个数为25,则g (x )在区间[1,4)上的零点个数为.7.设F 1,F 2为椭圆Ω的焦点,在Ω上取一点P (异于长轴端点),记O 为△PF 1F 2的外心,若PO ∙F 1F 2 =2PF 1 ∙PF 2 ,则Ω的离心率的最小值为.8.若三个正整数a ,b ,c 的位数之和为8,且组成a ,b ,c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(a ,b ,c )为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10<a <b <c 的幸运数组(a ,b ,c )的个数为.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ΔABC 中,已知cos C =sinA +cosA 2=B sin +cosB 2,求cos C 的值.10.(本题满分20分)在平面直角坐标系中,双曲线Γ:x 2-y 2=1的右顶点为A .将圆心在y 轴上,且与Γ的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA的所有可能的值.11.(本题满分20分)设复数z ,w 满足z +w =2,求S =z 2-2w +w 2-2z 的最小可能值.·1·。

全国高中数学联赛一试试题

全国高中数学联赛一试试题2013年全国高中数学联赛一试试题一.填空题:本大题共8小题,每小题8分,共64分。

1.设集合{}3,1,0,2=A ,集合{}A x A x xB ?-∈-=22,,则集合B 中所有元素的和为2.在平面直角坐标系xOy 中,点A 、B 在抛物线x y 42=上,满足4-=?OB OA ,F 是抛物线的焦点,则OFB OFA S S =3.在ABC ?中,已知C B A C B A cos cos 10cos ,sin sin 10sin ?=?=,则A tan 的值为4.已知正三棱锥ABC P -的底面边长为1,高为2,则其内切球半径为5.设a 、b 为实数,函数b ax x f +=)(满足:对任意]1,0[∈x ,有1)(≤x f ,则ab 的最大值为6.从20,,2,1中任取5个不同的数,其中至少有2个是相邻数的概率为7.若实数x ,y 满足y x y x -=-24,则x 的取值范围是8.已知数列{}n a 共有9项,其中191==a a ,且对每个{}8,,2,1∈i 均有?-∈+21,1,21i i a a ,则这样的数列的个数为二.解答题:本大题共3小题,共56分。

解答应写出文字说明、证明过程或演算步骤。

9.(本题满分16分)给定正数数列{}n x 满足,,3,2,21=≥-n S S n n 这里n n x x S ++=1. 证明:存在常数0>C ,使得10.(本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为)0(12222>>=+b a by a x ,21,A A 分别为椭圆的左、右顶点,21,F F 分别为椭圆的左右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中有两个点R Q ,满足22112211,,,PF RF PF RF PA QA PA QA ⊥⊥⊥⊥,试确定线段QR 的长度与b 的大小关系,并给出证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近十年全国高中数学联赛试题一试(解析几何)十年全国高中数学联赛试题一试解析几何圆锥曲线部分一、选择题2000、已知点A为双曲线某2y2=1的左顶点,点B和点C在双曲线的右分支上,△ABC是等边三角形,则△ABC的面积是【答】()(A) 333(B)(C)33(D)6332答案:C解析:如图所示,设BD=t,则OD=3t-1,从而B(3t-1,t)满足方程某2y21,可以得到t=3,所以等边三角形,ΔABC的面积是33.某y某2y22002.直线+=1与椭圆+=1相交于A、B两点,该椭圆上点P,使得ΔPAB面积等于3.这43169样的点P共有A.1个B.2个C.3个D.4个解:直线与椭圆的交线长=5.直线方程3某+4y-12=0.12|coθ+inθ-1|设点P(4coθ,3inθ).点P与直线的距离d=,5π12当0≤θ≤时,d≤(2-1),SABC≤6(2-1)<3.即此时没有三角形面积=3;25π12当22某2y21,观察图形可知;题设方程可化为ya某b和ab2003.3过抛物线y28某2的焦点F作倾斜角为60的直线.若此直线与抛物线交于A,B 两点,弦AB的中垂线与某轴交于P点,则线段PF的长等于【答】()(A)168163(D)83(B)(C)3332易知直线AB的方程为y3某,因此A,B两点的横坐标满足方程3某8某160,从而弦AB中点的横坐标为某044,纵坐标y0,进而求得中垂线方程之后,令y=0,得点P的横33坐标即PF= 16;32(某,y)|某2004、已知M=2y23,N=(某,y)|ym某b,若对于所有的mR,均有MN,则b的取值范围是A.[666623232323,,,,22]B。

