大数据可视化分析平台介绍
Tempo大数据分析平台介绍

Tempo大数据分析平台介绍(Tempo-DataAnalysis)美林数据技术股份有限公司,专注数据价值发现,为客户提供大数据分析与利用产品和业务解决方案;重点与大家分享美林T empo大数据分析平台,会从平台概述、产品特点、应用价值和行业案例四个部分进行介绍。
第一部分产品概述“美林T empo大数据分析平台”,即T empo-DataAnalysis;是一款数据价值发现与利用平台,为客户提供专业、敏捷、易用的大数据分析挖掘与可视化展现的工具。
2015年12月12日北京中关村大数据日,美林T empo大数据分析平台正式发布。
T empo平台以数据增值为目标,为客户提供多种数据处理与分析方法,满足组织不同角色的数据价值挖掘和应用的需求。
T empo平台面向企业各级数据分析、数据价值利用人员,集数据可视化探索、数据深度分析、模型应用开发于一体的大数据平台。
平台首先能够实现对多数据源进行接入和处理;平台实现数据接入、数据处理、数据分析、结果应用等产品处理应用全过程;客户可以通过数据可视化方式进行直观分析,也能通过数据挖掘发掘数据中隐含的深度规律。
平台可面向企业领导、各级业务人员、技术人员共同使用;产品的核心理念就是“智能、互动、增值”;产品具备多种智能算法,可视化分析过程智能化,产品以可视交互的方式实现分析,产品不仅为客户节约成本、提高效率,更重要是为客户创造价值。
第二部分,产品特点,主要包括四个方面:第一个特点,基于大数据架构TEMPO平台基于大数据架构,支持分布式存储、分布式并行计算、内存计算。
支持Hadoop、Hive、Y arn、Spark、Zookeeper、Sqoop、Kafka、Python、Scala、Mesos、Chronos、hbase、T ez、Mongodb等多种大数据技术。
第二个特点,领先算法产品内嵌10种世界领先独创算法、19种经典算法。
在算法支持方面,美林独创的L1/2算法在高维问题分析中准确率比普通算法具有明显优势。
基于Hadoop的大数据分析与可视化平台设计与开发

基于Hadoop的大数据分析与可视化平台设计与开发一、引言随着互联网和信息技术的快速发展,大数据已经成为当今社会中不可忽视的重要资源。
大数据分析和可视化技术的应用,已经成为各行各业提高效率、优化决策的重要手段。
Hadoop作为一个开源的分布式计算框架,为大数据处理提供了强大的支持。
本文将探讨基于Hadoop的大数据分析与可视化平台的设计与开发。
二、Hadoop技术简介Hadoop是一个由Apache基金会开发的开源软件框架,主要用于存储和处理大规模数据集。
其核心包括Hadoop Distributed File System(HDFS)和MapReduce计算模型。
HDFS是一个分布式文件系统,能够高效地存储大量数据;MapReduce是一种编程模型,能够将任务分解成小块并在集群中并行执行。
三、大数据分析平台设计1. 数据采集与清洗在设计大数据分析平台时,首先需要考虑数据的采集和清洗工作。
通过Hadoop平台可以实现对多源数据的采集和整合,并通过MapReduce等技术对数据进行清洗和预处理,以确保数据质量。
2. 数据存储与管理Hadoop提供了高可靠性、高扩展性的存储解决方案,可以将结构化和非结构化数据存储在HDFS中,并通过HBase等工具实现对数据的管理和查询。
3. 数据分析与挖掘利用Hadoop平台上的Spark、Flink等计算框架,可以实现对海量数据的实时分析和挖掘。
通过编写MapReduce程序或使用Spark SQL 等工具,可以对数据进行复杂的计算和统计分析。
