计算智能在移动机器人路径规划中的应用综述

合集下载

智能机器人的路径规划算法综述与分析

智能机器人的路径规划算法综述与分析

智能机器人的路径规划算法综述与分析智能机器人在现代社会中的应用越来越广泛,其中路径规划算法是实现机器人自主导航的核心技术之一。

路径规划旨在找到从起始点到目标点的最佳路径,以避开障碍物并最大限度地优化一些性能指标,如时间、能量消耗或者其他用户自定义的优化目标。

本文将综述智能机器人路径规划的常用算法,并对其进行分析和比较。

1. 图搜索算法图搜索算法是路径规划中最常见的一类算法。

最著名的图搜索算法莫过于A*算法,它通过估计距离函数选择最优路径。

A*算法综合考虑了启发式函数(估计距离)和代价函数(已经走过的路径代价),在实际应用中得到了广泛的应用。

然而,A*算法在处理大规模地图时性能较差,因为其需要维护一个开放列表和一个关闭列表。

为了解决这个问题,研究者提出了许多改进的A*算法,如D*算法、Theta*算法等。

2. 虚拟力场算法虚拟力场算法通过模拟物理力场的方式进行路径规划。

其中,每个机器人都被看作是一个带电粒子,目标点看作是一个带正电荷的静态引力源,而障碍物则视为带负电荷的斥力源。

机器人受到引力和斥力的作用,从而沿着最小势能路径移动。

虚拟力场算法具有简单、实时性好的优点,然而在复杂环境中容易陷入局部最小值,导致路径规划不准确。

3. 蚁群算法蚁群算法是受到蚂蚁觅食行为启发而发展起来的一种启发式优化算法。

蚂蚁觅食路径的选择和信息素的释放行为被模拟为算法的行动规则。

在路径规划中,蚁群算法能够搜索到高质量的路径解,并且具有一定的自适应性和鲁棒性。

然而,蚁群算法的性能与参数设置密切相关,需要进行大量的实验和调参,且收敛速度较慢。

4. 遗传算法遗传算法是一种模拟自然界生物进化过程的算法,通过选择、交叉和变异操作来搜索最优解。

在路径规划中,可以将路径编码为染色体,并通过遗传操作来进化新的解。

遗传算法具有全局寻优能力强的优点,且可以在复杂环境中寻找到较优的路径。

然而,遗传算法需要较长的计算时间,并且对初始参数的选择比较敏感。

移动机器人路径规划算法研究综述

移动机器人路径规划算法研究综述

移动机器人路径规划算法研究综述1. 引言1.1 研究背景移动机器人路径规划算法研究的背景可以追溯到上个世纪七十年代,随着自动化技术的快速发展,移动机器人作为自主运动和智能决策的机械系统,逐渐成为研究热点。

路径规划是移动机器人实现自主导航和避障的重要技术之一,其在工业自动化、智能交通、医疗护理等领域具有广泛的应用前景。

目前,移动机器人路径规划算法的研究已经取得了一系列重要进展,传统的基于图搜索的算法(如A*算法、Dijkstra算法)和基于启发式搜索的算法(如D*算法、RRT算法)被广泛应用于不同环境下的路径规划问题。

随着深度学习技术的发展,越来越多的研究开始将深度神经网络应用到路径规划中,取得了一些令人瞩目的成果。

移动机器人路径规划仍然存在一些挑战和问题,如高维空间中复杂环境下的路径规划、多Agent协作下的路径冲突问题等。

对移动机器人路径规划算法进行深入研究和探索,对于促进智能机器人技术的发展,提升机器人在各个领域的应用能力具有重要的意义。

【研究背景】1.2 研究目的本文旨在对移动机器人路径规划算法进行研究综述,探讨不同算法在实际应用中的优缺点,总结最新的研究成果和发展趋势。

移动机器人路径规划是指在未知环境中,通过算法规划机器人的运动轨迹,使其能够避开障碍物、到达目标点或完成特定任务。

研究目的在于深入了解各种路径规划算法的原理和实现方法,为实际场景中的机器人导航提供理论支持和技术指导。

通过对比实验和案例分析,评估不同算法在不同场景下的性能表现,为工程应用提供参考和借鉴。

本文旨在总结当前研究的不足之处和未来发展的方向,为学术界和工程领域提供启示和思路。

通过本文的研究,旨在推动移动机器人路径规划领域的进一步发展和应用,促进人工智能和机器人技术的创新与进步。

1.3 研究意义移动机器人路径规划算法的研究意义主要体现在以下几个方面。

移动机器人路径规划算法在工业生产中具有重要意义。

通过优化路径规划算法,可以提高生产效率,降低生产成本,减少对人力资源的依赖,从而提升工业生产的效益和竞争力。

《移动机器人路径规划算法研究》范文

《移动机器人路径规划算法研究》范文

《移动机器人路径规划算法研究》篇一一、引言随着科技的不断发展,移动机器人在各个领域的应用越来越广泛,如物流、医疗、军事等。

而移动机器人的核心问题之一就是路径规划问题,即如何在复杂的环境中,寻找最优的路径以达到目标。

本文将深入探讨移动机器人路径规划算法的研究,分析其发展现状及未来趋势。

二、移动机器人路径规划算法概述移动机器人路径规划算法是指机器人在给定的环境中,根据预设的目标,通过计算得出一条最优的移动路径。

该算法主要涉及环境建模、路径搜索和路径优化三个部分。

环境建模是通过对环境的感知和描述,建立机器人的工作环境模型;路径搜索是在工作模型中寻找可行的路径;路径优化则是对搜索到的路径进行优化,以获得最优的移动路径。

三、常见的移动机器人路径规划算法1. 栅格法:将工作环境划分为一系列的栅格,通过计算每个栅格的代价,得出从起点到终点的最优路径。

该方法简单易行,但计算量大,对于复杂环境适应性较差。

2. 图形法:将工作环境抽象为图形,利用图论中的算法进行路径搜索。

该方法可以处理复杂的环境,但需要建立精确的图形模型。

3. 随机采样法:通过在环境中随机采样大量的点,根据采样的结果得出最优路径。

该方法计算量小,但对于复杂环境的处理能力有限。

4. 基于神经网络的算法:利用神经网络学习环境的特征,从而得出最优的路径。

该方法具有较好的自适应能力,但需要大量的训练数据。

四、移动机器人路径规划算法的研究现状目前,国内外学者在移动机器人路径规划算法方面进行了大量的研究。

在传统算法的基础上,结合人工智能、深度学习等技术,提出了一系列新的算法。

例如,基于强化学习的路径规划算法、基于遗传算法的路径优化等。

这些新算法在处理复杂环境、提高路径优化的效率等方面取得了显著的成果。

五、移动机器人路径规划算法的挑战与展望尽管移动机器人路径规划算法取得了显著的进展,但仍面临许多挑战。

首先,对于复杂环境的处理能力还有待提高;其次,如何提高路径优化的效率也是一个重要的问题;此外,如何将人工智能、深度学习等技术更好地应用于路径规划算法中也是一个研究方向。

