氮氧化物方法确认

氮氧化物方法确认
氮氧化物方法确认

环境空气氮氧化物(一氧化氮和二氧化氮)的测定

盐酸萘乙二胺分光光度法

1.目的

通过分光光度法测定环境空气中氮氧化物的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格。

2.适用范围

本标准规定了测定环境空气中氮氧化物的分光光度法。

本标准适用于环境空气中氮氧化物、二氧化氮、一氧化氮的测定。

本标准的方法检出限为0.12μg/10ml 吸收液。当吸收液总体积为10ml,采样体积为24L 时,空气中氮氧化物的检出限为0.005mg/m3。当吸收液总体积为50ml,采样体积288L 时,空气中氮氧化物的检出限为0.003mg/m3。当吸收液总体积为10ml,采样体积为12~24L时,环境空气中氮氧化物的测定范围为0.020 mg/m3~2.5mg/m3。

3.职责

3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影

响试验结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。

3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。

3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果。

4.方法原理

空气中的二氧化氮被串联的第一支吸收瓶中的吸收液吸收并反应生成粉红色偶氮染料。空气中的一氧化氮不与吸收液反应,通过氧化管时被酸性高锰酸钾溶液氧化为二氧化氮,被串联的第二支吸收瓶中的吸收液吸收并反应生成粉

红色偶氮染料。生成的偶氮染料在波长540nm 处的吸光度与二氧化氮的含量成正比。分别测定第一支和第二支吸收瓶中样品的吸光度,计算两支吸收瓶内二氧化氮和一氧化氮的质量浓度,二者之和即为氮氧化物的质量浓度(以NO2计)。

5.分析步骤

5.1 标准曲线的绘制

取6支10ml 具塞比色管,按表1 制备亚硝酸盐标准溶液系列。根据表1 分别移取相应体积的亚硝酸钠标准工作液(4.9),加水至2.00ml,加入显色液(4.6)8.00ml。

表1 NO2-标准溶液系列

管号0 1 2 3 4 5 标准工作液(4.9)/ml 0.00 0.40 0.80 1.20 1.60 2.00 水/ml 2.00 1.60 1.20 0.80 0.40 0.00 显色液(4.6)/ml 8.00 8.00 8.00 8.00 8.00 8.00

NO2- 质量浓度/

0.00 0.10 0.20 0.30 0.40 0.50

(ug/ml)

各管混匀,于暗处放置20min(室温低于20℃时放置40min 以上),用10mm 比色皿,在波长540nm处,以水为参比测量吸光度,扣除0号管的吸光度以后,对应NO2-的浓度(μg/ml),用最小二乘法计算标准曲线的回归方程。

标准曲线斜率控制在0.960—0.978(吸光度·ml/μg),截距控制在0.000—0.005之间。(以5ml体积绘制标准曲线时,标准曲线斜率控制在0.180—0.195吸光度·ml/μg,截距控制在±0.003之间)

5.2 空白试验

5.2.1 实验室空白试验:取实验室内未经采样的空白吸收液,用10mm 比色皿,在波长540nm 处,以水为参比测定吸光度。实验室空白吸光度A0 在显色规定条件下波动范围不超过±15%。

5.2.2 现场空白:同(7.2.1)测定吸光度。将现场空白和实验室空白的测量结果相对照,若现场空白与实验室空白相差过大,查找原因,重新采样。

5.3 样品测定

采样后放置20min,室温20℃以下时放置40min 以上,用水将采样瓶中吸收液的体积补充至标线,混匀。用10mm 比色皿,在波长540nm 处,以水为参比测量吸光度,同时测定空白样品的吸光度。

若样品的吸光度超过标准曲线的上限,应用实验室空白试液稀释,再测定其吸光度。但稀释倍数不得大于6。

6.结果表示

6.1 空气中二氧化氮质量浓度ρNO2(mg/m3)按式(1)计算:

(1)

6.2 空气中一氧化氮质量浓度

ρNO(mg/m3)以二氧化氮(NO2)计,按式(2)计算:

(2)ρ'NO(mg/m3)以一氧化氮(NO)计,按式(3)计算:

(3)6.3空气中氮氧化物的质量浓度ρNOx(mg/m3)以二氧化氮(NO)计,按式4计算:

(4)

以上各式中:A1、A2——分别为串联的第一支和第二支吸收瓶中样品的吸光度;

A0——实验室空白的吸光度;

b ——标准曲线的斜率,吸光度· ml/μg;

a ——标准曲线的截距;

V——采样用吸收液体积,ml;

V0——换算为标准状态(101.325KPa,273K)下的采样体积, L;

K ——NO→NO2氧化系数,0.68;

D ——样品的稀释倍数;

? —— Saltzman 实验系数,0.88(当空气中二氧化氮浓度高于0.72mg/m3时,? 取值0.77)。

7.结果分析

7.1检出限

选取10份空白样品,按4进行测试。结果见附表。由附表可知,检出限满足标准HJ 535-2009的要求。

7.2精密度

选取6份样品加标,使加标浓度均为0.250mg/m3,按4进行测试。结果见附表。由附表可知,RSD<10%满足要求。

环境空气PM10 新方法确认报告

环境空气PM10测定方法确认报告 项目环境空气PM10的测定 方法环境空气 PM10和PM2.5的测定重量法(HJ618-2011) 在符合确认情况的□内打勾: □非标准方法 □超出预定范围使用的标准方法 ?扩充和修改过的标准方法 在采用的确认试验方式□内打勾: □使用国家有证标准物质进行确认 □与标准方法比较 ?不同人员或仪器比对 报告编写人程旭东 参加人员黄福有、程旭东 日期2013.01.11

