avr单片机串口通信协议程序

主机程序

#include

#include

#include

#include

#include

#define uchar unsigned char

#define slav1_addr 0x01

#define slav2_addr 0x02

#define cmd_sub_rec 0x11 //请求从机发送数据命令

//所有的普通命令最高位不能为1

uchar rec,style,rec_addr;

volatile uchar rec_buf[20]={0},send_buf[20]={0};

void uart_send_cmd(uchar addr,uchar cmd)

{

uchar temp;

cli();//禁止中断防止其他中断程序的发生打断通信

do

{

while ( !( UCSRA & (1<

UDR = addr; //发送地址

//UCSRA|=_BV(UDRE); //清零中断标志不能加这句

while ( !(UCSRA & (1<

temp=UDR;

UCSRA|=_BV(RXC); //清零中断标志

}

while(temp!=addr); //一直等到从机返回的地址相同

UCSRB&=(~_BV(TXB8)); //第九位置0

while ( !( UCSRA & (1<

UDR = cmd;

UCSRB|=_BV(TXB8);

sei();

}

void uart_send_data(uchar addr,uchar *data)

{

uchar i,n,temp;

cli();//禁止中断

do

{

while ( !( UCSRA & (1<

UDR = addr; //发送地址

//UCSRA|=_BV(UDRE); //清零中断标志不能加这句

while ( !(UCSRA & (1<

temp=UDR;

UCSRA|=_BV(RXC); //清零中断标志

}

while(temp!=addr); //一直等到从机返回的地址相同

UCSRB&=(~_BV(TXB8)); //第九位置0

while ( !( UCSRA & (1<

n=strlen(data);

UDR =(0x80|n); //发送多数据命令最高位为命令类型

//后七位为发送数据长度_delay_us(100); //保证从机安全接收到数据

n=strlen(data); //发送多个数据

for (i=0;i

{

while ( !( UCSRA & (1<

UDR = data[i];

_delay_us(1);

}

UCSRB|=_BV(TXB8);

sei();

}

//向从机请求数据

void cmd_subrec( uchar addr)//,uchar *date)

{

uchar i,n,temp;

cli();//禁止中断

do

{

while ( !( UCSRA & (1<

UDR = addr; //发送地址

//UCSRA|=_BV(UDRE); //清零中断标志不能加这句

while ( !(UCSRA & (1<

temp=UDR;

UCSRA|=_BV(RXC); //清零中断标志

}

while(temp!=addr); //一直等到从机返回的地址相同

UCSRB&=(~_BV(TXB8)); //第九位置0

UCSRA&=(~_BV(MPCM)); //清零MPCM

while ( !( UCSRA & (1<

UDR =cmd_sub_rec;

//后七位为发送数据长度while ( !(UCSRA & (1<

n=UDR;

UCSRA |= (1<

for (i=0;i

{

while ( !(UCSRA & (1<

// rec_buf[n]=UDR;

// PORTB=rec_buf[n]; //全局数组出了函数就无法存储数据UCSRA |= (1<

}

// PORTB=data[3];

UCSRB|=_BV(TXB8);

UCSRA|=(_BV(MPCM)); //置位MPCM

sei();

}

void aurt_init()

{

UCSRA=_BV(MPCM);//多机模式只有RXB8为1才能接收

UCSRB=_BV(RXEN)|_BV(TXEN)|_BV(RXCIE)|_BV(TXB8)|_BV(UCSZ2);

// UCSRB=_BV(RXCIE);//

UCSRC=_BV(URSEL)|_BV(UPM1);//选择ucsrc 偶校验

UBRRL=71;//11.0592m时钟

DDRB=0xff;

// sei();

}

int main()

{

aurt_init();

DDRB=0xff;

send_buf[0]=4;send_buf[1]=3;send_buf[2]=2;send_buf[3]=5;

// uart_send_cmd(slav1_addr,0x55);

// uart_send_data(slav1_addr,send_buf);

cmd_subrec(slav1_addr);//,rec_buf);

// PORTB=rec_buf[3];

while(1);

}

SIGNAL( SIG_UART_RECV)

{

rec=UDR; //接收到的数据低6位为从机地址高2位为向主机请求的命令类型

style=(rec>>6); //取出数据类型位命令请求or 数据请求

rec_addr= (rec&0x3f); //取出地址位

if(style==0) //从机向主机发送命令请求

{

uart_send_cmd(rec_addr,0x66); //or uart_send_data(re_addr,buf);