智能机器人中的路径规划算法使用技巧

智能机器人中的路径规划算法使用技巧

智能机器人中的路径规划算法使用技巧智能机器人在现代社会中扮演着越来越重要的角色。

路径规划技术是使机器人能够自主导航并安全高效地完成任务的关键算法之一。

路径规划算法的优劣直接影响着机器人的导航能力和效率。

在这篇文章中,我们将介绍几种常见的路径规划算法,并探讨一些使用技巧,以提高智能机器人的导航性能。

1. 最短路径算法最短路径算法是一种常用的路径规划算法,用于寻找从起点到目标点的最短路径。

其中最著名的算法是Dijkstra算法和A*算法。

Dijkstra算法通过计算每个节点到起点的最短距离,逐步更新节点的最短路径,直到找到目标节点。

这是一种精确的算法,可以确保找到最短路径,但在大规模地图中可能计算时间较长。

A*算法是一种启发式搜索算法,结合了Dijkstra算法和估算函数(heuristic function)。

估算函数用于评估每个节点到目标节点的距离,并通过选择最佳估算值的节点来继续搜索。

A*算法在搜索过程中引入了启发性信息,能够减少搜索的节点数量,从而更快地找到最短路径。

在使用最短路径算法时,我们可根据实际场景情况选择合适的算法。

Dijkstra算法适用于简单环境下的路径规划,而A*算法则更适用于复杂环境,可以在较短时间内找到较优解。

2. 避障算法智能机器人在导航过程中需要避免障碍物,以确保安全。

避障算法是一种针对障碍物规划路径的算法,常见的方法有势场法和基于图的搜索算法。

势场法通过模拟粒子在电势场中的运动,将障碍物看做斥力,目标点看做引力,通过计算合力的方向和大小,规划机器人的路径。

这种方法简单高效,适用于实时控制。

但它容易陷入局部最优解,导致路径不够优化。

基于图的搜索算法将环境建模为图结构,每个节点表示机器人在特定位置的状态,边表示机器人移动的动作。

通过搜索算法(如A*算法),可以在避开障碍物的同时计算出最短路径。

这种方法更加全面,能够规避局部极值问题,但计算复杂度较高。

选择避障算法时,需要考虑机器人和环境的特点。

路径规划算法及其应用综述

路径规划算法及其应用综述

路径规划算法及其应用综述路径规划算法是人工智能领域中的重要分支,广泛应用于机器人导航、无人驾驶、图像处理、自然语言处理等领域。

本文将综述路径规划算法的发展历程、种类、特点及其在不同领域的应用情况,并探讨未来的研究趋势和应用前景。

关键词:路径规划算法,最优化算法,无模型算法,数据挖掘算法,应用领域,未来展望。

路径规划算法旨在为机器人或无人系统找到从起始点到目标点的最优路径。

随着人工智能技术的不断发展,路径规划算法在各个领域的应用也越来越广泛。

本文将介绍最优化算法、无模型算法和数据挖掘算法等路径规划算法的种类和特点,并探讨它们在不同领域的应用情况,同时展望未来的研究趋势和应用前景。

路径规划算法可以大致分为最优化算法、无模型算法和数据挖掘算法。

最优化算法包括Dijkstra算法、A*算法、Bellman-Ford算法等,它们通过构建优化图和求解最优路径来寻找最短或最优路径。

无模型算法则以行为启发式为基础,如蚁群算法、粒子群算法等,通过模拟自然界中的某些现象来寻找最优路径。

数据挖掘算法则从大量数据中提取有用的信息来指导路径规划,如k-最近邻算法等。

最优化算法在路径规划中应用较为广泛,其中Dijkstra算法和A算法是最常用的两种。

Dijkstra算法通过不断地扩展起始节点,直到找到目标节点为止,能够求解出最短路径。

A算法则通过评估函数来对每个节点进行评估,从而找到最优路径。

无模型算法则在求解复杂环境和未知环境下的路径规划问题中具有较大优势,例如蚁群算法可以通过模拟蚂蚁寻找食物的过程来求解最短路径问题。

数据挖掘算法则可以通过对大量数据的挖掘来指导路径规划,例如k-最近邻算法可以根据已知的k个最近邻节点的信息来指导路径规划。

路径规划算法在各个领域都有广泛的应用。

在机器人领域中,路径规划算法可用于机器人的自主导航和避障,例如在家庭服务机器人中,通过路径规划算法可以实现从客厅到餐厅的最短路径规划。

在无人驾驶领域中,路径规划算法可用于实现自动驾驶车辆的导航和避障,从而保证车辆的安全行驶。

智能机器人系统中的路径规划算法

智能机器人系统中的路径规划算法

智能机器人系统中的路径规划算法随着人工智能和机器人技术的日益发展,智能机器人在日常生活、工业生产、医疗保健等领域中的应用越来越广泛。

在实际应用中,路径规划是智能机器人系统中的一个重要问题。

路径规划算法可以帮助机器人在复杂环境中自主运动,避开障碍物,实现精准定位和运动控制。

本文将介绍智能机器人系统中的路径规划算法,包括基本原理、分类、应用场景等方面。

一、基本原理路径规划算法是指在给定地图和起止点的情况下,计算出从起点到终点的一条合法路径的过程。

其中,合法路径指的是路径上不出现障碍物、不违反运动规则、不撞墙等合法条件的路径。

路径规划算法需要考虑地图信息、机器人行动方式和运动规则等因素。

路径规划算法可以通过不同的路径搜索方法来计算合法路径。

其中,常见的路径搜索方法有深度优先搜索、广度优先搜索、A*搜索、D*搜索等。

这些方法都可以通过搜索算法对地图进行遍历,找到合法路径。

不同的算法有不同的优缺点,需要根据具体应用场景来选择合适的算法。

二、分类根据机器人的运动方式和工作环境,路径规划算法可以分为点到点规划和全局规划两种。

1. 点到点规划点到点规划是指在给定起始点和结束点的情况下,计算出两点之间的一条路径的过程。

这种规划方法适用于机器人在静态环境下的自主移动。

常见的点到点规划算法有最短路径算法、避障路径算法等。

最短路径算法可以通过Dijkstra算法或A*算法来计算最短路径。

这种算法适用于平面地图和简单的路线规划。

避障路径算法则更加复杂,需要考虑避障、规划动态路径等不同因素。

基于避障路径算法的路径规划算法有Rapidly-Exploring Random Trees算法、Potential Field算法等。

2. 全局规划全局规划是指在给定的环境地图信息中,计算出从起点到终点的所有可能的路径。

这种规划方法适用于动态环境下的机器人运动。