一、方法依据 环境空气 PM10和PM2.5的测定重量法(HJ618-2011) 二、适用范围 适用于环境空气中PM10 和PM2.5 浓度的手工测定。检出限为 0.010mg/m3。 三、测量仪器 KC-6120型大气综合采样器,LA204型电子天平。 四、样品采集 1、气象条件 晴天,风速1.28m/s。 2、测点位置、采样时间 环境保护局办公楼楼顶,高度1.8m ,采样时间18h. 五、分析步骤 将滤膜放在恒温恒湿箱(室)中平衡24h,平衡条件为:温度取15°C-30°C 中任何一点,相对湿度控制在45%-55%范围内,记录平衡温度与湿度。在上述平衡条件下,用感量为0.1mg的分析天平称量滤膜,记录滤膜重量。同一滤膜在恒温恒湿箱(室)中相同条件下再平衡1h 后称重。 表1:采样记录表 测定人员滤膜编号 采样时间采样流速 (L/min) 采样体积 (ml) 校正体积 (ml) 开始结束 黄福有13-002 6:00 24:00 100 程旭东12-003 6:00 24:00 100

表2:恒重记录表 日期滤膜 编号 滤膜重量(g)TSP 浓度 (mg/m3) 空膜恒重 (W ) 尘膜恒重 (W 1 ) 尘重 结果计算 六、结论 本文采用了AWA6228型多功能声级计测定建筑施工厂界噪声。本方法具有操作简单、快速等特点。选择了最佳的仪器、气象条件、测点位置、测量时段,在严格的质量控制下,测试结果满足方法要求。

氮氧化物溶于水的计算

氮氧化物溶于水的计算 氮氧化物溶于水的计算常涉及到以下几个方面: (1)混合气体的组成, (2)反应后剩余气体的种类和量, (3)反应后溶液的浓度。 计算的依据是化学反应方程式,根据化学方程式分析各反应物的量、判断剩余气体的种类。应用守恒法进行计算。 1.有关的化学方程式 (1)单一气体:3NO2+H2O===2HNO3+NO① (2)混合气体: ①NO2与O2混合: 4NO2+O2+2H2O===4HNO3② ②NO与O2混合: 4NO+3O2+2H2O===4HNO3③ (3)2NO+O2===2NO2④ 2.不同情况的反应及剩余气体的体积 [特别提醒]因NO2与水发生反应,因此无论是NO2、NO2和O2的混合气体还是NO和O2的混合气体通入水中,最终剩余气体都不能是NO2。

[例] 用排水法收集12 mL NO 于试管中,然后向倒立于水槽中的该试管内间歇地通入O 2 共12 mL ,下面的说法中,正确的是( ) A .剩余NO B .剩余NO 2 C .试管中气体为红棕色 D .试管内气体先变为红棕色,后红棕色消失,反复几次,最后剩余无色气体 [解析] 向NO 中间歇通入O 2发生的反应为 2NO +O 2===2NO 2 ① 3NO 2+H 2O===2HNO 3+NO ② 由①×3+②×2得:4NO +3O 2+2H 2O===4HNO 3 等体积的NO 和O 2反应最终剩余O 2。 [答案] D NO ――→O 2 NO 2――→H 2O NO (无色)(红棕色)(无色) 1.在NO 2被水吸收的反应中,发生还原反应的物质和发生氧化反应的物质的质量比为( ) A .3∶1 B .1∶3 C .1∶2 D .2∶3 解析:3N +4 O 2+H 2O===2HN +5 O 3+N +2 O,3 mol NO 2中,有2 mol 氮的价态升高,1 mol 氮的价态降低,所以发生还原反应的NO 2与发生氧化反应的NO 2的质量比为1∶2。 答案:C 2.标准状况下,将NO 2和O 2按体积比4∶3混合后充入干燥烧瓶中,然后将烧瓶倒立于水中使其充分反应,则烧瓶内溶液中溶质的物质的量浓度为( ) A.122.4 mol·L -1 B.139.2 mol·L - 1 C.128 mol·L -1 D.45 mol·L - 1 解析:此类题目可用赋值法来解。设烧瓶体积为1 L ,因V (NO 2)∶V (O 2)=4∶3,故在1 L 混合气体中V (NO 2)=47 L ,V (O 2)=3 7 L 。设生成HNO 3的物质的量为x ,根据反应4NO 2+O 2+ 2H 2O===4HNO 3,则有(4×22.4 L)∶47 L =4 mol ∶x ,解得x =139.2 mol 。烧瓶中残留O 2的体积:3 7 L -17 L =27 L ,故溶液充满烧瓶体积的57。所以c (HNO 3)=(47×122.4) mol÷57 L =128 mol·L - 1。 答案:C 3.[双选题]在一大试管中装入10 mL NO 倒立于水槽中,然后向其中缓慢通入6 mL O 2(气体体积均在相同条件下测定),下面有关实验最终状态的描述,正确的是( )

水质硒的测定新方法确认报告

XNFFQR 02-2012水质硒-原子荧光法方法确认报告 项目水质硒的测定 方法水质硒的测定原子荧光法《水和废水监测分析方法》(第四版)国家环保总局(2002) 在符合确认情况的□内打勾: □非标准方法 □超出预定范围使用的标准方法 ?扩充和修改过的标准方法 在采用的确认试验方式□内打勾: ?使用国家有证标准物质进行确认 □与标准方法比较 □不同人员或仪器比对 报告编写人罗文芳 参加人员邱海东 日期2012.04.25