四、可视化平台设计与开发1. 可视化需求分析在设计可视化平台时,需要充分了解用户需求,确定需要展示的指标和图表类型。
通过调研用户群体和业务场景,可以确定最适合的可视化方式。
2. 可视化技术选择选择合适的可视化技术对于展示大数据分析结果至关重要。
常用的可视化工具包括ECharts、D3.js等,可以根据需求选择最适合的工具进行开发。
大数据平台的数据可视化及分析

大数据平台的数据可视化及分析随着信息技术的不断发展,数据在我们的生活和工作中变得越来越重要。
大数据平台作为信息化建设不可或缺的一环,其数据可视化及分析功能也越来越受到关注。
一、大数据平台的数据可视化大数据平台的数据可视化就是将数据转化为图表、视觉化的形式,以便更清晰地展现数据所代表的信息和关系。
数据可视化的目的是为了让用户能够更好地理解和处理数据,比如帮助企业管理人员更好地分析数据,以便制定更好的管理策略和决策。
数据可视化的形式很多,比如折线图、柱状图、饼图、散点图、地图等。
具体的可视化形式要根据数据的特点和展示目的进行选择。
同时,在设计可视化界面时,还要考虑数据的呈现方式,比如数据的颜色、字体等。
二、大数据平台的数据分析大数据平台的数据分析是指根据数据进行统计、分析和预测的过程。
数据分析可以分为描述性分析、诊断性分析、预测性分析三种。
其中,描述性分析主要是对数据进行汇总、数据清洗、数据分组等处理以便形成数据报告。
诊断性分析则是用来发现数据分布中的问题,以便更好地解决这些问题。
预测性分析则是利用数学模型和算法对数据进行预测,从而帮助企业将未来的业务进行预测和规划。
数据分析的过程中,需要借助多种工具和技术,比如SQL、hadoop等数据处理工具。
另外,数据分析还需要对数据科学的理论和研究进行深入应用。
因此,数据分析的人才需求也越来越高。
三、大数据平台的数据可视化与分析的关系数据可视化与分析是密切相关的。
数据可视化的最终目的是为了分析数据。
通过数据可视化,用户可以更清晰地看到数据的模型和特点。
而数据分析则更深入地分析数据中内容,找到数据中的规律和问题。
因此,大数据平台需要将数据可视化与分析相结合,以便更好地服务于企业需求。
数据可视化不仅可以展示数据,而且可以帮助分析员更加容易地理解数据,从而更好地展开数据分析。
四、大数据平台数据可视化与分析的应用场景1. 应用在商务、金融等领域,帮助企业分析市场趋势,评估市场潜力,从而制定销售策略和商业计划。
大数据分析平台的使用指南

大数据分析平台的使用指南随着科技的发展和互联网的普及,大数据成为了当今社会中不可忽视的重要资源。
它具有广泛的应用范围,可以帮助企业发现市场趋势、优化运营流程、提升生产效率等等。
为了更好地利用大数据,许多企业和研究机构都开始使用大数据分析平台。
本文将为您介绍大数据分析平台的使用指南,帮助您更好地利用大数据来支持决策。
一、了解大数据分析平台的基本概念大数据分析平台是指为处理、存储和分析大规模数据而设计的软件工具集合。
它可以帮助用户轻松地从各种来源(如社交媒体、传感器、日志文件等)中收集、组织和分析数据。
同时,大数据分析平台还提供各种分析工具和算法,用于挖掘数据背后的价值和洞察。
二、选择合适的大数据分析平台在选择合适的大数据分析平台之前,您需要考虑以下几个方面:1. 任务需求:首先确定您需要解决的问题是什么,需要哪些功能来支持您的工作。
不同的大数据分析平台可能有不同的特点和功能,选择适合您需求的平台是至关重要的。
2. 性能和可伸缩性:考虑您的数据量和用户量,确定平台是否能够处理您的数据规模,并能随着需求的增长而扩展。