}

else if(style==1) //从机向主机发送数据请求

{

cmd_subrec(rec_addr);//,rec_buf) ;

}

}

从机程序

#include

#include

#include

#include

#include

#include

#define uchar unsigned char

#define slav1_addr 0x01

#define slav2_addr 0x02

#define cmd_sub_rec 0x11 //请求从机发送数据命令

//所有的普通命令最高位不能为1

volatile uchar flag=0,num=0,n;

volatile uchar rec_code=0,temp_code=0,status=0;//一定要加volatile 优化的话会出错

volatile uchar rec_buf[20];

volatile uchar send_buf[20];

//向主机发送数据

void dill_cmd_sub_rec(uchar *data)

{

uchar i,n;

cli();//禁止中断发生,保证通信

UCSRA&=(~_BV(MPCM)); //清零MPCM

UCSRB&=(~_BV(TXB8)); //第九位置0

n=strlen(data);

while ( !( UCSRA & (1<

UDR = n;

_delay_us(10);

for (i=0;i

{

while ( !( UCSRA & (1<

UDR = data[i];

_delay_us(1);

}

UCSRB|=_BV(TXB8);

UCSRA|=(_BV(MPCM)); //MPCM

sei();

}

void aurt_init()

{

UCSRA|=_BV(MPCM);//多机模式只有RXB8为1才能接收

UCSRB=_BV(RXEN)|_BV(TXEN)|_BV(RXCIE)|_BV(TXB8)|_BV(UCSZ2);//发送接收使能接收中断使能第九位置1

UCSRC=_BV(URSEL)|_BV(UPM1);//选择ucsrc 偶校验

UBRRL=71;//11.0592m时钟

// UBRRL=78;//12m时钟

sei();

}

int main()

{

aurt_init();

DDRB=0xff;

send_buf[0]=5;send_buf[1]=5;send_buf[2]=5;send_buf[3]=5;

while(1)

{

PORTB=rec_buf[3];

if(rec_code==cmd_sub_rec)

{

dill_cmd_sub_rec(send_buf);

rec_code=0;

}

}

}

SIGNAL( SIG_UART_RECV)

{

temp_code=UDR;//程序必须从UDR 读取数据以清RXC 标志

//status = UCSRA;//获取状态

//if ( status & (1<

if(flag==1)

{

if((temp_code&0x80)==0)//为普通命令最高位为0

{

rec_code=temp_code;

flag=0;

UCSRA|=(_BV(MPCM)); //置位MPCM

}

else //接收多数据命令后七位为数据长度

{

num=(temp_code&0x7f);//获取长度

for(n=0;n

{

while ( !(UCSRA & (1<

rec_buf[n]=UDR;

UCSRA |= (1<

}

// PORTB=0x55;

flag=0;

UCSRA|=(_BV(MPCM)); //置位MPCM

}

}

else if(temp_code==slav1_addr)

{

while ( !( UCSRA & (1<

UDR = slav1_addr; //回送地址

while ( !( UCSRA & (1<

UCSRA |=(_BV(TXC));

UCSRA&=(~_BV(MPCM)); //清零MPCM

flag=1;

}

}

单片机串口通信协议程序

#include #include #define R55 101 #define RAA 202 #define RLEN 203 #define RDATA 104 #define RCH 105 //#define unsigned char gRecState=R55; unsigned char gRecLen; unsigned char gRecCount; unsigned char RecBuf[30]; unsigned char gValue; void isr_UART(void) interrupt 4 using 1 { unsigned char ch; unsigned char i; unsigned char temp; if (RI==1) { ch=SBUF; switch(gRecState) { case R55: // wait 0x55 if (ch==0x55) gRecState=RAA; break;

case RAA: if (ch==0xaa) gRecState=RLEN; else if (ch==0x55) gRecState=RAA; else gRecState=R55; break; case RLEN: gRecLen=ch; gRecCount=0; gRecState=RDATA; break; case RDATA: RecBuf[gRecCount]=ch; gRecCount++; if (gRecCount>=gRecLen) { gRecState=RCH; } break; case RCH: temp=0; for(i=0;i