常见的全局规划算法有图搜索算法、自组织映射算法、蚁群算法等。

图搜索算法可以通过Dijkstra算法、BFS算法、DFS算法、A*算法等多种不同方法进行。

群体智能算法在机器人路径规划中的应用

群体智能算法在机器人路径规划中的应用机器人已经成为现代工业的重要组成部分,它们可以完成许多重复性、危险或高精度任务。

在许多应用中,机器人需要遵循规定的路径移动,以达到特定的目标。

路径规划是机器人自主导航的核心技术之一,而群体智能算法在机器人路径规划中被广泛应用。

一、群体智能算法的基本原理群体智能算法是一种基于自然界中蚁群、鸟群等社群行为的仿生智能算法,具有分布式计算、自适应、免学习和并行处理等优点。

群体智能算法主要分为以下几类: 蚁群算法、粒子群算法、免疫算法、人工鱼群算法等,其中,蚁群算法和粒子群算法应用最为广泛。

二、群体智能算法在机器人路径规划中的应用机器人路径规划的目标是使机器人从起点到达终点,避免障碍物和最小化路径长度或时间。

群体智能算法可以很好地解决这个问题,因为它可以模拟自然界的社交集群行为,机器人在这样的行为模式下可以更好地融入环境。

1.蚁群算法在机器人路径规划中的应用蚁群算法是一种基于蚂蚁在搜索食物和建筑物时的智能行为的算法。

在蚁群算法中,蚂蚁会释放信息素来指导路径选择,较短路径上的信息素浓度较高,蚂蚁更倾向于沿着这条路径前进。

机器人遵循这种行为策略,可以找到一条最优的路径。

2.粒子群算法在机器人路径规划中的应用粒子群算法是受到鸟类飞行的启发而开发的一种算法。

在粒子群算法中,每个粒子都有自己的位置和速度,并按照一定规则进行移动和调整。

机器人可以作为粒子,遵循粒子的行为策略来寻找最优路径。

三、群体智能算法在机器人路径规划中的优势1.自适应性强群体智能算法具有自适应性强的特点,可以对不同的环境和任务进行适应性调整。

2.全局搜索能力强与传统的单个算法相比,群体智能算法在全局搜索方面具有很大优势。

因为群体智能算法在搜索过程中考虑到了多个机器人之间的交互,可以更好地寻找到全局最优解。

3.鲁棒性强群体智能算法具有鲁棒性强的特点,可以应对复杂的环境和任务,在实际应用中具有很高的可靠性和稳定性。

AI机器人的路径规划与导航

AI机器人的路径规划与导航近年来,随着人工智能技术的不断发展,AI机器人在各个领域获得了广泛的应用。

其中,路径规划与导航是AI机器人最为重要且常见的功能之一。

本文将探讨AI机器人在路径规划与导航中的应用和挑战,并介绍其相关技术和发展趋势。

一、路径规划与导航的重要性AI机器人的路径规划与导航是其能够准确完成任务和避免障碍的基础。

路径规划是指AI机器人在已知的环境中,通过算法寻找最佳路径的过程。

导航则是指AI机器人在路径规划的基础上,实际进行移动的过程。

在各种应用场景中,如物流配送、无人驾驶等,路径规划与导航的准确性和高效性直接决定了AI机器人的工作效果和用户体验。

二、路径规划与导航的技术方法1. A*算法A*算法是一种常用的路径规划算法,其基本思想是通过估算目标点的距离,选择最短路径。

A*算法综合了广度优先搜索和贪婪最优优先搜索的特点,能够在保证准确性的同时提高搜索效率。

2. Dijkstra算法Dijkstra算法是一种经典的最短路径算法,适用于无权图和有权图的路径规划。

其核心思想是通过连续的松弛操作,逐步更新起始点到各个顶点的最短路径值,直至得到最终的最短路径。

3. RRT算法RRT(Rapidly-exploring Random Tree)算法是一种常用于机器人路径规划的算法。

其通过随机采样并生成树状结构,逐步扩展搜索空间,直到找到目标点或近似找到最优路径。

4. SLAM技术SLAM(同时定位与地图构建)技术是一种基于传感器数据的自主定位和环境建模技术。

通过激光雷达、摄像头等传感器获取环境信息,并结合机器学习算法实现路径规划与导航。

三、AI机器人路径规划与导航的挑战和应对措施1. 环境复杂性现实世界的环境往往是复杂多变的,有着各种动态和静态的障碍物。

为了准确规划路径和避免碰撞,AI机器人需要能够实时感知和分析环境信息,应对复杂的场景。

2. 实时性要求在某些场景中,AI机器人需要实时规划路径和导航,以应对突发情况。

path planning 移动机器人路径规划方法综述

移动机器人路径规划方法1.1路径规划方法路径规划技术是机器人研究领域中的一个重要课题,是机器人导航中最重要的任务之一,国外文献常将其称为Path Planning,Find-PathProblem,Collision-Free,ObstacleAvoidance, MotionPlanning,etc.所谓机器人的最优路径规划问题,就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。

路径规划主要涉及的问题包括:利用获得的移动机器人环境信息建立较为合理的模型,再用某种算法寻找一条从起始状态到目标状态的最优或近似最优的无碰撞路径;能够处理环境模型中的不确定因素和路径跟踪中出现的误差,使外界物体对机器人的影响降到最小;如何利用已知的所有信息来引导机器人的动作,从而得到相对更优的行为决策。

这其中的根本问题是世界模型的表达和搜寻策略。

障碍物在环境中的不同分布情况当然直接影响到规划的路径,而目标位置的确定则是由更高一级的任务分解模块提供的[8]。

根据机器人对环境信息掌握的程度和障碍物运动状态的不同,移动机器人的路径规划基本上可分为以下四类:①已知环境下的对静态障碍物的路径规划;②未知环境下的对静态障碍物的路径规划;③已知环境下对动态障碍物的路径规划;④未知环境下对动态障碍物的路径规划。

因此根据机器人对环境信息掌握的程度不同,可将机器人的路径规划问题可分为二大类即:基于环境先验信息的全局路径规划问题和基于不确定环境的局部路径规划问题。

目前,路径规划研究方法大概可分为两大类即:传统方法和智能方法。

1.2传统路径规划方法传统的路径规划方法主要包括:可视图法(V-Graph)、自由空间法(Free Space Approach)、人工势场法(Artificial Potential Field)和栅格法(Grids)等。