一、方法依据 原子荧光法《水和废水监测分析方法》(第四版)国家环保总局(2002) 二、适用范围 水质硒的测定 三、试剂 本方法所用试剂纯度为优级纯,测定用水为去离子水。 1、KBH4溶液:称10gKBH4+2.5gKOH溶于纯水中,定容至500ml。 2、载流:5%HCL溶液:取50ml优级纯盐酸定容至1000ml。 3、硫脲溶液:称取10g硫脲微热溶解于100ml烧杯中。 4、硒标准储备溶液:国家标准物质研究中心的硒单元素标准溶液,标准值为,100mg/l。 5、硒标准使用液:取5ml硒标准储备液,用5%HCL溶液定容至500ml,浓度为1mg/l,再取1mg/l溶液10ml,用5%HCL溶液定容至100ml,此溶液为硒标准使用液,浓度为100μg/l。 四、使用仪器设备 AFS-830a原子荧光光度计 编码硒空心阴极灯 五、方法步骤及条件 1、采样 样品采集后,用盐酸将样品酸化至p H<2保存。 2、样品预处理。 清洁的地下水和地表水无需消解,可直接测定。污水等按下述步骤进行预处理。 取50mL污水样于100mL锥形瓶中,加入新配制的HNO-HCLO4(1+1)5mL,于电热板上加热至冒白烟后,取下冷却,再加入5mLHCL(1+1)加热至黄褐色烟冒尽,冷却后用水转移到50mL容量瓶中,定容,摇匀。 3、样品测定。 测定前仪器需开机预热30min,使空心阴极灯能量稳定,原子化

沥青烟方法确认报告

《固定污染源排气中沥青烟的测定:重量法》 方法确认报告 一、方法概述 本方法依据HJ/T 45-1999。将排气筒中的沥青烟收集于已恒重的玻璃纤维滤筒中,除去水分后,由采样前后玻璃纤维滤筒的增重计算沥青烟的浓度。若沥青烟中含有显着的固体颗粒物,则将采样后的玻璃纤维滤筒用环己烷提取,并测定提取液中的沥青烟。根据HJ/T 45-1999(固定污染源排气中沥青烟的测定重量法),本方法沥青烟的检出限为,定量测定范围为。 二、仪器 1、仪器及设备 微电脑烟尘采样仪:仪器性能指标应符合GB16157-1996的规定。 沥青烟采样管。 玻璃纤维滤筒,重量为±,口径为25mm,长度70mm。 电子天平:感量 本次实验检测日期:2015年6月8日,检测点位:山东济宁盛发焦化有限公司焦炉烟囱,检测项目:沥青烟检测频次:2次。 三.采样: 1. 滤筒处理和称重。用铅笔将滤筒编号,在105-110°C烘烤2小时,取出放入干燥器中冷却至室温,用天平称量至恒重,两次称量误差不超过,放入专用的容器中保存。 2.采样点位和采样频次采样步骤: 四.分析步骤:将采样后的滤筒放入干燥器内平衡24小时后,用天平称重至恒重,记录滤筒的增重M. 五、沥青烟浓度计算 式中: c —某样品中沥青烟浓度,mg/m3 M.—为滤筒中沥青烟重量,mg V nd—换算成标准状态下的采样体积,L 采样滤筒1#、滤筒2# 六、样品测定结果

七、总结 本次测定废气采样体积为1m3,检出限为m3。由于沥青烟测定受条件限制,所以对样品定的准确度、精密度无法体现。本次测定在公司技术负责人的监督指导下完成。 编写人:日期:年月日 审核人:日期:年月日 批准人:日期:年月日

最新脱硝氮氧化物浓度折算公式

NOx 折算方法 1 NOx 浓度计算方法(1) 实测烟气中NOx 的浓度计算方法为: 式中: NOx (mg/Nm 3) — 标准状态,烟气氧含量下NOx 浓度,mg/Nm 3; NO (ppm ) — 实测烟气中NO 体积含量ppm 值 NO2(ppm ) — 实测烟气中NO2体积含量ppm 值 O2(%)— 实测烟气中O2含量 t(℃) — 实测烟气温度℃ 2 NOx 浓度计算方法(2) 实测烟气中NOx 的浓度计算方法为: 式中: NOx (mg/Nm 3) — 标准状态,烟气氧含量下NOx 浓度,mg/Nm 3; NO (m3/mg ) — 实测烟气中NO 浓度值 NO2(m3/mg ) — 实测烟气中NO2浓度值 O2(%)— 实测烟气中O2含量 t(℃) — 实测烟气温度℃ 3 脱硝效率 脱硝效率有时也称NOx 脱除率,其计算方法如下: 脱硝效率= C1-C2 ×100% C1 式中:C1——脱硝系统运行时脱硝反应器入口处烟气中NOx 含量(mg/Nm 3); C2——脱硝系统运行时脱硝反应器出口处烟气中NOx 含量(mg/Nm 3)。 《分数乘法》判断题和选择题汇总 一、判断题。 1、假分数的倒数都小于1。( ) 273.15烟温)+t(15.273221921))(024.2246)(4.2230()/(3?--??+?=o ppm N ppm NO Nm mg NO x 273.15烟温)+t(15.273221921))m3/(02)m3/(3046()/(3?--?+?=o mg N mg NO Nm mg NO x

2、0的倒数是它本身。() 3、同样长的绳子,分别剪去和米后,剩下的一定一样长。() 4、任何自然数都有倒数。() 5、一个数乘真分数,所得的积一定小于这个数。() 6、因为+=1,所以与互为倒数。() 7、两个真分数的积不可能是整数。() 8、自然数a的倒数是。() 9、1吨的和4吨的一样重。() 10、一根电线长3米,用去米后,还剩下米。() 11、冰箱的数量相当于电视机的,冰箱的数量比电视 () 12、在整数中运用的运算定律在分数计算中同样可以运用。() 13、5米的和5个米一样长。() 二、选择题。 1、×()> ,括号中的数是()。 A、真分数 B、假分数 C、大于1的数 2、2千克的是()。 A、200克 B、4000克 C、1千克的 3、甲数的相当于乙数,甲数不等于零,甲数与乙数相比()。 A、甲大于乙 B、甲小于乙 C、甲等于乙 D、无法确定