上位机与51单片机串口通信

上位机与51单片机串口通信 目录: 1、单片机串口通信的应用 2、PC控制单片机IO口输出 3、单片机控制实训指导及综合应用实例 4、单片机给计算机发送数据: [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。 个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。 RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波 特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里 输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六 进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中, 则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

//参考源程序 #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容sbit gewei=P2^4; //个位选通定义

51串口通信协议(新型篇)

51串口通信协议(新型篇) C51编程:这是网友牛毅编的一个C51串口通讯程序! //PC读MCU指令结构:(中断方式,ASCII码表示) //帧:帧头标志|帧类型|器件地址|启始地址|长度n|效验和|帧尾标志 //值: 'n' 'y'| 'r' | 0x01 | x | x | x |0x13 0x10 //字节数: 2 | 1 | 1 | 1 | 1 | 1 | 2 //求和: ///////////////////////////////////////////////////////////////////// //公司名称:*** //模块名:protocol.c //创建者:牛毅 //修改者: //功能描述:中断方式:本程序为mcu的串口通讯提供(贞结构)函数接口,包括具体协议部分 //其他说明:只提供对A T89c51具体硬件的可靠访问接口 //版本:1.0 //信息:QQ 75011221 ///////////////////////////////////////////////////////////////////// #include #include //预定义 //帧 #define F_ST1 0x6e //帧头标志n #define F_ST2 0x79 //帧头标志y #define F_R 0x72 //帧类型读r #define F_W 0x77 //帧类型写w #define F_D 0x64 //帧类型数据帧d #define F_B 0x62 //帧类型写回应帧b #define F_C 0x63 //帧类型重发命令帧c #define F_Q 0x71 //帧类型放弃帧q #define F_ADDR 0x31 //器件地址0-9 #define F_END 0x7a //帧尾标志z #define F_SPACE 0x30 //空标志0 #define F_ERR1 0x31 //错误标志1,flagerr 1 #define F_ERR2 0x32 //错误标志2 2 //常数 #define S_MAXBUF 16 //接收/发送数据的最大缓存量 #define FIELD_MAXBUF 48 //最小场缓存,可以大于48字节,因为协议是以20字节为

51单片机串口通信,232通信,485通信,程序

51单片机串口通信,232通信,485通信,程序代码1:232通信 #include #define uchar unsigned char #define uint unsigned int uchar flag,a,i; uchar code table[]="i get"; void init() { TMOD=0X20; TH1=0XFD; TH0=0XFD; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1; } void main() { init();

while(1) { if(flag==1) { ES=0; for(i=0;i<6;i++) { SBUF=table[i]; while(!TI); TI=0; } SBUF=a; while(!TI); TI=0; ES=1; flag=0; } } } void ser() interrupt 4 {

RI=0; a=SBUF; flag=1; } 代码2:485通信 #include #include"1602.h" #define uchar unsigned char #define uint unsigned int unsigned char flag,a,i; uchar code table[]="i get "; void init() { TMOD=0X20; TH1=0Xfd; TL1=0Xfd; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1;

} void main() { init_1602(); init(); while(1) { if(flag==1) { display(0,a); } } } void ser() interrupt 4 { RI=0; a=SBUF; flag=1; } Love is not a maybe thing. You know when you love someone.

51单片机与PC机通信资料

《专业综合实习报告》 专业:电子信息工程 年级:2013级 指导教师: 学生:

目录 一:实验项目名称 二:前言 三:项目内容及要求 四:串口通信原理 五:设计思路 5.1虚拟串口的设置 5.2下位机电路和程序设计 5.3串口通信仿真 六:电路原理框图 七:相关硬件及配套软件 7.1 AT89C51器件简介 7.2 COMPIN简介 7.3 MAX232器件简介 7.4友善串口调试助手 7.5 虚拟串口软件Virtual Serial Port Driver 6.9八:程序设计 九:proteus仿真调试 十:总结 十一:参考文献 一:实验项目名称:

基于51单片机的单片机与PC机通信 二:前言 在国内外,以PC机作为上位机,单片机作为下位机的控制系统中,PC机通常以软件界面进行人机交互,以串行通信方式与单片机进行积极交互,而单片机系统根据被控对象配置相应的前向,后向信息通道,工作时作为主控机测对象,作为被控机接受PC机监督,指挥,定期或受命向上位机提供对象及本身的工作状态信息。 目前,随着集成电路集成度的增加,电子计算机向微型化和超微型化方向发展,微型计算机已成为导弹,智能机器人,人类宇宙和太空和太空奥妙复杂系统不可缺少的智能部件。在一些工业控制中,经常需要以多台单片机作为下位机执行对被控对象的直接控制,以一台PC机为上位机完成复杂的数据处理,组成一种以集中管理、分散控制为特点的集散控制系统。 为了提高系统管理的先进性和安全性,计算机工业自动控制和监测系统越来越多地采用集总分算系统。较为常见的形式是由一台做管理用的上位主计算机(主机)和一台直接参与控制检测的下位机(单片机)构成的主从式系统,主机和从机之间以通讯的方式来协调工作。主机的作用一是要向从机发送各种命令及参数:二是要及时收集、整理和分析从机发回的数据,供进一步的决策和报表。从机被动地接受、执行主机发来的命令,并且根据主机的要求向主机回传相应烦人实时数据,报告其运行状态。 用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。同时,系统的更改和扩充极为容易。MCS-51系列单片机,由于内部带有一个可用于异步通讯的全双工的穿行通讯接口,阴齿可以很方便的构成一个主从式系统。 串口是计算机上一种非常通用的设备通讯协议,大多数计算机包容两个基于RS232的串口。串口同时也是仪器仪表设备通过用的通讯协议,很多GPIB兼容的设备也带有RS-232口。同时串口通讯协议也可以用于获取远程采集设备数据。所以,深入的理解学习和研究串口通信相关知识是非常必要的。此次毕业设计选题为“PC机与MCS-51单片机的串口通讯”,使用51单片机来实现一个主从式

系统串口通讯协议

ZHET 系统串口通讯协议 通 讯 技 术 手 册 型号:SYRDS1-485 (SYRDSSS1) SYRDL1-485 (SYRLSSS1) 玺瑞国际企业有限公司 SYRIS International Corp.

通讯技术手册 通讯协议(Protocol) 卡片阅读机模块(Reader Module)的通讯协议(Protocol)皆出自于SYRIS 的一种标准通讯协议,这种协议格式如下表: 1.SOH 和 END 都是一个字节的控制字符: SOH 控制器端定义为 <0x09> 模块端定义为 <0x0A> END 控制器及模块端均固定为 <0x0D> 其中 <0x> 为十六进制表示法. 2.TYPE 为模块型式编号,固定为一个字节,本型式编号固定为“A”. 3.ID为模块端的识别代码,这一字节的 ASCII 字符必须是在 1 <0x31> 到 8 <0x38> 的范围内,假如控制器端传送之ID值与模块地址编号相同时, 则该模块将会接收控制器端所传送的数据,而模块响应时,也会传回相同的地址编号.

4.FC是通讯功能码(Function Code)和资料(DATA)有相关性,固定为一个 字节,这些资料请参考通讯协议表及相关说明. 5.错误讯息判断代码(Error Code)为两个字节,第一个字节为固定为 <0x0E> ,第二个字节为错误代码,请参考错误讯息代码表. 6.8 BITS BCC是所有字符的检查字段,为二个字节,有关 8 BITS BCC 的 信息和范例程序,请参考附录A. 7.RS485传输协议请设定为”E,8,1”,速率为”19200”. 错误讯息代码表(Error Code Table) ※ Error Code #1固定为 <0x0E>.

第06章单片机串行通信系统习题解答

第6章单片机串行通信系统习题解答 一、填空题 1.在串行通信中,把每秒中传送的二进制数的位数叫波特率。 2.当SCON中的M0M1=10时,表示串口工作于方式 2 ,波特率为 fosc/32或fosc/64 。 3.SCON中的REN=1表示允许接收。 4.PCON 中的SMOD=1表示波特率翻倍。 5.SCON中的TI=1表示串行口发送中断请求。 6.MCS-51单片机串行通信时,先发送低位,后发送高位。 7.MCS-51单片机方式2串行通信时,一帧信息位数为 11 位。 8.设T1工作于定时方式2,作波特率发生器,时钟频率为,SMOD=0,波特率为时,T1的初值为 FAH 。 9.MCS-51单片机串行通信时,通常用指令 MOV SBUF,A 启动串行发送。 10.MCS-51单片机串行方式0通信时,数据从引脚发送/接收。 二、简答题 1.串行口设有几个控制寄存器它们的作用是什么 答:串行口设有2个控制寄存器,串行控制寄存器SCON和电源控制寄存器PCON。其中PCON中只有的SMOD与串行口的波特率有关。在SCON中各位的作用见下表: 2.MCS-51单片机串行口有几种工作方式各自的特点是什么 答:有4种工作方式。各自的特点为:

3.MCS-51单片机串行口各种工作方式的波特率如何设置,怎样计算定时器的初值 答:串行口各种工作方式的波特率设置: 工作方式O :波特率固定不变,它与系统的振荡频率fosc 的大小有关,其值为fosc/12。 工作方式1和方式3:波特率是可变的,波特率=(2SMOD/32)×定时器T1的溢出率 工作方式2:波特率有两种固定值。 当SM0D=1时,波特率=(2SM0D/64)×fosc=fosc/32 当SM0D=0时,波特率=(2SM0D/64)×fosc=fosc/64 计算定时器的初值计算: 4.若fosc = 6MHz ,波特率为2400波特,设SMOD =1,则定时/计数器T1的计数初值为多少并进行初始化编程。 答:根据公式 N=256-2SMOD ×fosc /(2400×32×12)= ≈243 =F3H TXDA: MOV TMOD,#20H ;置T1定时器工作方式2 MOV TL1,#0F3H ;置T1计数初值. MOV TH1,#0F3H B f B f N OSC SMOD OSC SMOD ??-=???-=384225612322256

C51单片机和电脑串口通信电路图

C51单片机和电脑串口通信电路图与源码 51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。 串口通讯的硬件电路如上图所示 在制作电路前我们先来看看要用的MAX232,这里我们不去具体讨论它,只要知道它是TTL和RS232电平相互转换的芯片和基本的引脚接线功能就行了。通常我会用两个小功率晶体管加少量的电路去替换MAX232,可以省一点,效果也不错,下图就是MAX232的基本接线图。

按图7-3加上MAX232就可以了。这大热天的拿烙铁焊焊,还真的是热气迫人来呀:P串口座用DB9的母头,这样就可以用买来的PC串口延长线进行和电脑相连接,也可以直接接到电脑com口上。

为了能够在电脑端看到单片机发出的数据,我们必须借助一个WINDOWS软件进行观察,这里我们利用一个免费的电脑串口调试软件。本串口软件在本网站https://www.360docs.net/doc/bc3068833.html,可以找到 软件界面如上图,我们先要设置一下串口通讯的参数,将波特率调整为4800,勾选十六进制显示。串口选择为COM1,当然将网站提供的51单片机实验板的串口也要和电脑的COM1连接,将烧写有以下程序的单片机插入单片机实验板的万能插座中,并接通51单片机实验板的电源。

51单片机串口通信异常的调试一例

51单片机串口通信异常的调试一例 单片机与DSP在硬件结构和程序编写方面存在很多共同之处,所以最近几周试着用了一下51单片机开发板,希望进一步熟悉中断的概念、串口通信、I2C协议、存储扩展等常用的知识。 在进行串口通信的实验时,预期功能不能实现。实验的设计方案是:通过上位机给单片机发送一个16bit的字符串,单片机对字符串进行接收并立刻回显给上位机,接收并回显完毕后依次将这些字符(只能是0-9,a-f这几个字符,可以重复)在数码管上进行显示。 程序编写完成后,通过上位机发送字符串9876543210abcdef,单片机串口接收并回显9876543210abcde,然后数码管依次显示f9876543210abcde,数码管显示完成后,单片机串口回显的字符串中的e后面又多了一个f。 对实验现象进行分析不难发现,串口的接收和回显功能正常,但是存在2个问题:1.串口接收并回显和数码管显示的时序有点混乱;2.数码管的显示出现异常,本应该依次显示9876543210abcdef,实际上显示的却是f9876543210abcde。 对源代码进行分析发现,时序混乱的原因是中断响应及中断返回的执行时序出现问题,修改代码后问题1被解决。 问题2的解决思路:源代码中,通过串口接收到的字符串被存储在一个一维数组array[16]中,该数组有16个元素,每个元素都是unsigned char型。在源代码中,先注释掉数码管显示的那一段代码,然后添加串口打印代码,串口打印实现的功能是依次显示array[0]到array[15]这16个元素的值。编译通过后,将程序烧写到单片机。使用串口调试助手,以十六进制的形式观察array[0]到array[15]的取值,结果如下:

51单片机实现的485通讯程序

51单片机实现的485通讯程序 #ifndef __485_C__ #define __485_C__ #include #include #define unsigned char uchar #define unsigned int uint /* 通信命令*/ #define __ACTIVE_ 0x01 // 主机询问从机是否存在 #define __GETDATA_ 0x02 // 主机发送读设备请求 #define __OK_ 0x03 // 从机应答 #define __STATUS_ 0x04 // 从机发送设备状态信息 #define __MAXSIZE 0x08 // 缓冲区长度 #define __ERRLEN 12 // 任何通信帧长度超过12则表示出错uchar dbuf[__MAXSIZE]; // 该缓冲区用于保存设备状态信息uchar dev; // 该字节用于保存本机设备号 sbit M_DE = P1^0; // 驱动器使能,1有效 sbit M_RE = P1^1; // 接收器使能,0有效

void get_status(); // 调用该函数获得设备状态信息,函数代码未给出 void send_data(uchar type, uchar len, uchar *buf); // 发送数据帧 bit recv_cmd(uchar *type); // 接收主机命令,主机请求仅包含命令信息 void send_byte(uchar da); // 该函数发送一帧数据中的一个字节,由send_data()函数调用void main() { uchar type; uchar len; /* 系统初始化*/ P1 = 0xff; // 读取本机设备号 dev = (P1>>2); TMOD = 0x20; // 定时器T1使用工作方式2 TH1 = 250; // 设置初值 TL1 = 250; TR1 = 1; // 开始计时 PCON = 0x80; // SMOD = 1 SCON = 0x50; // 工作方式1,波特率9600bps,允许接收 ES = 0; // 关闭串口中断 IT0 = 0; // 外部中断0使用电平触发模式 EX0 = 1; // 开启外部中断0

51单片机与PC串口通讯

目录 第1章需求分析 ............................................................................................................................ - 1 - 1.1课题名称 (1) 1.2任务 (1) 1.3要求 (1) 1.4设计思想 (1) 1.5课程设计环境 (1) 1.6设备运行环境 (2) 1.7我在本实验中完成的任务 (2) 第2章概要设计 ............................................................................................................................ - 2 - 2.1程序流程图 (2) 2.2设计方法及原理 (3) 第3章详细设计 ............................................................................................................................ - 3 - 3.1电路原理 (3) 3.1.1STC89C52芯片 ............................................................................................................. - 3 -3.2串口通信协议 (4) 3.3程序设计 (5) 3.3.1主程序模块 .................................................................................................................... - 5 - 3.3.2串口通讯模块 ................................................................................................................ - 6 - 3.3.3控制部分文件 ................................................................................................................ - 8 - 3.3.4公共部分模块 .............................................................................................................. - 11 -3.4电路搭建 (12) 3.4.1电路原理图 .................................................................................................................. - 12 -第4章上位机关键代码分析 ...................................................................................................... - 12 - 4.1打开串口操作 (12) 4.2后台线程处理串口程序 (15) 4.3程序运行界面 (18) 第5章课程设计总结与体会 ...................................................................................................... - 19 -第6章致谢 .................................................................................................................................. - 19 -参考文献........................................................................................................................................... - 19 -

单片机串口通信的发送与接收(可编辑修改word版)

51 单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。 当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。无 论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。 看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。 接收数据时,基本上都是使用“中断方式”,这是正确合理的。 即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数, 收到了新数据。 发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来 等待发送完毕。 这时,处理不好的话,就可能带来问题。 看了一些网友编写的程序,发现有如下几条容易出错: 1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。 这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。 这种处理方法,就会遗漏收到的数据。 2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。 但是,却在中断函数中,将TI 清零! 这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。 3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收 中断的程序。 对此,做而论道发表自己常用的方法: 接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。 发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。 这样一来,收、发两者基本一致,编写程序也很规范、易懂。 更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。 实例: 求一个PC 与单片机串口通信的程序,要求如下: 1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.360docs.net/doc/bc3068833.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

两个单片机之间的串行通信

两个单片机之间的串行通信 一、设计要求 在某个控制系统中有U1、U2这两个单片机,U1单片机首先将P1端口指拨开关数据载入SBUF,然后经由TXD将数据传送给U2单片机,U2单片机将接收数据存入SBUF,再由SBUF载入累加器,并输出至P1端口,点亮相应端口的LED。 二、实验所需元器件 三、电路原理图: 两个单片机之间的串行通信电路图