⑴可视图法(V-Graph)可视图法是Nilsson1968年在文献[9]中首次提出。

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7控制与决策Control and Decision2010年7月Jul.2010移动机器人路径规划技术综述文章编号:1001-0920(2010)07-0961-07朱大奇,颜明重(上海海事大学水下机器人与智能系统实验室,上海201306)摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向.关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算中图分类号:TP18;TP273文献标识码:ASurvey on technology of mobile robot path planningZHU Da-qi,YAN Ming-zhong(Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@)Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classified into four classes:Template based,artificial potentialfield based,map building based and artificial intelligent based approaches.First,the basic theories of the path planning methods are introduced briefly.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given.Key words:Mobile robot;Path planning;Artificial potentialfield;Template approach;Map building;Neural network; Intelligent computation1引言所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划.本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向.2模版匹配路径规划技术模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一收稿日期:2009-08-30;修回日期:2009-11-18.基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97).作者简介:朱大奇(1964−),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977−),男,福建泉州人,博士生,从事水下机器人路径规划的研究.962控制与决策第25卷个最优匹配模版;然后对该模版进行修正,并以此作为最后的结果.模版匹配技术在环境确定情况下,有较好的应用效果.如Vasudevan等[4]提出的基于案例的自治水下机器人(AUV)路径规划方法,Liu等[5,6]提出的清洁机器人的模版匹配路径规划方法.为了提高模版匹配路径规划技术对环境变化的适应性,部分学者提出了将模版匹配与神经网络学习相结合的方法,如Ram等[7]将基于事例的在线匹配和增强式学习相结合,提高了模版匹配规划方法中机器人的自适应性能,使机器人能部分地适应环境的变化,以及Arleo等[8,9]将环境模版与神经网络学习相结合的路径规划方法等.模版匹配路径规划方法原理简单,在匹配成功时效果较好.但该方法的致命缺陷是依赖机器人的过去经验,如果案例库中没有足够的路径模版,就可能找不到与当前状态相匹配的路径;同时该方法主要针对静态环境的路径规划,一旦环境动态变化,则较难找到匹配的路径模版.这些不足严重限制了模版匹配路径规划技术的深入研究与推广应用,因此模版匹配要具有足够匹配的案例(路径)及对环境变化的适应性. 3人工势场路径规划技术人工势场路径规划技术的基本思想是将机器人在环境中的运动视为一种机器人在虚拟的人工受力场中的运动.障碍物对机器人产生斥力,目标点对机器人产生引力,引力和斥力的合力作为机器人的控制力,从而控制机器人避开障碍物而到达目标位置.早期人工势场路径规划研究是一种静态环境的人工势场,即将障碍物和目标物均看成是静态不变的.机器人仅根据静态环境中障碍物和目标物的具体位置规划运动路径,不考虑它们的移动速度.然而,现实世界中的环境往往是动态的,障碍物和目标物都可能是移动的.为了解决动态环境中机器人的路径规划问题,Fujimura等[10,11]提出一种相对动态的人工势场方法,将时间看成规划模型的一维参量,而移动的障碍物在扩展的模型中仍被看成是静态的,这样动态路径规划仍可运用静态路径规划方法加以实现.该方法存在的主要问题是假设机器人的轨迹总是已知的,但这一点在现实世界中难以实现.对此,Ko等[12]将障碍物的速度参量引入到斥力势函数的构造中,提出动态环境中的路径规划策略,并给出了仿真结果.但是,该方法的两个假设使其与实际的动态环境存在距离:1)仅考虑环境中障碍物的运动速度,未考虑机器人的运动速度;2)认为障碍物与机器人之间的相对速度是固定不变的,这不是完整的动态环境.对于动态路径规划问题来说,与机器人避障相关的主要是机器人与障碍物之间的相对位置和相对速度,而非绝对位置和速度.对此,Ge等[13,14]将机器人与目标物的相对位置与相对速度引入吸引势函数,将机器人与障碍物的相对位置与相对速度引入排斥势函数,提出动态环境下的机器人路径规划算法,并将该算法应用于全方位足球移动机器人的路径规划中,取得了比较满意的仿真与实验结果.Dennis等[15-18]在此基础上,进一步考虑到多障碍物的路径规划和人工势场路径规划的局部极小问题,提出移动机器人“能见度势场”的概念,给出一种障碍物削减策略,以解决多障碍物路径规划产生的计算量激增问题.最近,Jaradat等[19,20]将模糊理论与人工势场技术相结合,提出模糊人工势场算法,并与机器人动力学模型相结合,给出了相对完整的移动机器人路径规划与驱动控制方法.人工势场路径规划技术原理简单,便于底层的实时控制,在机器人的实时避障和平滑轨迹控制等方面得到了广泛研究.但人工势场路径规划方法通常存在局部极小点,尽管也有不少针对局部极小的改进方法,但到目前为止,仍未找到完全满意的答案.另外,在引力和斥力场设计时存在人为不确定因素,在障碍物较多时还存在计算量过大等问题,这些因素的存在限制了人工势场路径规划方法的广泛应用.应用中的难点是动态环境中引力场与斥力场的设计、局部极小问题的解决.4地图构建路径规划技术地图构建路径规划技术,是按照机器人自身传感器搜索的障碍物信息,将机器人周围区域划分为不同的网格空间(如自由空间和限制空间等),计算网格空间的障碍物占有情况,再依据一定规则确定最优路径[21-23].地图构建又分为路标法和栅格法,也称单元分解法.前者是构造一幅由标志点和连接边线组成的机器人可行路径图,如可视线方法[24]、切线图方法[25]、V oronoi图方法[26,27]和概率图展开法等[28,29].可视图法将机器人看成一个点,机器人、目标点和多边形障碍物的各顶点进行组合连接,并保证这些直线均不与障碍物相交,便形成一张图,称为可视图.由于任意两直线的顶点都是可见的,从起点沿着这些直线到达目标点的所有路径均是运动物体的无碰路径,路径规划就是搜索从起点到目标点经过这些可视直线的最短距离问题;切线图法和V oronoi图法对可视图法进行了改造.切线图法以多边形障碍物模型为基础,任意形状障碍物用近似多边形替代,在自由空间中构造切线图,因此从起始点到目标点机器人是沿着切线行走,即机器人必须几乎接近障碍物行走,路径较短.但如果控制过程中产生位置误差,移动机器人碰撞的可能性会很高.V oronoi图由一系列的直线段和抛物线段构成.直线由两个障碍物的顶点或第7期朱大奇等:移动机器人路径规划技术综述963两个障碍物的边定义生成,直线段上所有点必须距离障碍物的顶点或障碍物的边相等.抛物线段由一个障碍物的顶点和一个障碍物的边定义生成,抛物线段同样要求与障碍物顶点和障碍物的边有相同距离.与切线法相比,V oronoi 图法从起始节点到目标节点的路径将会增长,但采用这种控制方式时,即使产生位置误差,移动机器人也不会碰到障碍物,安全性较高.图1为切线图法与V oronoi 图法示意图.(a)(b)Voronoi图1切线图法与V oronoi 图法栅格法是将机器人周围空间分解为相互连接且不重叠的空间单元:栅格(cell),由这些栅格构成一个连通图,依据障碍物占有情况,在此图上搜索一条从起始栅格到目标栅格无碰撞的最优路径.这其中根据栅格处理方法的不同,又分为精确栅格法和近似栅格法,后者也称概率栅格法[30,31].精确栅格法[32]是将自由空间分解成多个不重叠的单元,这些单元的组合与原自由空间精确相等,如图2就是常用的一种精确栅格分解法—–梯形栅格分解.图2梯形栅格分解示意图与精确栅格法不同,近似栅格法的所有栅格都是预定的形状,通常为矩形.整个环境被分割成多个较大的矩形,每个矩形之间都是连续的.典型的方法是“四叉树”法,如果大矩形内部包含障碍物或者边界,则将其分割成4个小矩形.对所有稍大的栅格都进行这种划分,然后在划分的最后界限内形成的小栅格间重复执行该程序,直到达到解的界限为止.地图构建法直观明了,它常与其他路径规划方法集成使用,如Araujo [33]提出的ART 神经网络的地图构建路径规划算法,Najjaran [34]提出的卡尔曼滤波器的地图构建路径规划,Yang 等[35]提出的基于生物启发神经网络与地图构建集成的清洁机器人完全覆盖路径规划技术(CCPP)等.目前,地图构建技术已引起机器人研究领域的广泛关注,成为移动机器人路径规划的研究热点之一.但机器人传感器信息资源有限,使得网格地图障碍物信息很难计算与处理,同时由于机器人要动态快速地更新地图数据,在网格数较多、分辨率较高时难以保证路径规划的实时性.