3. 安全性和隐私保护:大数据分析涉及到大量的敏感信息,平台应该提供高级的安全性特性和隐私保护功能,确保数据的安全性和合规性。
4. 用户界面和易用性:一个良好的用户界面能够提升用户的工作效率,减少学习成本。
因此,您需要选择一个界面友好、易于使用的平台。
根据以上考虑,您可以选择像Hadoop、Spark、Teradata等知名的大数据分析平台。
或者您也可以根据需求选择基于云端的数据分析服务,如Amazon Redshift、Google BigQuery等。
三、平台的基本功能和操作流程当您选择了合适的大数据分析平台后,接下来需要了解平台的基本功能和操作流程。
以下是一个简单的操作流程:1. 数据收集:首先,您需要从各种数据源中收集数据,并将其导入到平台中。
数据源可以包括日志文件、数据库、传感器等。
智慧校园大数据可视化分析平台综合解决方案

智慧校园大数据可视化分析平台综合解决方案目录1. 内容概要 (3)1.1 项目背景 (4)1.2 项目目标 (5)1.3 项目意义 (6)2. 智慧校园大数据可视化分析平台概念 (7)2.1 智慧校园概述 (8)2.2 大数据的基本概念 (10)2.3 可视化分析的基础知识 (10)3. 智慧校园大数据可视化分析平台的需求分析 (11)3.1 用户需求分析 (13)3.2 数据需求分析 (15)3.3 功能需求分析 (15)3.4 性能需求分析 (17)4. 技术方案 (18)4.1 系统架构设计 (20)4.2 数据采集与预处理 (21)4.3 可视化技术应用 (22)4.4 安全与隐私保护 (24)4.5 系统集成与部署 (25)5. 功能模块设计 (27)5.1 数据接入与管理 (28)5.2 数据仓库设计 (29)5.3 实时数据分析 (30)5.4 历史数据分析 (32)5.5 数据展示与交互 (33)5.6 用户权限管理 (35)5.7 系统运行维护 (36)6. 平台实现与测试 (37)6.1 代码实现 (39)6.2 系统测试 (39)6.3 性能测试 (40)6.4 用户验收测试 (42)7. 平台的后续维护与升级 (43)7.1 系统更新策略 (44)7.2 运营管理 (45)7.3 用户培训与支持 (47)8. 案例分析 (48)8.1 国内成功案例 (49)8.2 国外先进案例 (51)8.3 本项目应用情况 (52)9. 结论与展望 (53)9.1 项目总结 (55)9.2 面临的问题与挑战 (56)9.3 未来发展方向 (57)1. 内容概要智慧校园大数据可视化分析平台综合解决方案旨在通过先进的数据可视化技术,对校园内各类数据进行实时采集、高效处理与深度挖掘,为学校的管理决策、教育教学、校园生活服务等提供有力支持。
本方案全面覆盖了数据采集、数据存储、数据处理、数据分析及可视化展示等关键环节,致力于构建一个智能化、个性化、高效化的校园信息化新生态。
大数据可视化平台建设方案

数据安全
建立完善的数据安全机制 ,保障数据源的安全性和 隐私性。
数据预处理
数据清洗
01
去除重复、无效、错误的数据,保证数据的质量和可
靠性。
数据转换
02 将不同类型的数据源进行转换,使其能够统一处理和
存储。
数据压缩
03
对大量数据进行压缩,减少存储空间和提高数据处理
速度。
数据存储与计算
分布式存储
采用分布式存储技术,确保数据的高可用性和可扩展 性。
• 提高实时性:随着数据处理技术的发展,我们将进一步提高平台的实时性,以 便用户能够及时获取最新的数据分析和可视化结果。这将使用户能够更快速地 做出决策,提高工作效率。