四、程序设计 这两个单片机均工作在半工状态,U1将P1端口的状态通过TXD发半空给U2,而U2接收U1的数据,然后控制P1端口的LED显示。因此,需编写两个不同的程序,其程序流程图如下所示:

五、C语言程序: U1的C语言程序: #include "reg51.h" #define uint unsigned int #define uchar unsigned char void send(uchar state) { SBUF=state; while(TI==0); TI=0; } void SCON_init(void) { SCON=0x50; TMOD=0x20; PCON=0x00; TH1=0xfd; TL1=0xfd; TI=0; TR1=1; ES=1; } void main() { P1=0xff; SCON_init(); while(1) { send(P1); } } U2的C语言程序: #include "reg51.h" #define uint unsigned int #define uchar unsigned char uchar state; void receive() { while(RI==0) state=SBUF; RI=0; } void SCON_init(void) { SCON=0x50; TMOD=0x20; PCON=0x00; TH1=0xfd; TL1=0xfd; RI=0; TR1=1; } void main() { SCON_init(); while(1) { receive(); P1=state; } } 六、调试与仿真:

单片机串口通信

单片机串口通信 关键词:单片机,串口通信 单片机应用中,串口通信是不可缺少的部分。如何编写有效的串口通信程序对程序的结构、可靠性都有很大的影响。串口控制程序一般分为查询和中断两者方式。查询方式适用于简单的应用,简单可靠,但是缺点是需要占用处理器资源,在发送或者接收数据的时候不能做其它的事情,处理器利用率低。中断方式下,在发送或者接受数据的时候处理器还可以做其它的工作,效率较高。 对于稍微复杂的系统来说,中断方式管理串口程序将会更加有效。中断处理方式也可分为几种,其中采用循环缓冲区的方式比较高效。循环缓冲区为定义的一定长度的RAM区间,对于接受数据来说,中断中收到的数据将存入RAM中,然后等待主程序来读取。其中会涉及到数据见的协调问题,写数据的时候不能把还没有读取的数据覆盖掉,读数据的时候应该读取的是缓冲区中最老的数据。当缓冲区已满的时候,写入的新数据应该覆盖掉最老的数据。这些问题的处理可以使用两个指针来实现。

初始化时两个指针均指向RAM区间的底部,如图1所示。当中断中接收到一个数据的时候,将这个数据写入写指针WPTR指向的存储单元,然后调整写指针指向下一个空余的RAM区间,程序上处理就是把写指针加一,如图2所示。同理,写入N个数据后写指针同步更新,如图3所示。 当读数据的时候,首先判断缓冲区中是否有数据,方法是判断读指针和写指针是否相等,如果相等表明没有数据,如图5所示。如果读指针和写指针不等,那么读取缓冲区中的数据,然后调整读指针,当写指针和读指针相等的时候,表明缓冲区中的有效数据已经读取完,此时读指针和写指针相等。

当有数据再次写入的时候,继续紧接着上次写入的地址后写入新的数据,如果数据长度超过缓冲区的长度,写指针重新返回缓冲区的底部重新开始(这是循环缓冲的由来),如图6所示。此时如果有数据读出,读指针做同样的更新。如果没有数据读出,一直有数据写入,可能会出现缓冲区写满的情况,如图7所示。此时如果仍然没有数据读取,继续有数据写入的时候,为了保留新的数据,必须丢弃老的数据,即写指针可能超过读指针,此时,读指针必须和谐指针同步更新,这样才能保证读取的是没有被覆盖的最老的数据,如图8所示。 需要注意的是,读指针在中断过程中也可能被更改,因此,读数据的子程序需要对读指针的更改进行保护,方法是在读数据的时候关闭串行口中断。下面是循环缓冲区接收数据的程序实例。 FT, 尽然连文本都不能上传,代码只好贴出来吧。 /* * FileName: uart.h * Description: header file for SerialPort * Author: SangWei, HUST-CEEE-2004 * Contact: swkyer@https://www.360docs.net/doc/bc3068833.html,, swkyer@https://www.360docs.net/doc/bc3068833.html,

串口通讯—通信协议

串口通讯—通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。 目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1.串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。 2、串行通信接口电路的组成