因此,地图构建方法必须在地图网格分辨率与路径规划实时性上寻求平衡.5人工智能路径规划技术人工智能路径规划技术是将现代人工智能技术应用于移动机器人的路径规划中,如人工神经网络、进化计算、模糊逻辑与信息融合等[36-39].遗传算法是最早应用于组合优化问题的智能优化算法,该算法及其派生算法在机器人路径规划研究领域已得到应用[40-42].在蚁群算法较好解决旅行商问题(TSP)的基础上,许多学者进一步将蚁群优化算法引入到水下机器人(UV)的路径规划研究中[43,44].最近,徐玉如等[45]考虑了海流因素的影响,提出了一种基于遗传算法和粒子群优化(PSO)算法的AUV 全局路径规划思想.由于模糊逻辑和信息融合技术在不确定性信息处理方面有极好的表现,且移动机器人传感器采集的环境信息存在不确定性和不完整性,使得模糊逻辑和信息融合技术在移动机器人路径规划中有较好的应用.如Lang 等[46]针对全覆盖路径规划提出的移动机器人模糊路径规划方法,Perez 等[47]提出的基于速度场的模糊路径规划方法等,Zun 等[48,49]提出基于信息融合技术的移动机器人和无人机的路径规划与避碰方法.神经网络作为人工智能的重要内容,在移动机器人路径规划研究中得到了广泛关注[35,36,50-52],如Ghatee 等[38]将Hopfield 神经网络应用到路径距离的优化中;Zhu 等[51]将自组织SOM 神经网络应用到多任务多机器人的任务分配与路径规划中.近年来加拿大学者Simon [53,54]提出一种新的生物启发动态神经网络模型,将神经网络的神经元与二维规划空间的离散坐标对应起来,通过规定障碍物和非障碍物对神经元输入激励和抑制的不同,直接计算相关神经元的输出,由此判定机器人的运行方向.由于该神经网络不需要学习训练过程,路径规划实时性好,同时利用神经网络本身的快速衰减特性,较好地解决了机器人路径规划的死区问题[35,55,56].图3为用于局部路径规划的生物启发神经网络结构图.图中所示为机器人(处于神经元处)传感器的感受半径,每个神经元与环境位置坐标对应,动态计算机器人邻近神经元输出,机器人根据神经元输出大小决定下一步运行目标,从而实现安全的路径规划.人工智能技术应用于移动机器人路径规划,增强了机器人的“智能”特性,克服了许多传统规划方法964控制与决策第25卷r=3r=2r=1r0 jwijC k l(,)i图3基于生物启发神经网络路径规划的不足.但该方法也有不足之处,有关遗传优化与蚁群算法路径规划技术主要针对路径规划中的部分问题,利用进化计算进行优化处理,并与其他路径规划方法结合在一起使用,单独完成路径规划任务的情况较少.信息融合技术主要应用于机器人传感器信号处理方面,而非直接的路径规划策略.对神经网络路径规划而言,大多数神经网络路径规划均存在规划知识的学习过程,不仅存在学习样本难以获取,而且存在学习滞后问题,从而影响神经网络路径规划的实时性.生物启发神经网络路径规划虽然实时性较好,但其输入激励与抑制的设定也存在人为不确定因素.6移动机器人路径规划技术展望毫无疑问,移动机器人路径规划研究已取得了重要进展,但在具体规划算法设计中,均有它们的局限性.如模版匹配方法过于依赖机器人过去的经验;人工势场路径规划方法通常存在局部极小点和计算量过大的问题;地图构建与人工神经网络技术均存在路径规划的实时性问题.从过去的研究状况和机器人未来的发展需求来看,目前移动机器人路径规划技术研究主要集中在以下几个方面.6.1新的路径规划方法的研究新的路径规划方法研究,永远是移动机器人路径规划的重要内容,主要是其结合了现代科技的发展(如新的人工智能方法、新的数理方法等),寻找易于实现,同时能避开现有方法缺点的新技术[57-62].另外,现代集成路径规划算法研究也是一个重要内容,即利用已有的各种规划方法的优点,克服他们的不足.如神经网络与地图构建技术结合[35,56]、信息融合与地图构建技术集成[63]、进化计算与人工势场技术的结合[64]等.6.2机器人底层控制与路径规划算法的结合研究以上是从路径规划策略上看移动机器人路径规划的发展.从应用角度看,路径规划的研究极大多数集中在规划算法的设计与仿真研究上,而将路径规划算法应用于实际的报道还很少,即使是一些实物仿真实验,研究也较少.但理论研究最终要应用于实际,因此有关机器人底层控制与路径规划算法的结合研究将是它的发展方向之一[65,66],不仅要研究路径规划算法,而且要研究机器人的动力学控制与轨迹跟踪,使机器人路径规划研究实用化、系统化.6.3多机器人任务分配、通信协作及路径规划的研究以往有关单机器人的路径规划研究报道较多,而多机器人路径规划及相关技术研究较少[51,56].实际上,多机器人协作作业与路径规划在现实世界还非常常见,如足球机器人比赛、空中无人机编队飞行、自治水下机器人的合作搜救与观察等.它将涉及多方面研究,包括多机器人多任务分配问题、机器人之间的协作与通信问题、机器人的全局与局部路径规划问题、机器人传感与控制问题等.6.4高维环境中移动机器人路径规划的研究从路径规划的环境描述来看,针对二维平面环境的路径规划研究较多,而三维环境下的路径规划研究较少[67,68].但是,大多数机器人作业与运行是在三维空间中进行的,如飞行机器人、水下机器人等.因此,加强三维环境中移动机器人路径规划技术的研究是机器人技术实际应用的需要,也是移动机器人路径规划技术的发展方向之一.6.5空中机器人与水下机器人的研究从具体的研究对象来看,移动机器人路径规划大多是针对陆地工作的智能机器人展开路径规划研究,如足球机器人、清扫机器人、收割机器人等;而针对空中飞行机器人和自治水下机器人的研究较少[42-45,69,70].陆地机器人一般是处于温和的现实世界,而空中机器人与水下机器人面临的外部环境非常恶劣,传感器资源更加有限,甚至会面临一种敌对的不确定的危险环境.因此,他们的路径规划与避险研究更加困难和迫切.7结论智能移动机器人路径规划问题一直是机器人研究的核心内容之一.本文从模版匹配路径规划、人工势场路径规划、地图构建路径规划和人工智能路径规划4个方面,对移动机器人路径规划技术研究现状及其未来发展进行系统的总结与评价,对移动机器人技术目前的研究与未来的发展将有一定的参考价值.致谢感谢加拿大Guelph大学高级机器人第7期朱大奇等:移动机器人路径规划技术综述965与智能系统实验室主任Simon X.Yang教授在文献资料查阅及论文成文过程给予的指导与帮助!参考文献(References)[1]戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202.(Dai B,Xiao X M,Cai Z X.Current status and future development of mobile robot path planning technology[J].Control Engineering of China,2005,12(3):198-202.) [2]Hofner C,Schmidt G.Path planning and guidancetechniques for an autonomous mobile robot[J].Robotic and Autonomous Systems,1995,14(2):199-212.[3]Schmidt G,Hofner C.An advaced planning and navigationapproach for autonomous cleaning robot operationa[C].IEEE Int Conf Intelligent Robots System.Victoria,1998: 1230-1235.[4]Vasudevan C,Ganesan K.Case-based path planning forautonomous underwater vehicles[C].IEEE Int Symposium on Intelligent Control.Columbus,1994:160-165.[5]Liu Y.Zhu S,Jin B,et al.Sensory navigation ofautonomous cleaning robots[C].The5th World Conf on Intelligent Control Automation.Hangzhou,2004:4793-4796.[6]De Carvalho R N,Vidal H A,Vieira P,et pletecoverage path planning and guidance for cleaning robots[C].IEEE Int Conf Industry Electrontics.Guimaraes, 1997:677-682.[7]Ram A,Santamaria J C.Continuous case-basedreasoning[J].Artificial Inteligence,1997,90(1/2):25-77.[8]Arleo A,Smeraldi F,Gerstner W.Cognitive navigationbased on non-uniform Gabor space sampling,unsupervised growing Networks,and reinforcement learning[J].IEEE Trans on Neural Network,2004,15(3):639-652.[9]尚游,徐玉如,庞永杰.自主式水下机器人全局路径规划的基于案例的学习算法[J].机器人,1998,20(6):427-432.(Shang Y,Xu Y R,Pang Y J.AUV global path planning using case based learning algorithm[J].Robot,1998, 20(6):427-432.)[10]Fujimura K,Samet H.A hierarchical strategy for pathplanning among moving obstacles[J].IEEE Trans on Robotic Automation,1989,5(1):61-69.