223333]()C。

()D。

[答:[]22某2y3上或它的内部MN解:相当于点(0,b)在椭圆2b2661,b322。

故选A。

某2y22005.方程1表示的曲线是in2in3co2co3A.焦点在某轴上的椭圆C.焦点在y轴上的椭圆解:23,0B.焦点在某轴上的双曲线D.焦点在y轴上的双曲线22322,co(22)co(32),即in2in3.又0222,3,co20,co30,co2co30,方程表示的曲线是椭圆。

(in2in3)(co2co3)22in2323in()()22423230,in0,222223in()0,()式0.242333,24423.24即in2in3co2co3.曲线表示焦点在y轴上的椭圆,选C。

2007.设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()解:设圆O1和圆O2的半径分别是r1、r2,|O1O2|=2c,则一般地,圆P的圆心轨迹是焦点为O1、O2,且离心率分别是2c2c和的圆锥曲线(当r1=r2时,O1O2的中垂线是轨迹的r1r2|r1r2|一部份,当c=0时,轨迹是两个同心圆)。

当r1=r2且r1+r2<2c时,圆P的圆心轨迹如选项B;当0<2c某2y22000、在椭圆221(a>b>0)中,记左焦点为F,右顶点为A,短轴上方的端点为B.若ab该椭圆的离心率是51,则∠ABF=_________.2答案:90°如图所示,由c51c2+ac-a2=0,a2acoABF2b2a2ca2aab222=0.则∠ABF=90°某2y21的两个焦点,P是椭圆上的点,且PF1:PF22:1,则2003.设F1,F2是椭圆94PF1F2的面积等于_____________.PF1F2是直角三角形,故PF1F2的面积为S11|PF1||PF2|244;222005.若正方形ABCD的一条边在直线y2某17上,另外两个顶点在抛物线y某2上.则该正方形面积的最小值为80.解:设正方形的边AB在直线y2某17上,而位于抛物线上的两个顶点坐标为C(某1,y1)、D(某2,y2),则CD所在直线l的方程y2某b,将直线l 的方程与抛物线方程联立,得某22某b某1,21b1.令正方形边长为a,则a2(某1某2)2(y1y2)25(某1某2)220(b1).①在y2某17上任取一点(6,,5),它到直线y2某b的距离为a,a|17b|5②.①、②联立解得b13,b263.a80,或a1280.amin80.222某2y21的左右焦点分别为F1与F2,2006.已知椭圆点P在直线l:某3y8230164上.当F1PF2取最大值时,比PF1PF2的值为.【解】由平面几何知,要使F则过F1,F2,P三点的圆必定和直线l 相切于P点。

1PF2最大,设直线l交某轴于A(823,0),则APF1AF2P,即APF1AF2P,即PF1PF2APAF2(1),2又由圆幂定理,APAF1AF2(2),而F1(23,0),F2(23,0),A(823,0),从而有AF18,AF2843。

PF1代入(1),(2)得PF22022.椭圆某2a2AF1842331。

AF2843+y2b2=1(a>b>0)上任意两点P,Q,若OP^OQ,则乘积OP某OQ的最小值为_____________.三、解答题某2y22000、已知C0:某+y=1和C1:221(a>b>0)。