• 优化用户体验:我们将不断优化平台的界面设计和交互体验,使用户能够更轻 松、更愉快地进行数据可视化和分析。例如,我们将引入更多的可视化效果和 动画效果,使数据展示更加生动有趣。同时,我们也将提供更多的自定义选项 ,使用户能够根据自己的喜好和需求进行个性化设置。
深入探索和分析数据。
界面交互
平台应提供丰富的界面交互 元素,如按钮、表单、弹窗 等,使用户可以轻松地进行
操作和控制。
可视化交互
支持将可视化效果与其他交 互元素进行结合,如热力图 、联动图表等,使用户能够 更直观地了解数据之间的关 系。
快速的数据处理能力
数据预处理
支持对数据进行预处理和清洗,以提高数据的 质量和可用性。
网络环境
设计和实施网络拓扑结构,确保数据传输的稳定性和安全性。
数据迁移与接入
数据迁移
将旧系统中的数据迁移至新的可视化平台,确保数据的完整性和准 确性。
数据清洗
对迁移的数据进行清洗和整理,去除无效和错误数据,保证数据质 量。
大数据分析平台的使用方法与使用注意事项

大数据分析平台的使用方法与使用注意事项随着互联网及数字化技术的快速发展,大数据已经成为当今社会中不可或缺的资源。
大数据分析平台作为处理和分析大量数据的工具,在各行各业中发挥着重要的作用。
本文将介绍大数据分析平台的使用方法,并提供一些使用注意事项,以帮助读者更好地利用该平台。
一、大数据分析平台的使用方法1. 数据导入大数据分析平台的第一步是导入需要分析的数据。
通常情况下,数据可以来自各种不同的来源,如数据库、日志文件、传感器等。
用户需要将数据导入到分析平台中,这可以通过将数据文件上传至平台或通过API接口实现。
在导入数据之前,用户需要先进行数据清洗和整理,以确保数据的完整性和准确性。
2. 数据存储大数据分析平台通常采用分布式存储系统来存储数据。
用户可以选择合适的存储方式和存储格式,如Hadoop的HDFS、Amazon S3等。
在存储数据时,用户需要考虑数据的安全性、可扩展性和效率等因素。
3. 数据处理一旦数据存储完毕,用户可以开始进行数据处理及分析。
大数据分析平台提供了各种处理工具和算法,如MapReduce、Spark等。
用户可以根据自己的需求选择适合的工具和算法,进行数据处理和分析。
在处理过程中,需要注意避免数据倾斜和瓶颈问题,合理分配计算资源,以提高处理效率。
4. 数据可视化数据可视化是将分析结果以图表、图形等形式展示出来的过程。
大数据分析平台通常提供了丰富的可视化工具和方法,如Tableau、PowerBI等。
用户可以根据自己的需求选择适合的可视化工具,将分析结果直观地展示出来,以便更好地理解和传达分析结果。
二、大数据分析平台的使用注意事项1. 数据安全在使用大数据分析平台时,保护数据的安全性是至关重要的。
用户需要确保数据的存储、传输和处理过程中的安全性,采取适当的安全措施,如数据加密、访问权限控制等。
同时,用户还需要遵循相关的法律法规和隐私政策,保护用户和企业的合法权益。
2. 数据质量数据质量对于分析结果的准确性和可靠性至关重要。
大数据平台介绍

大数据平台可以支持不同的应用场景,如 数据分析、数据挖掘、数据可视化等,满 足不同业务需求。
大数据平台的分类
根据部署方式
大数据平台可以分为私有云和公有云两种部署方式。私有云采用云计算技术构建 ,可以实现公有云的所有功能,同时保证数据的安全性和可靠性;公有云则采用 运行公共云的所有基础设施,用户可以通过互联网访问大数据服包括新闻报道、社交
媒体上的评论和论坛讨论功能,帮助用户快速
了解舆情动态,同时还支持多种数据导出方式和定制化的数据分析服务。
微信指数
概述
微信指数是微信团队推出的一款 大数据分析工具,旨在帮助用户 了解微信平台上各类关键词的热 度和趋势。
根据数据处理方式