新方法验证报告(水质 全盐量的测定 重量法 HJT 51-1999)

XXXX有限公司 新项目方法验证能力确认报告 项目名称:水质全盐量的测定重量法HJ/T 51-1999负责人: 审核人: 日期:

水质全盐量的测定重量法 HJ/T 51-1999 方法验证能力确认报告 1、方法依据及适用范围 本方法依据是《水质全盐量的测定重量法》(HJ/T 51-1999),本方法能力验证应随标准更新而更新。 本标准适用于农田灌溉水质、地下水和城市污水中全盐量的测定,取100.0ml水样测定,检测下限为10mg/L。 2、方法原理 水质中的悬浮物是指水样通过孔径0.45μm的滤膜,截留在滤膜上并于105±2℃烘干至恒重的固体物质。 3、主要仪器、设备及试剂 3.1试剂 3.1.1蒸馏水或同等纯度的水。 3.2仪器 3.2.1万分之一天平。 3.2.2全玻璃微孔滤膜过滤器。 3.2.3CN-CA滤膜、孔径0.45μm、直径60mm。 3.2.4吸滤瓶,真空泵。 3.2.5瓷蒸发皿,容积125ml。 4、样品采集及测定

4.1样品采集和保存 所用聚乙烯瓶或硬质玻璃瓶要用洗涤剂洗净。再依次用自来水和蒸馏水冲洗干净。在采样之前,再用即将采集的水样清洗三次。然后,采集具有代表性的水样500mL,盖严瓶塞。 采集的水样应尽快分析测定。如需放置,应贮存在4℃冷藏箱中,但最长不得超过七天。 注℃不能加入任何保护剂,以防破坏物质在固、液间的分配平衡。4.2样品测定 4.2.1蒸发皿恒重 将蒸发皿洗净,放在105℃士2℃烘箱中烘2h,取出,放在干燥器内冷却后称量,反复烘干、冷却、称量,直至恒重(两次称量的重量差不超过0.5 mg),放入干燥器中备用。 4.2.2水样过滤 将水样上清液用垫有0.45μm孔径的有机微孔滤膜的滤器过滤,弃去初滤液10~15ml,滤液用干燥洁净玻璃器皿接取。 4.2.3蒸干 移取过滤后水样100.0ml于瓷蒸发皿内,放在蒸气浴上蒸干。若水中全盐量大于2000mg/L,可的情减少取样体积,用水稀释至100ml。 4.2.4有机物处理 如果蒸干残渣有色,待蒸发皿稍冷后,滴加过氧化氢溶液数滴,慢慢旋转蒸发皿至气泡消失,再置于蒸气浴上蒸干,反复处理数次,直至残渣变白或颜色稳定不变为止。

氮氧化物的计算方法

氮氧化物的计算方法 燃烧产生的氮氧化物根实际燃烧条件关系密切,所以要准确估算是非常困难的。如果条件允许,尽量类比具备可比性同类型项目实测数据;在无实测情况下最好查阅相关书籍或相关研究成果计算方式,根据相关条件选择相近情况公式的计算结果准确率稍高,而且符合导则要求可找到依据出处;切记别拍脑袋。以下几种方法供大家参考。 传统方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一 产生10m3烟气。致的,假设了燃烧1kg煤 GNOx=1.63×B×(N×β+0.000938) 氮氧化物排放量,kg; GNOx— B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G,B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(,),取0.85,; a—氮氧化物转化为二氧化氮的效率(%),取70%。

B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。 第四种计算方法: 采用《产排污系数手册》第十册:按燃烧1t煤来计算: 烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页) 锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx,1.63B(β?n+10,6Vy?CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); ); B ~煤或重油消耗量(kg β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n?0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3,kg); CNOx ~温度型NO浓度(mg,Nm3),通常取70ppm,即93.8mg,Nm3。 固定污染源监测质量保证与质量控制技术规范,试行,,HJ/T 373-2007, 中核定氮氧化物排放量 5.3.5 核定氮氧化物排放量

二氧化氮方法确认报告

二氧化氮 盐酸萘乙二胺分光光度法确认报告 编写:日期: 审核: 日期: 批准: 日期:

一、目的 利用盐酸萘乙二胺分光光度法测定亚硝酸盐钠标准系列及测定亚硝酸盐标 准溶液的精密度、准确度、空白检出限等,确认本实验室具备检测空气中二氧化氮的能力。 二、方法原理 空气中的二氧化氮与吸收液中的对氨基苯磺酸进行重氮化反应,再与N-(萘基)乙二胺盐酸盐作用,生成粉红色的偶氮染料,在波长540nm处,测定吸光度。 空气中臭氧浓度超过0.25mg/m3时,可使二氧化氮的吸收液略显红色,对二氧化氮的测定产生负干扰,采样时在吸收瓶入口处串接一段15~20cm长的硅橡胶管,即可将臭氧浓度降低到不干扰二氧化氮测定的水平。 方法检出限为0.12μg/10ml。当吸收液体积为10ml,采样体积为24L时,空气中二氧化氮的最低检出浓度为0.005mg/m3。 三、标准曲线的绘制 取六支10ml具塞比色管,按表1配制亚硝酸钠标准系列。 表1亚硝酸钠标准系列——————————————————————————————管号012345 亚硝酸钠标准使用液(ml)0 0.40 0.80 1.20 1.60 2.00 水(ml) 2.00 1.60 1.20 0.80 0.40 0 显色液(ml)8.00 8.00 8.00 8.00 8.00 8.00 亚硝酸根浓度(μg/ml)0 0.10 0.20 0.30 0.40 0.50—————————————————————————————各管混匀,于暗处放置20min(室温低于20℃时,显色40min以上),用1cm比色皿,在波长540nm处,以水为参比测定吸光度。扣除空白试样的吸光度 以后,对应NO - 2 的浓度(μg/ml),用最小二乘法计算标准曲线的回归方程。