[11]Conn R A,Kam M.Robot motion planning on N-dimensional star worlds among moving obstacles[J].IEEE Trans on Robotic Automation,1998,14(2):320-325. [12]Ko N Y,Lee B H.Avoid ability measure in movingobstacle avoidance problem and its use for robot motion planning[C].IEEE Int Conf on Intelligent Robots and System.Osaka,1996:1296-1303.[13]Ge S S,Cui Y J.New potential functions for mobile robotpath planning[J].IEEE Trans on Robotic Automation, 2000,16(5):615-620.[14]Ge S S,Cui Y J.Dynamic motion planning formobile robots using potentialfield method[J].Autonomous Robots,2002,13(2):207-222.[15]Erdinc S C.Path planning using potentialfields for highlyredundant manipulators[J].Robotics and Autonomous Systems,2005,52(2):209-228.[16]Dennis B,Jeroen H,Renvan M.Real-time motionpath generation using sub-targets in a rapidly changing Environment[J].Robotics and Autonomous Systems, 2007,55(3):470-479.[17]Velagic J,Lacevic B,PerunicicB.New concept of thefast reactive mobile robot navigation using a pruning of relevant obstacles[C].IEEE Int Symposium on Industrial Electronics.Dubrovnik,2005:161-166.[18]Velagic J,Lacevic B,Perunicic B.A3-level autonomousmobile robot navigation system designed by using reasoning/search approaches[J].Robotics and Autonomous Systems,2006,54(8):989-1004.[19]Jaradat M,Garibeh M H,Feilat E A.Dynamic motionplanning for autonomous mobile robot using fuzzy potentialfield[C].6th Int Symposium on Mechatronics and Its Applications.Sharjah,2009:24-26.[20]Masoud A A.Managing the dynamics of a harmonicpotentialfield-guided robot in a cluttered environment[J].IEEE Trans on Industrial Electronics,2009,56(2):488-496.[21]Toledo F J,Luis J D,Tomas L M,et al.Map buildingwith ultrasonic sensors of indoor environments using neural networks[C].IEEE Int Conf Systems,Man,and Cybernetics.Nashville,2000:920-925.[22]Wong S C,MacDonald B A.A topological coveragealgorithm for mobile robots[C].IEEE Int Conf Intelligent Robots s Vegas,2003:1685-1690.[23]Oh J S,Choi Y H,Park J B,et plete coveragenavigation of cleaning robots using triangular-cell-based map[J].IEEE Trans on Industrial Electronics,2004,51(3): 718-726.[24]Tarjan R E.A unified approach to path problems[J].J of theAssociation for Computing Machinery,1981,28(3):577-593.[25]Canny J F.The complexity of robot motion planning[M].Boston:MIT Press,1988.[26]Takahashi O,Schilling R J.Motion planning in a planeusing generalized V oronoi diagrams[J].IEEE Trans on Robotics and Automation,1989,5(2):143-150.[27]Avneesh S,Erik A,Sean C,et al.Real-time pathplanning in dynamic virtual environment using multiagent navigation graphs[J].IEEE Trans on Visualization and Computer Graphics,2008,14(3):526-538.[28]Kavraki L E,Svestka P,Latombe J C,et al.Probabilisticroadmaps for path planning in high-dimensional966控制与决策第25卷configuration space[J].IEEE Trans on Robotics and Automation,1996,12(4):566-580.[29]Lingelbach F.Path planning using probabilistic celldecomposition[D].Stockholm,2005.[30]Jaillet L,Simeon T.Path deformation roadmaps:Compactgraphs with useful cycles for motion planning[J].Int J of Robotics Research,2008,27(11):1175-1188.[31]Cai C H,Ferrari rmation-driven sensor path planningby approximate cell decomposition[J].IEEE Trans on Systems,Man,and Cybernetics,Part B:Cybernetics, 2009,39(3):672-689.[32]成伟明,唐振民,赵春霞,等.移动机器人路径规划中的图方法应用综述[J].工程图学学报,2008,(4):6-14.(Cheng W M,Tang Z M,Zhao C X,et al.A survey of mobile robots path planning using geometric methods.J of Engineering Graphics,2008,(4):6-14.)[33]Araujo R.Prune-able fuzzy ART neural architecturefor robot map learning and navigation in dynamic environments[J].IEEE Trans on Neural Network,2006, 17(5):1235-1249.[34]Najjaran H,Goldenberg A.Real-time motion planningof an autonomous mobile manipulator using a fuzzy adaptive Kalmanfilter[J].Robotics and Autonomous Systems,2007,55(2):96-106.[35]Luo C,Yang S Y.A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environment[J].IEEE Trans on Neural Network,2008,19(7):1279-1298.[36]Tse P W,Lang S,Leung K C,et al.Design of a navigationsystem for a household mobile robot using neural networks[C].Int Conf Neural Network.Anchorage, 1998:2151-2156.[37]Rajankumar B M,Tang C P,Venkat K N.Formationoptimization for afleet of wheeled mobile robots:A geometric approach[J].Robotics and AutonomousSystems,2009:57(1):102-120.