大数据平台可以分为批处理和流处理两种方式。批处理方式适用于对大规模数据 的离线处理和分析;流处理方式适用于对实时数据的在线处理和分析。
02
知名大数据平台介绍
阿里指数
概述
阿里指数是阿里巴巴集团推出的一个大数据分析平台,旨在为用户 提供关于市场趋势、行业动态和消费者行为等方面的洞察。
大数据平台介绍
• 大数据平台概述 • 知名大数据平台介绍 • 大数据平台的应用与发展趋势 • 大数据平台的未来展望与建议
01
大数据平台概述
定义与特点
定义
大数据平台是一个集成了数据存储、 处理、分析和管理功能的综合性平台 ,旨在提供高效的大数据处理和分析 服务。
特点
大数据平台具有海量数据处理能力、 高性能计算能力、数据安全性和可靠 性等特点,能够满足不同行业和领域 的数据处理和分析需求。
大数据平台的发展趋势与挑战
发展趋势
随着技术的不断进步和应用需求的增加,大数据平台的发展 趋势包括数据实时处理、数据安全与隐私保护、人工智能与 大数据的融合等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据可视化分析平台一、背景与目标基于邳州市电子政务建设的基础支撑环境,以基础信息资源库(人口库、法人库、宏观经济、地理库)为基础,建设融合业务展示系统,提供综合信息查询展示、信息简报呈现、数据分析、数据开放等资源服务应用。
实现市府领导及相关委办的融合数据资源视角,实现数据信息资源融合服务与创新服务,通过系统达到及时了解本市发展的综合情况,及时掌握发展动态,为政策拟定提供依据。
充分运用云计算、大数据等信息技术,建设融合分析平台、展示平台,整合现有数据资源,结合政务大数据的分析能力与业务编排展示能力,以人口、法人、地理,人口与地理,法人与地理,实现基础展示与分析,融合公安、交通、工业、教育、旅游等重点行业的数据综合分析,为城市管理、产业升级、民生保障提供有效支撑。
二、政务大数据平台1、数据采集和交换需求:通过对各个委办局的指定业务数据进行汇聚,将分散的数据进行物理集中和整合管理,为实现对数据的分析提供数据支撑。
将为跨机构的各类业务系统之间的业务协同,提供统一和集中的数据交互共享服务。
包括数据交换、共享和ETL等功能。
2、海量数据存储管理需求:大数据平台从各个委办局的业务系统里抽取的数据量巨大,数据类型繁杂,数据需要持久化的存储和访问。
不论是结构化数据、半结构化数据,还是非结构化数据,经过数据存储引擎进行建模后,持久化保存在存储系统上。
存储系统要具备高可靠性、快速查询能力。
3、数据计算分析需求:包括海量数据的离线计算能力、高效即席数据查询需求和低时延的实时计算能力。
随着数据量的不断增加,需要数据平台具备线性扩展能力和强大的分析能力,支撑不断增长的数据量,满足未来政务各类业务工作的发展需要,确保业务系统的不间断且有效地工作。
4、数据关联集中需求:对集中存储在数据管理平台的数据,通过正确的技术手段将这些离散的数据进行数据关联,即:通过分析数据间的业务关系,建立关键数据之间的关联关系,将离散的数据串联起来形成能表达更多含义信息集合,以形成基础库、业务库、知识库等数据集。
5、应用开发需求:依靠集中数据集,快速开发创新应用,支撑实际分析业务需要。
6、大数据分析挖掘需求:通过对海量的政务业务大数据进行分析与挖掘,辅助政务决策,提供资源配置分析优化等辅助决策功能,促进民生的发展。
采用新型MPP数据库+Hadoop的融合架构,使用MPP处理PB级别的、高质量的结构化数据,同时为应用提供丰富的SQL支持能力;使用Hadoop处理海量半结构化、非结构化数据,从而满足用户多种数据的处理需求。