煤燃烧氮氧化物的计算方法

属于不属于风险物质,根据化学品。。。危险货物品名表什么的判别重大危险源就根据09年 从而判定风险评价等级 2、《国家危险废物名录》(2008年6月); 3、《危险货物品名表》(GB12268-2005); 4、《危险化学品目录》(2002版); 5、《剧毒化学品目录》(2002版); 这些判定你的项目有哪些危险品 根据《建设项目环境风险评价技术导则》(HJ/T169-2004)及《危险化学品重大危险源辨识》(GB18218-2009),判定本项目环境风险评价等级 你都已经知道是剧毒化学品了,就看重大危险品辨识和环评导则就行。 小心看迷糊了。 高人总结了几种计算氮氧化物的计算方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938) GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。

第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg (第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。 第四种计算方法: 采用《产排污系数手册》第十册:按燃烧1t煤来计算: 烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页)

(新)检验方法的验证及确认

检验方法是指实验室用于实施检验检测工作所依据的标准检验方法和技术规范。检验方法是实验室实施检验工作的主要依据,是开展检验检测工作所必须的资源,如果方法及程序不同就会造成结果不同。本文就来聊聊如何对检验方法进行确认。文章为原创大赛往期作品回顾,在此仅作为对大家的启发之用。欢迎批评指正。 <<实验室资质认定评审准则>> 条款中规定:“实验室应确认能否正确使用所选用的新方法。如果方法发生了变化,应重新进行确认。实验室应确保使用标准的最新有效版本。”在条款中也有相应的规定。 实验室采用的检测方法包括样品的抽取、处理、运输、存储和制备等各个环节,确认时应当记录确认所获得的结果、使用确认的程序、确认对方法是否适合于预期的用途等,必要时还应包括不确定度和分析数据的统计学处理技术。 ? 下面谈谈就方法发生了变更时或颁布新标准时,对方法如何进行确认: 1.在首次对外出具数据之前应确认(证实)标准方法已被正确的运用。 2.标准方法发生了变化应重新确认。 3.对标准方法定期清理或者查新,以确保最新有效版本。 一、检测方法的选择及使用要求 实验室资质认定(或认可)现场考核时确定的检测项目的依据是国家标准、行业标准和地方标准。所以说,当没有国际、国家、行业、地方规定的检验方法时,实验室应尽可能选择已经公布或由知名的技术组织或有关科技文献或杂志上公布的方法,但应经实验室技术主管确认。如是在实验室计量认证或认可批准业务范围内,因客户的特殊要求而发生的情况,其检验结果和报告上应有明确的说明。 另外需要使用非标准方法时,这些方法应征得委托方同意,并形成有效文件,使出具的报告为委托方和用户所接受。这是指必须在实验室计量认证或认可批准业务范围内使用,所谓有效文件是指甲乙双方对使用非标准方法检测达成协议,一般来说应有双方签字盖章,也可以在检测委托(协议)书上注明,实验室在检测报告中也必需加以说明。 因此,在检测方法的选择上,优先使用国家标准,然后是行业标准、地方标准,非标准方法仅限于委托方同意才使用。 对于实验室完成的每一项或每一系列检验的结果,均应按照检验方法中的规定,准确、清晰、明确、客观地在检验证书或报告中表述,应采用法定计量单位。证书或报告中还应包括为说明检验结果所必需的各种信息采用方法所要求的全部信息。除上述明确的要求外,检测报告中必需有检测数据和结论。 所以说,检测方法选择的核心就是方法有效性,要特别注意的是:要使用最新有效版本的方法。

丙酮方法确认报告

方法确认报告 1.目的 验证工作场所空气中丙酮(GBZ/T160.55-2007)在本实验室的适用性。 2.方法内容 2.1 范围 本方法规定了工作场所中丙酮的测定方法。 2.2试剂 按照同GBZ/T160.55-2007中的要求。 2.3仪器 气相色谱仪:安捷伦7890A 色谱柱:DB-FFAP(30m×0.53mm×0.50μm)。 2.4 分析步骤 样品处理:将采过样的活性炭管中前后段活性炭分别倒入溶剂解吸瓶中,各加入1.0mL二硫化碳,封闭后,振摇1min,解吸30min。摇匀,解吸液供测定。 2.5 仪器条件: 程序升温:40℃/min至150℃,保持2min,进样口200℃,FID检测器250℃。 分流比:20:1,尾吹:25mL/min,氮气:5psi,空气:450mL/min,氢气:50mL/min。 3. 验证结果 3.1 线性范围 吸取一定量的色谱纯丙酮,分别配制394.9μg/mL,789.8μg/mL,1184.7μg/mL,1579.6μg/mL,4个 。标准曲线方程为:y=0.447724x-5.97402 3.2 检出限: 由仪器工作站自动计算出3倍信噪比=(297.38112×3)/97.2=9.2μg/mL 丙酮的检出限为:9.2μg/mL 以1.5L样品计最低检出浓度=6.13mg/m3. 3.3 精密度: 选择789.8μg/mL的标准溶液进行6次测量