[38]Ghatee M,Mohades A.Motion planning in order tooptimize the length and clearance applying a hopfield neural network[J].Expert Systems with Applications, 2009,36:4688-4695.[39]Alvarez A,Caiti A,Onken R.Evolutionary pathplanning for autonomous underwater vehicles in a variable ocean[J].IEEE J of Oceanic Engineering,2004,29(2):418-429.[40]Theodore W M,Kaveh A,Roger L W.Genetic algorithmsfor autonomous robot navigation[J].IEEE Instrumentation and Measurement Magazine,2007,12(1):26-31.[41]Aybars U.Path planning on a cuboid using geneticalgorithms[J].Information Sciences,2008,178:3275-3287.[42]Wang X P,Feng Z P.GA-based path planning for multipleAUVs[J].Int J of Control,2007,80(7):1180-1185. [43]刘利强,于飞,戴运桃.基于蚁群算法的水下潜器全局路径规划技术研究[J].系统仿真学报,2007,19(18):4174-4177.(Liu L Q,Yu F,Dai Y T.Path planning of underwater vehicle in3D space based on ant colony algorithm[J].J of System Simulation,2007,19(18):4174-4177.)[44]王宏健,伍祥红,施小成.基于蚁群算法的AUV全局路径规划方法[J].中国造船,2008,49(2):88-93.(Wang H J,Wu X H,Shi X C.AUV global path planning based on ant colony optimization algorithm[J].Ship Building of China,2008,49(2):88-93.)[45]徐玉如,姚耀中.考虑海流影响的水下机器人全局路径规划研究[J].中国造船,2008,49(4):109-114.(Xu Y R,Yao Y Z.Research on AUV global path planning considering ocean current[J].Ship Building of China,2008,49(4):109-114.)[46]Fu Y,Lang S Y L.Fuzzy logic based mobile robot areafilling with vision system for indoor environment[C].IEEE Int Conf on Computational Intelligence in Robotics and Automation.Monterey,1999:326-331.[47]Perez D A,Melendez W M,Guzman J,et al.Fuzzylogic based speed planning for autonomous navigation under velocityfield control[C].IEEE Int Conf on Mechatronics.Malaga,2009:14-17.[48]Zun A D,Kato N,Nomura Y,et al.Path planning basedon geographical features information for an autonomous mobile robot[J].Artificial Life and Robotics,2006, 10(2):149-156.[49]Shen D,Chen G S,Cruz J J,et al.A game theoretic datafusion aided path planning approach for cooperative UA V ISR[C].IEEE Int Conf on Aerospace.Montana,2008:1-9.[50]Yasutomi F,Takaoka D,Yamada M,et al.Cleaningrobot control[C].IEEE Int Conf Systems,Man,and Cybernetics.Beijing,1988:1839-1841.[51]Zhu A,Yang S X.A neural network approach to taskassignment of multi-robots[J].IEEE Trans on Neural Network,2006,17(5):1278-1287.[52]Pereira F B.Bio-inspired algorithms for the vehicle routingproblem[M].Berlin:Springer,2009.[53]Yang S X,Meng M.Neural network approaches todynamic collision-free robot trajectory generation[J].IEEE Trans on Systems,Man,and Cybernetics,Part B:Cybernetics,2001,31(3):302-318.[54]Yang S X,Meng M H.Real-time collision-free motionplanning of mobile robots using neural dynamics based approaches[J].IEEE Trans on Neural Network,2003, 14(6):1541-1552.[55]Yang S X,Luo C.A neural network approach to completecoverage path planning[J].IEEE Trans on Systems,Man,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c d gat ca nua n tok A N ,uz gc( L , n ee ca o tm G , eepee t — l i rf i er e rs( N ) fz l i F ) a dgnt l rh s( A) w r rsn di s un i l i l w yo i gi e ne
计 算 智 能 在 移 动 机 器 人 路 径 规 划 中 的应 用 综 述
夏 琳 琳 , 张健 沛 初 妍 ,
( . 尔滨 工程 大 学 计 算 机 科 学 与技 术 学 院 , 1哈 黑龙 江 哈 尔滨 100 ; . 50 1 2 东北 电 力 大 学 自动 化 工程 学 院 , 吉林 吉林
(eeca otm, A 等逐渐应用于路径规划领域 , gnt grh G ) il i 这 些方法主要 以数值数据为基础 , 通过数值计算 , 运用算
法实现问题求解 .
态的无 碰路径 ¨ . 目前 , 智能机器人 的路径规划 大致可 以划分 为传 统方法和智 能 方法 2类【 . 者 由几 何法 、 2前 j 单元 分 解 法 、 格 法 ( r s 、 工 势 场 法 ( rf i o n a 栅 G d)人 i a ic pt tl t a il e i f l) i d 以及数学分析 、 e 路径搜 索算 法、 枚举技术 ( A 如
计算 智能 的许 多理 论 与技 术还 在发 展 之 中, 本
文 以其 与路 径规划 领域 的交 叉融 合 为 主要视 角 , 详
尽探讨这些 算法 的实 现机理与设计 思想.
搜索 、 搜 索) 引申而来 , D 等 彼此之 间不排斥 , 因而可
以结合起来共 同实现路径规划 问题. 对于后者 , 随着人
An a p ia i n s r e n c m p t to a n e l e c p l to u v y o o c u a i n li t l g n e i
f rp t ln i g o o i o os o a h p a n n fm b l r b t e
 ̄ ef g otes DalU i r t, in12 1 , hn ) ne n ,N r at i i nv sy J i 0 C i i h n e i l 3 2 a
Absr c : t ln i g fc s s o u t r b h v o o to ,wh c s b s d u o h o i o i g a d o sa l — t a t Pah p a n n o u e n frhe e a irc nr l ih i a e p n t e p st n n n b tce a i
工智能 中计算智能 (o pti ait i neC) cm u tnln Hg c,I的长 ao e e 足发展 , 一些分支学科 , 如人工神经 网络 (rf i e— ai a nu tc il r e o ,N 、 l wk a nt r A N)模糊逻辑( z g ,L 、 f zl i F )遗传算法 u yo c
物、 路径 的长度 E 越短 , 量 函数 E也越 小 , 能 生成此 路 径 的可 能越 大.
1 12 网络 结构 、 习方法 的改进 . . 学
法 的难点 体现在 2个 方 面 : 一是 如 何选 取 行 为 和推
理规 则 的输入 、 出变量 , 输 使模糊 控制 器容 纳这些不 确定 的信 息 ; 是如 何 构造 出一 张 实践 效 果 较好 的 二
控制 响应 表 , 以产生平 滑 的控制 输 出.
1 2 1 输 入 、 出信 息 的 模 糊 化 . . 输