智慧政务:基于分布式计算、存储框架,面向政府不同价值的数据源,通过采集、存储、建模、挖掘等大数据技术,在社会保障、公共安全、人居环境、劳动就业、文化教育、交通运输、综合治税、消费维权、精准扶贫等领域开展大数据应用,优化公共资源配置,提高公共服务水平。
帮助政府促进经济发展、完善社会治理、提升政府服务管理能力、服务改善民生,培育壮大新兴产业。
如下图所示的政府综合决策分析系统,利用大数据分析平台,采集并分析多个部门共享上传的业务数据,为政务部门提供决策支持。
如下图所示的政府效能监察大数据系统,通过对各类政务服务事项,全市各个部门单位的政府网上办事流程进行多维度,高效的及时监察、分析,从而对办事效率低下的职能部门和审批人员实现高效监督;找出设置不合理的办事流程,促进政府办事流程的优化。
实现政府部门网上办事多维度的数据分析挖掘,秒级展现效果,让决策者一目了然发现问题,提升政府的服务水平。
基础信息融合应用展示分析基于政务大数据平台开发或构建的各类系统如四大基础库系统、业务主题库系统,通过政务大数据平台信息枢纽的作用,各系统不需要再与任何政府部门业务系统对接,而直接从政务大数据平台关联形成数据,为政府业务办理提供支撑。
三、视频云结构化分析系统视频云结构化分析系统可实现视频中车辆和活动目标的结构化信息提取,提取属性丰富,精确度高;支持智能结构化分析后文本信息和图片信息的存储和检索;支持动态扩容,智能分析性能随着设备数量增加呈线性增强;支持第三方标准视频流的接入和智能分析应用;支持本地录像的智能分析;系统自带IE界面,提供智能检索、数据统计、布控报警、任务管理、资源管理、集群管理、系统校时、日志查询等功能。
1.车辆大数据分析车辆图片以图搜图车辆以图搜图是基于图片的搜索模式,通过图片建模后特征向量的比对分析,并且在被搜索图片中选择特征区域进行二次比对,从图片库中检索出符合条件的图片,并根据相似度返回比对结果。
准确率比单纯建模后特性限量比对高50%。
过车数据处理服务过车数据处理包括过车数据检索、智能研判、OD分析、统计分析等几大类。
过车数据检索过车数据检索是通过全文检索技术,对海量过车数据进行快速检索,支持精确查询、模糊查询、多条件组合查询。
支持千亿过车数据中秒级查询到结果。
过车数据检索具体包括以下功能:普通过车查询支持根据模糊条件、组合条件进行过车信息的查询。
可选的条件包括卡口、车牌、车型、时间段等。
针对只知道部分车牌信息的车辆可以输入“*”代表多位,“?”代表一位号码,进行模糊匹配。
违法车辆查询支持根据组合条件进行报警车辆的查询,违法车辆包括超速行驶、闯红灯等车辆,可选条件包括卡口、时间段等。
未识别车辆查询支持根据组合条件对未识别车辆进行查询,未识别车辆包括非机动车辆、没有车辆通过确拍照的、只抓拍下部分车牌的车辆、正确抓拍却未识别出的车辆,可选条件包括卡口、时间段等。
布控报警查询支持对布控的车辆及布控产生的报警进行查询。
异常牌照查询支持根据组合条件对异常牌照的车辆进行查询,异常牌照包括假牌、套牌等,可选条件包括卡口、时间段等。
红名单查询支持对红名单车辆进行情况。
行车轨迹查询支持根据行车轨迹对过车信息进行查询。
2.智能研判智能研判是通过对海量过车数据的分布式计算分析,快速挖掘出其中有价值的信息。
智能研判具体包括以下功能:行车轨迹智能研判车辆轨迹智能研判功能包含对精确目标、模糊目标两类车辆进行轨迹智能研判。
精确目标车辆轨迹智能研判:分析特定车辆在一段时间内经过多个信息采集点形成的行车轨迹,在PGIS上重现该车辆的行车路线。
“特定车辆”是指查询者明确该车辆的车牌号码,至少清楚车牌号码中绝大部分字符及准确的排序位置,在查询过程中也可辅以准确的车身颜色或车型等其它特征信息缩小系统筛选范围。