51单片机与串口通信代码

51单片机与串口通信代码 2011年04月22日 17:18 本站整理作者:佚名用户评论(0) 关键字:串口通信(35) 串口调试 1. 发送:向总线上发命令 2. 接收:从总线接收命令,并分析是地址还是数据。 3. 定时发送:从内存中取数并向主机发送. 经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。 程序如下: //这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收 //和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的 #i nclude #i nclude #i nclude #define INBUF_LEN 4 //数据长度 unsigned char inbuf1[INBUF_LEN]; unsigned char checksum,count3 , flag,temp,ch; bit read_flag=0; sbit cp=P1^1; sbit DIR=P1^2; int i; unsigned int xdata *RAMDATA; /*定义RAM地址指针*/ unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ; void init_serialcomm(void) { SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收

PCON=0x00; ES=1; TMOD=0x21; //定时器工作于方式2,自动装载方式 TH0=(65536-1000)%256; TL0=(65536-1000)/256; TL1=0xfd; TH1=0xfd; ET0=1; TR0=1; TR1=1; // TI=0; EA=1; // TI=1; RAMDATA=0x1F45; } void serial () interrupt 4 using 3 { if(RI) { RI=0; ch=SBUF; TI=1; //置SBUF空 switch(ch) { case 0x01 :printf("A"); TI=0;break; case 0x02 :printf("B"); TI=0;break; case 0x03 :printf("C"); TI=0;break;

PC机与单片机232通信协议

PC 机与单片机通信(RS232 协议) 目录: 1、单片机串口通信的应用 2、PC控制单片机IO口输出 3、单片机控制实训指导及综合应用实例 4、单片机给计算机发送数据: [实验任务] 单片机串口通信的应用,通过串口,我们的个人电脑和单片机系统进行通信。 个人电脑作为上位机,向下位机单片机系统发送十六进制或者ASCLL码,单片机系统接收后,用LED显示接收到的数据和向上位机发回原样数据。 [硬件电路图] [实验原理] RS-232是美国电子工业协会正式公布的串行总线标准,也是目前最常用的串 行接口标准,用来实现计算机与计算机之间、计算机与外设之间的数据通讯。 RS-232串行接口总线适用于:设备之间的通讯距离不大于15m,传输速率最大为20kBps。RS-232协议以-5V-15V表示逻辑1;以+5V-15V 表示逻辑0。我们是用MAX232芯片将RS232电平转换为TTL电平的。一个完整的RS-232接口有22 根线,采用标准的25芯插头座。我们在这里使用的是简化的9芯插头座。 注意我们在这里使用的晶振是11.0592M的,而不是12M。因为波特率的设置 需要11.0592M的。 “串口调试助手V2.1.exe”软件的使用很简单,只要将串口选择‘CMO1’波 特率设置为‘9600’数据位为8 位。打开串口(如果关闭)。然后在发送区里 输入要发送的数据,单击手动发送就将数据发送出去了。注意,如果选中‘十六

进制发送’那么发送的数据是十六进制的,必须输入两位数据。如果没有选中,则发送的是ASCLL码,那么单片机控制的数码管将显示ASCLL码值。

[C语言源程序] #include "reg52.h" //包函8051 内部资源的定义 unsigned char dat; //用于存储单片机接收发送缓冲寄存器SBUF里面的内容 sbit gewei=P2^4; //个位选通定义 sbit shiwei=P2^5; //十位选通定义 sbit baiwei=P2^6; //百位选通定义 unsigned char code table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,}; //1~10 void Delay(unsigned int tc) //延时程序 { while( tc != 0 ) {unsigned int i; for(i=0; i<100; i++); tc--;} } void LED() //LED显示接收到的数据(十进制) { gewei=0; P0=table[dat%10]; Delay(10); gewei=1; shiwei=0; P0=table[dat/10]; Delay(10); shiwei=1; baiwei=0; P0=table[dat/100]; Delay(10); baiwei=1; } ///////功能:串口初始化,波特率9600,方式1///////// void Init_Com(void) { TMOD = 0x20; PCON = 0x00; SCON = 0x50; TH1 = 0xFd; TL1 = 0xFd; TR1 = 1; } /////主程序功能:实现接收数据并把接收到的数据原样发送回去/////// void main() { Init_Com();//串口初始化 while(1) { if ( RI ) //扫描判断是否接收到数据, { dat = SBUF; //接收数据SBUF赋与dat RI=0; //RI 清零。

相关文档
最新文档