平均值: 346.34301 相对标准偏差:2.78% 丙酮的精密度为2.78% 3.4 回收率: 添加浓度在631.84μg/mL的水平上,回收率在92.87%-93.54%之间,平均回收率93.26%; 添加浓度在1184.7μg/m的水平上,回收率在98.23%-98.46%之间,平均回收率98.37%。 4.结论 通过验证,本方法在在394.9μg/mL-1579.6μg/mL范围内,线性良好,相关系数R=0.99964;仪器的检测灵敏度为:0.447724;丙酮检出限为:9.2μg/mL;最低检出浓度为6.13mg/m3;精密度为2.78%。 通过验证,本方法在添加浓度631.84μg/mL的水平上回收率在92.87%-93.54%之间,平均回收率 93.26%;添加浓度在1184.7μg/m的水平上,回收率在98.23%-98.46%之间,平均回收率98.37%。 从以上数据可以看出该方法检测工作场所空气中丙酮的含量,结果准确可靠,可以在实际工作运用此方法检测工作场所空气中丙酮的含量。 5 参考文献: 5.1工作场所空气有毒物质测定脂肪族酮类化学物(GBZ/T160.55-2007)。

脱硝氮氧化物浓度计算

3.性能保证 3.1定义 3.1.1NOx浓度计算方法 实际干烟气中NOx的浓度计算方法为: 式中: NOx(mg/Nm3)—标准状态,实际干烟气氧含量下NOx浓度,mg/Nm3; NO(μL/L)—实测干烟气中NO体积含量,μL/L; 0.95—按照经验数据选取的NO占NOx总量的百分数(即NO占95%,NO 2 占5%); 2.05—NOx由体积含量μL/L转换为mg/m3的转换系数。 修正到标准状态下氧含量为6%时的干烟气中NOx的浓度计算方法为: 式中: NOx(mg/Nm3@6%O 2 )—修正到标准状态下氧含量为6%时的干烟气中NOx排放浓度,mg/Nm3; O 2 —实测干烟气中氧含量,%。 通常本技术协议文件中提到的NOx一般是指修正到标准状态下氧含量为6%时的干烟气中NOx浓度。 3.1.2脱硝效率 脱硝效率有时也称NOx脱除率,其计算方法如下: 脱硝效率= C1-C2 ×100% C1 式中:C1——脱硝系统运行时脱硝反应器入口处烟气中NOx含量(mg/Nm3);C2——脱硝系统运行时脱硝反应器出口处烟气中NOx含量(mg/Nm3)。 3.1.3氨的逃逸率 氨的逃逸率是指在脱硝装置反应器出口氨的浓度。 3.1.4SO 2/SO 3 转化率 经过脱硝装置后,烟气中SO 2转化为SO 3 的比率。 式中: SO 3, 出口 —SCR反应器出口6%O 2 含量、干烟气条件下SO 3 体积含量,μL/L; SO 3, 入口 —SCR反应器入口6%O 2 含量、干烟气条件下SO 3 体积含量,μL/L; SO 2, 入口 —SCR反应器入口6%O 2 含量、干烟气条件下SO 2 体积含量,μL/L。

氮氧化物的计算

LS的是一种途径。 此外,《排污收费制度》P122页中 燃料(固体和液体燃料)中的N和输入空气中的N,在燃烧时会产生NOx,一般在燃烧时产生的NOx中的约90% 为NO ,其余主要是NO2。燃料燃烧时产生氮氧化物量可用下列公式估算: GNOx= 1.63 ×B ×(N ×β+ 0.000938) GNOx—氮氧化物排放量,kg ; B –消耗的燃煤(油)量,kg ; N –燃料中的含氮量,%,见表7 ; β—燃料中氮的转化率,%,见表8。 表7 燃料中氮的含量 燃料名称含氮质量百分比(%) 数值平均值 煤 0.5—2.5 1.5 劣质重油 0.2—0.4 0.2 一般重油 0.08—0.4 0.14 劣质轻油 0.005—0.08 0.02 表8 燃料中氮的NOx转化率 炉型 NOx的转化率(%) 层燃煤 50 煤粉炉 25 燃油炉 40 不同燃料、不同炉型燃烧时氮氧化物产污系数见表9。 表9 不同燃料、不同炉型燃烧时氮氧化物产污系数(kg/t煤) 燃料及炉型含氮量(%) NOx的转化率(%) GNOx 层燃煤 1.5 50 13.8 煤粉炉 1.5 25 7.6 劣质重油 0.2 40 2.8 一般重油 0.14 40 2.4 劣质轻油 0.02 40 1.7 燃料燃烧可以用以下计算: GNOx= 1.63 ×B ×(N ×β+10—https://www.360docs.net/doc/bc2231882.html,ox) GNOx—氮氧化物排放量,kg ; B –消耗的燃煤(油)量,kg ; N –燃料中的含氮量,%,见表7 ; β—燃料中氮的转化率,燃煤层燃为25%—50% (N≥0.4%),粉煤炉取20%—25%

Vy——燃料生成的烟气量(Nm3/Kg) Cnox——温度型NO 的浓度(mg/Nm3)通常取70ppm 既是93.8 mg/Nm3。 高人总结了几种计算氮氧化物的计算方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938) GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化

NOX的计算公式

锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx=1.63B(β·n+10-6Vy·CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); B ~煤或重油消耗量(kg); β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n≥0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3/kg); CNOx ~温度型NO浓度(mg/Nm3),通常取70ppm,即93.8mg/Nm3。 固定污染源监测质量保证与质量控制技术规范(试行)(HJ/T 373-2007)中 5.3.5 核定氮氧化物排放量 核定氮氧化物排放量时,可现场测算氮氧化物排放量,与实测氮氧化物浓度对比,若两 者相差大于±50%,应立即现场复核,查找原因。 燃料燃烧过程中氮氧化物排放量可参考公式(8)计算。 氮氧化物排放量(千克)=燃料消耗量(吨)×排放系数(千克/吨)(8) 计算燃烧过程中氮氧化物排放量时,可参考表5 系数。 生产工艺过程产生的氮氧化物排放量可按公式(9)计算。 生产工艺过程中氮氧化物排放量(千克)=工业产品年产量(吨)×排放系数(千克/吨) (9)计算工艺过程中氮氧化物排放量时,可参考表6 中参考系数。