试问:当且仅当a,b满足什么条件时,对abC1上任意一点P,均存在以P为项点,与C0外切,与C1内接的平行四边形?并证明你的结论。

22答案:所求条件为11+=1.a2b2证明:必要性:易知,圆外切平行四边形一定是菱形,圆心即菱形中心.假设论成立,则对点(a,0),有(a,0)为项点的菱形与C1内接,与Co外切.(a,0)的相对顶点为(-a,0),由于菱形的对角线互相垂直平分,另外两个顶点必在y轴上,为(0,b)和(0,-b).菱形一条边的方程为某y+=1,即b某+ay=ab.由于菱形与CO外切,ab故必有aba2b2=1,整理得11+=1.必要性得证.a2b211+=1,P是C1上任意一点,过P、O作C1的弦PR,再过O作与PR垂直的弦a2b2QS,则PQRS为与C1内接菱形.设OP=r1,OQ=r2,则点O的坐标为(r1co,r1in),点Q的充分性:设坐标为(r2co(+),r2in(+)),代入椭圆方程,得22r1coa22+r1inb22[r2co()]2[r2in()]22+2=1,=1,22ab22co2()in2()1coin1112]2+于是,+==()+[22222222OPabR1R2OQba=11+=1.a2b2111=+=1,故得h=1hOP2OQ2又在Rt△POQ中,设点O到PQ的距离为h,则同理,点O到QR,RS,SP的距离也为1,故菱形PQRS与C0外切.充分性得证.[注]对于给出abab,2222abab22=1等条件者,应同样给分.2002.已知点A(0,2)和抛物线y2=某+4上两点B,C,使得AB⊥BC,求点C的纵坐标的取值范围.解:设B(y02-4,y0),C(y12-4,y1).则y0-21y1-y01kAB=2=.kBC=22=.y0-4y0+2y1-y0y1+y0由kAB·kBC=-1,得(y1+y0)(y0+2)=-1.∴y02+(y1+2)y0+(2y1+1)=0.∴△=(y1+2)2-4(2y1+1)=y12-4y1≥0,∴y1≤0,y1≥4.当y1=0时,得B(-3,-1),当y1=4时,得B(5,-3)均满足要求,故点C的纵坐标的取值范围是(-∞,0]∪[4,+∞).2005.过抛物线y某2上的一点A(1,1)作抛物线的切线,分别交某轴于D,交y轴于B.点C在抛物线上,点E在线段AC上,满足AEBF1;点F在线段BC上,满足2,且ECFC121,线段CD与EF交于点P.当点C在抛物线上移动时,求点P的轨迹方程.解一:过抛物线上点A的切线斜率为:y2某|某12,切线AB的方程为1y2某1.B、D的坐标为B(0,1),D(,0),D是线段AB的中点.………………5分2AE21知,设P(某,y)、C(某0,某0)、E(某1,y1)、F(某2,y2),则由EC2211某011某02某012某0BE2,得某2某1,y1;,y2.1111FC1212211某011某0y某1111∴EF所在直线方程为:,2212某011某02某011某01211121122化简得[(21)某0(12)]y[(21)某03]某1某02某0.…①…………10分222某0某某01当某0时,直线CD的方程为:y…②22某01某01某13y(3某1)2.………15联立①、②解得,消去,得P点轨迹方程为:某023y某03分当某01311311时,EF方程为:y(213)某2,CD方程为:某,22442421某,22某1,某.联立解得也在P点轨迹上.因C与A不能重合,∴013y.12∴所求轨迹方程为y分解二:由解一知,AB的方程为y2某1,B(0,1),D(,0),故D是AB的中点.……5分令12(3某1)2(某).………………………………………………203312CDCACB,t111,t2 12,则t1t23.因为CD为ABC的中线,CPCECFSCAB2SCAD2SCBD.而SStt1CECFSCEF11133CEPCFP()12,,t1t2CACBSCAB2SCAD2SCBD2t1t22t1 t22t1t22P是ABC的重心.………………………………………………………………………10分2设P(某,y),C(某0,某0),因点C异于A,则某01,故重心P的坐标为2201某01某011某0某012某,(某),y,消去某0,得y(3某1)2.333333故所求轨迹方程为y12(3某1)2(某).………………………………………………20分3322006.给定整数n2,设M0(某0,y0)是抛物线yn某1与直线y某的一个交点.试证2明对于任意正整数m,必存在整数k2,使(某0,y0)为抛物线yk某1与直线mmy某的一个交点.nn24【证明】因为yn某1与y某的交点为某0y0.22显然有某01n。

…(5分)某01.m某0m2若(某0,y0)为抛物线yk 某1与直线y某的一个交点,则k某0mm…(10分)记km某0(13.1)m11,则kk(某)km1nkmkm,m1m01(m2)m某0某0由于k1n是整数,k2某021122(某)2n2也是整数,所以根据数学归纳法,02某0某0m通过(13.1)式可证明对于一切正整数m,km某01是正整数.现在对于任意正整数m,某0m取k某0m1mm2y某,使得与的交点为yk某1(某,y00).……………(20分)某0m2022.如图,P是抛物线y22某上的动点,点B,C在y轴上,圆(某1)2y21内切于PBC,求PBC面积的最小值.[解]设P(某0,y0),B(0,b),C(0,c),不妨设bc.直线PB的方程:yby0b,某某0化简得(y0b)某某0y某0b0.又圆心(1,0)到PB的距离为1,y0b某0b(y0b)某2201,…5分222故(y0b)2某0(y0b)22某0b(y0b)某0b,易知某02,上式化简得(某02)b22y0b某00,同理有(某02)c22y0c某00.…10分所以bc某0,则2y0,bc某02某022224某04y08某0.(bc)(某02)22因P(某0,y0)是抛物线上的点,有y02某0,则22某0.…15分4某0,bc(bc)某02(某02)22某所以SPBC1(bc)某00某0(某02)442某02某02244.8当(某02)24时,上式取等号,此时某04,y022.因此SPBC的最小值为8.…20分某2y22022.(本小题满分14分)设直线l:y=k某+m(其中k,m为整数)与椭圆+=1交于1612某2y2不同两点A,B,与双曲线-=1交于不同两点C,D,问是否存在直线l,使得向量412AC+BD=0,若存在,指出这样的直线有多少条?若不存在,请说明理由.。

相关文档
最新文档