些 文献构 建 了这 样 一 类 避 障模 糊 控制 器 : 它
网络 结构 的多 样性 和改 进 的学 习算 法 , A N 为 N 在路 径规 划领域 的研 究提 供 了丰 富 的 内容 . 的学 有 者 引入 了新 的网络 训练 结 构 , 利 用 4层 小波 R F 如 B
第 6卷第 2期
2 1 年 4月 01
智能Βιβλιοθήκη 系统学报
V0 . № . 16 2
Ap . 01 r2 l
CAAIT a s ci n n I tl g n y tms r n a t so n el e tS se o i
d i1 . 9 9 jis . 6 34 8 . 0 10 . 1 o:0 3 6 / .sn 1 7 -7 5 2 1 . 2 O 1
著名 学者蒋新 松 曾这 样 为路 径 规划 定 义 : 径 路
规划 是智 能机器人 的一个 重 要组 成 部分 , 的任 务 它 是在具 有 障碍物 的环境 内按照 一定 的评 价标 准 ( 如 工作代 价最 小 、 走 路 线 最 短 、 走 时 间最 短 等 ) 行 行 ,
寻找一 条从 起始 状 态 ( 括 位 置 和姿 态 ) 目标 状 包 到
第 2期
夏 琳琳 , : 算 智 能 在 移 动 机 器人 路径 规 划 中 的 应用 综 述 等 计
经点 进行 规划 ; 通 过对 A N的训练 来获得 最 优 的 再 N
自组织 、 自学 习 、 联想 记 忆 特 性 , 促使 机 器 人 主 动对 路 径进 行学 习 , 断获取 新 的知识 . 不 此类 方法 特别适
XI il ,Z A Lni n HANG Ja p i,C n in e HU Ya
( . o eeo o p t c n ea dT c n l y H r i E gn e n nvri , ab 5 0 1 C ia 2 S h o o A t a o n 1 C l g f m ue S i c n eh o g , a n n ier g i s y H ri 10 0 , hn ; . c ol f u m t nE 一 l C r e o b i U e t n o i
t e lz to rn i l sa d d sg c me fte e sr tge r e e r h d ea oaey.Ev nu l he r aia in p cp e n e in s he so s tae i swe e r s a c e l b r tl i h e ta y,c n ie - l o sd r
v i a e c p b l is o b l o os Th h oe ia e c p in fs me c mp tto a ne i e c t o s n od nc a a i te fmo ie r b t. i e te r tc ld s r to so o o u ain li tH g n e me h d ,i — i
未 来可 能 的研 究 发 展方 向进 行 了探讨 .
关键词 : 计算智能 ; 路径规划 ; 模糊逻辑 ; 人工神经 网络 ; 遗传算法
中 图分 类 号 :P 8 文 献 标 识 码 : 文章 编 号 :6 3 7 5 2 1 )2 )6 -6 T 1 A 17 - 8 (0 1 0 4100 4
q ec , n eji e enec o t na dp t p n ig to a nl e eea sne oevr un e a dt n b t e ahsl i n a l nn hdw s a zdi agnrl es.M roe, h ot w uo h a me a y n
1 路 径 规 划 中的计 算智 能方法
1 1 人工神 经网络与路径 规划 .
移动机器人 路径规划在 一定条件下 属于优化 问 题, N A N方法非 常适 合 于 已知环 境 的路径 规划 . 首 先 , 环境地 图映射成神经 元 网络 , 置神经元 的 需将 设
值来表 征不 同的地 图状况 , 利用 网络对 一 系列 的路
神经元 集 合 以组 成路径 .
1 1 1 能 量 函数 的 确 定 . .
用于求 解 约束优 化 问题 , 路 径 规划 中 的应 用不 断 在
增多. 目前 , 于 A N本 身 的研 究 多集 中在 网络 结 对 N 构 、 习算法 和实 际应 用 3个 方 面 , 此 , 学 借 必将 不 断丰 富路径规 划 的 内容 . 12 模 糊逻辑 与路 径规 划 . 此 类方法 的实 现机 理 是 F L控制 和 机 器人 行 为
数. 因此 , 注 的主要是 网络 本身 能量 函数及 其碰撞 关 惩 罚 函数 的 选 取 . 助 B N R F N 等 典 型 有监 借 P N、 B N 督 网络 的算法 思想 , 网络 训 练 的 目标 是 使 能 量 函数 达 到最小 , 最直 接 的结 论 是 : 碰 的障 碍越 多 、 间 相 空 点 与 障碍物 中心距 离 越 大 , 施加 的惩 罚 E 越 大 , 使 得 此路径 生成 的可 能越小 ; 之 , 经点 越远 离 障碍 反 路
ig te e o u in te d,t e p si l uur ie t n o t l n ig wa lo d s u s d n h v l t r n o h o sb e f t e d r ci fpah p a n n s as ic se . o Ke wo d c m p tt n li tlie c y r s: o u ai a n el n e;p t ln i g;f zy lgc;a i ca e rln t r o g ah p a n n u z o i ti r f i ln u a ewo k;g n t lo t m e e i ag r h c i
E = E g+ E c .
式中:
为机器人 与 目标 点 的距 离 , E 为碰 撞 罚 函
控制 相结 合 , 为线 性 规 划 中通 常采 用 的一 种 规划 成 方 法 ¨ “. 方法 的本 质是 根 据 人工 经 验 获 得一 系 列 控制 规则 , 模 糊 推 理 ( Z dh推 理 、 mdn 推 经 如 ae Ma a i 理) 得到 控制 响应 表 , 过 查 表 得到 规划 信 息 , 通 实现 移动 机器 人局部 路径 规划 的有效 控制 . 的来说 , 总 方
相关文档
最新文档