燃料燃烧产生的氮氧化物量计算 天然化石燃料燃烧过程中生成的氮氧化物中,一氧化氮占90%,其余为二氧化氮。燃料燃烧生成的NOx主要来源于:一是燃料中含有许多氮的有机物,如喹啉C5H5N、吡啶C9H7N等,在一定温度下放出大量的氮原子,而生成大量的NO,通常称为燃料型NO;二是空气中的氮在高温下氧化为氮氧化物,称为温度型NOx。燃料含氮量的大小对烟气中氮氧化物浓度的高低影响很大,而温度是影响温度型氮氧化物生成量大小的主要因素。燃料燃烧生成的氮氧化物量可用下式计算: GNOx=1.63B(β.n+10-6VyCNOx) 式中:GNOx——燃料燃烧生成的氮氧化物(以NO2计)量kg; B——煤或重油耗量kg; β——燃料氮向燃料型NO的转变率%,与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n>0.4%),燃油锅炉 32~40%,煤粉炉可取20~25%; n——燃料中氮的含量%,可查表1-15; Vy——1kg燃料生成的温度型NO的浓度 mg/Nm3; CNOx——燃烧时生成的温度型NO的浓度mg/Nm3,通常可取70ppm,即93.8mg/Nm3。 设煤燃烧生成的烟气量Vy=10Nm3/kg,上式就可以变为: GNOx=1.63B(β.n+0.000938) 表1-15 锅炉用燃料的含氮量

新项目方法确认实验报告食品添加剂

方法验证实验报告 一、实验方法 1.方法原理 样品经溶解,其中铅经与吡咯烷二硫代氨基甲酸铵(ADPC)络合、萃取等处理后,导入原子吸收分光光度计中,原子化后测量其在283.3nm处的吸光度,与铅标准限量比较。 2. 主要仪器、材料与试剂 分液漏斗:250ml 2.2原子吸收分光光度计(日本岛津) 2.3实验用水 经Milli-Q制备的超纯水,电阻率18.2 MΩ·cm-1。 2.4 盐酸、三氯甲烷、硝酸、氢氧化钠(250g/L)、咯烷二硫代氨基甲酸铵(ADPC)溶液2%、铅标准溶液、精密PH试纸:0.5-5.0。 3. 实验步骤 3.1 铅标准测定溶液的制备及测定 准确移取5ml铅标准溶液,加到150ml烧杯中,加30ml水、10ml盐酸,(盖上表面皿)加热至沸,并沸腾5min。冷却,用氢氧化钠溶液调节溶液的PH(用精密pH试纸检验为1.0- 1.5)。将溶液完全移入分液漏斗中,用水稀释至约200ML,加入2ml咯烷二硫代氨基甲酸铵(ADPC)溶液,摇匀用三氯甲烷萃取两次,每次加入20ml,将有机相收集于50ml烧杯中,(在通风厨中)用水浴加热蒸发至干。在残余物中加入3ml硝酸,加热近干。加入0.5mL硝 酸和10mL水,加热至剩余液体体积为3mL-5mL,移入10mL容量瓶中,用水稀释至刻度。选用空气-乙炔火焰,于283.3nm波长处,用水调零,测定溶液的吸光度。 3.2 试样测定溶液的制备 称取10g±0.1g样品置于150ml烧杯中,加30ml水、10ml盐酸,(盖上表面皿)加热至沸,并沸腾5min。冷却,用氢氧化钠溶液调节溶液的PH(用精密pH试纸检验为1.0-1.5)。将溶液 完全移入分液漏斗中,用水稀释至约200ML,加入2ml咯烷二硫代氨基甲酸铵(ADPC)溶液,摇匀用三氯甲烷萃取两次,每次加入20ml,将有机相收集于50ml烧杯中,(在通风厨中)用水浴加热蒸发至干。在残余物中加入3ml硝酸,加热近干。加入0.5mL硝酸和10mL水,加热至剩余液体体积为3mL-5mL,移入10mL容量瓶中,用水稀释至刻度。选用空气-乙炔火焰,于283.3nm波长处,用水调零,测定溶液的吸光度。 4 结果判定 试样测定溶液的吸光度不得大于铅标准测定溶液的吸光度 二、方法检出限 将空白吸收液按照步骤制备空白试样,各平行制备11 份,用原子吸收测定,计算 7 次测定值的标准偏差 S,根据 MDL=3.143S 计算方法检出限。结果如下

方法确认报告酸度

方法确认报告——酸度 1 目的 验证GB/T 258-2016《轻质石油产品酸度测定法》标准更新后在本实验室的适用性。 2 方法内容 2.1 范围的确认 GB/T258-2016适用于轻质石油产品,如汽油、石脑油、煤油、柴油及喷气燃料。 GB/T 258-1977标准适用于未加乙基液的汽油、煤油和柴油。 新旧标准比对,标准更新后,本实验室所分析石油产品如柴油等,均符合要求。 2.2 仪器确认(新旧标准未发生改变) 2.2.1 锥形瓶:250 mL; 2.2.2 球形回流冷凝管:长约300 mm; 2.2.3 移液管:25 mL; 2.2.4 微量滴定管:2 mL,分度值为0.02 mL,由金陵石化计量检测站校准。 2.2.5 水浴; 2.2.6 天平:精确至0.001 g。 2.3 试剂与材料(未发生改变) 2.3.1 95%乙醇:分析纯; 2.3.2 氢氧化钾:分析纯; 2.3.3 碱性蓝6B、甲酚红、酚酞。 3 人员资质确认 标准更新后对所在油品岗位分析人员王伟、潘盈、马莉、张青、张静及班长张珉、程慧萍通过培训考核,均能符合现场操作和分析要求。 4 环境设施条件确认 本实验标准中对环境没有特殊的要求,本实验在201室进行,符合实验要求。 5 取样方法 取样按照GB/T 4756进行,符合要求。 6 分析过程 与老标准相比,分析过程未发生变化。 7 原始记录、操作规程等的评价

原始记录、操作规程已按新标准更新,为最新版本,符合新标准要求。 8 验证结果 8.1 精密度 选择柴油进行留样再测,结果如下: 标准偏差:0.02 mg/100mL。 9 结论 通过验证,用本方法的标准偏差为0.02 mg/100mL,符合GB/T 258-2016的精密度,可以在实际工作运行此方法检测轻质石油产品的酸度。 方法确认人: 审核人:

iSS检测方法验证报告

悬浮物测定的方法验证报告 1.本方法依据参照:GB11901-89(重量法) 2.测定方法原理 用 m滤膜过滤水样,留在滤料上并于103-105℃烘至恒重的固体,经103~105℃烘干后得到SS含量。3.仪器 、烘箱 、分析天平 、干燥器 、孔径为μm滤膜、直径45~60mm。 、玻璃漏斗 、真空泵 、内径为30-50㎜称量瓶 、无齿扁嘴镊子 、蒸馏水或同等纯度的水 4.测定步骤 用无齿扁嘴镊子将滤膜放在称量瓶中,打开瓶盖,移入烘箱中于(103~105℃)烘干2h后取出置于干燥器内冷却至室温,称其重量。反复烘干、冷却、称量,直至恒重(两次称量相差不超过) 去除悬浮物后震荡水样,量取充分混合均匀的试样100ml抽吸过滤。使水分全部通过滤膜。再以每次10ml 蒸馏水连续洗涤三次,继续吸滤以去除痕量水分。如样品中含有油脂,用10ml石油醚分两次淋洗残渣。 停止吸滤后,仔细取出载有SS的滤膜放在原恒重的称量瓶里,移入烘箱中于103~105℃下烘干2h后移入干燥器中,使冷却到室温,称其重量,反复烘干、冷却、称量,直至两次称量的重量差≤为止。 5.计算: 悬浮固体(mg/L)= [(A-B)×1000×1000]/V 式中:A——悬浮固体+滤膜及称量瓶重(g) B——滤膜及称量瓶重(g) V——水样体积 6.讨论 方法适应范围 本方法适用于废水中SS的测试。 精密度(重复性)的讨论。 重复性:实验室同一分析人员对同一浓度水平样品取样7次测试,用所得结果的标准偏差(RSD)来表示其精密度;RSD≤5%符合要求。

结论以上各项的讨论均符合要求,即表明方法满足本实验室检测需求,确认予以使用

氮氧化物的计算方法

燃烧产生的氮氧化物根实际燃烧条件关系密切,所以要准确估算是非常困难的。如果条件允许,尽量类比具备可比性同类型项目实测数据;在无实测情况下最好查阅相关书籍或相关研究成果计算方式,根据相关条件选择相近情况公式的计算结果准确率稍高,而且符合导则要求可找到依据出处;切记别拍脑袋。以下几种方法供大家参考。 传统方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一致的,假设了燃烧1kg煤产生10m3烟气。 GNOx=1.63×B×(N×β+0.000938) GNOx—氮氧化物排放量,kg; B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G=B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(%),取0.85%; a—氮氧化物转化为二氧化氮的效率(%),取70%。 B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。 第四种计算方法: 采用《产排污系数手册》第十册:按燃烧1t煤来计算: 烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页)

氮氧化物排放浓度计算

氮氧化物排放浓度计算 生物质直燃电厂所生成的NOx中,NO占90%,NO2占5%~10%,N2O仅占1%左右. NOx的生成与排放量主要取决于NO。 燃烧过程中所产生的氮氧化物量与燃料品种、燃烧方式、燃烧温度、过量空气系数和烟气在炉内停留时间等因素密切相关。生成机理分热力型、燃料型和快速型3个类型。 热力型NOx的生成是由空气中氮在高温条件下氧化而成,生成量随温度增高而增大;当温度低于1350℃时,几乎不生成热力NOx,且与介质在炉膛内停留时间和氧浓度平方根成正比。 燃料型NOx是燃料中氮化合物在燃烧过程中热分解且氧化而生成的,燃料型NOx的形成包括挥发性NO与焦炭性NO两种途径。燃料氮向NOx转化的过程可分为3个阶段:首先是有机氮化合物随挥发分析出一部分,其次是挥发分中氮化物燃烧,最后是焦碳中有机氮燃烧。挥发有机氮生成NO的转化率随燃烧温度上升而增大.当燃烧温度水平较低时,燃料氮的挥发分份额明显下降。 快速型NOx是由空气总氮和燃料中碳氢离子团如CH等反应生成的NOx,其转化率取决于过程中空气过剩条件和温度水平。快速型NOx生成强度在通常炉温水平下是微不足道的。 锅炉炉膛燃烧温度﹤900℃,其生成的NOx主要是燃料型NO。送风分为两级,二次风占70%以上,锅炉炉膛过量空气系数20%,燃料N转化率约为20%。 农作物秸秆在收获初期都含有较大的水份,如:木薯秆50~70%,香蕉秆60~90%,玉米杆40~60%等,因此,收购前应尽量将秸秆晾晒。 燃料以木薯、玉米秸秆和甘蔗叶为主,混合燃用,比例为甘蔗叶70%、玉米秸秆20%,木薯秸秆10%。本工程设计燃料水份按40%计算,送检燃料、设计燃料的成份折算如下:

相关文档
最新文档