“特定车辆”行车轨迹出现在信息平台的PGIS地图上,单击任一采集点的卡口图标,能重现当时车辆被捕获抓拍的高清照片。
若查询者确认该车辆为嫌疑车,则可启动布控报警与实时跟踪功能,当该车下一次穿过任意卡口(或卡口式电子警察)时,系统将自动报警并提示监控人员,同时该车在未拦截之前,PGIS地图上将实时显示其后续穿过的卡口位置、行车轨迹、趋势方向等信息。
模糊目标车辆轨迹智能研判:当侦查或目击者提供的车辆特征信息不明确时,结合有限的车辆特征信息和车辆逃逸方向,综合目击者发现它的时间段、有限的车辆特征信息、逃逸方向范围内的卡口等客观条件进行检索查询,在PGIS上勾勒出同时满足上述条件的所有车辆的行车轨迹,在查询过程中也可辅以准确的车身颜色或车型等其它特征信息缩小系统筛选范围。
为侦查办案工作进一步开展提供参考依据,比如:提供这些相关车辆的高清照片,其中包含清晰的车牌号码、车辆轮廓特征(车型、车品牌)、驾驶员面部特征等。
短时通过车辆智能研判短时通过车辆智能研判是通过区间测速功能,对通过区间的时间在设定阈值内的车辆进行研判。
短时通过车辆智能研判一方面有助于将长期超速行驶的车辆纳入治超名单,通过安装在街面的LED信息发布屏对其进行公示、警告;另一方面有助于公安交通管理部门统计分析哪些路段发生超速行驶的次数最多,以辅助决策是否需要对这些道路进行加强管理,消除潜在的交通事故隐患。
跟车关联智能研判跟车关联智能研判是针对刑侦时犯罪团伙车辆经常结队活动的特点,对犯罪嫌疑车辆进行信息查询时,根据车牌省份地域分析其相邻车辆号牌,挖掘出有关联的车辆,为办案提供线索。
根据犯罪嫌疑车辆的车牌号码、车牌种类、车辆通过时间、分析时间间隔、路口名称及车道号这几个条件筛选出与犯罪嫌疑车辆有关联的车。
选定车牌号码、时间段、路口等信息,通过设定的跟车间隔时间大小,分析出与此车辆关联的其他车辆过车信息。
套牌嫌疑智能研判套牌车辆智能研判功能主要包含基于车辆多个特征交叉比对的研判分析和基于行程时间的研判分析两大类。
基于车辆多个特征交叉比对的套牌车辆智能研判:综合分析车辆号牌、车型、车身颜色等车辆特征,自动发现套牌车辆,因为车牌号码识别准确率最高,选择车牌号码为基准参数。
比如:在城市内发现车牌号码一致,但车型不同,或者车牌号码一致,但车身颜色不同,那么其中1辆一定是套牌车,在认定过程中将借助来自车管库的登记信息。
基于行程时间的套牌车辆智能研判:在PGIS地图上,以卡口、卡口式电子警察布点较密集的路段为中心划定几个区域,区域之间设定时间差,对多个区域内的通行车辆进行交叉比对,如果发现车牌号码相同的车辆,那么其中1辆一定是套牌车,在认定过程中将借助来自车管库的登记信息。
其原理是在现实环境中同一辆车从一个区域跨度到另一个区域的行程时间不可能小于设定的时间差。
频繁出入车辆智能研判频繁出入车辆智能研判是分析一段时间内车辆通过某一个或某几个卡口的频度,当频度大于设定值时,认为该车辆活动异常,并可显示车辆的活动轨迹。
该信息可用于车辆预警,同时提供统计报表,支持打印、保存及数据导出。
区域碰撞智能研判区域碰撞智能研判是利用数据碰撞技术来加速车辆特征信息的提取工作,比如在两个卡口或两个区域的所有卡口之间进行数据遍历,找出符合检索条件的车辆。
根据嫌疑人会用类似的手段连续作案的动机原理,当在一定时间范围发生作案手段类似的案件,对于指定的两个或两个以上区域范围内的所有卡口为基点,在指定的时间范围内,通过遍历搜索的方式,碰撞搜索并精确定位具备相同车牌号码的机动车,可以快速发现不同区域涉案嫌疑车辆之间的关联性。
初次入城智能研判在选定时间段和路口时,查询所有首次通行选定路口的车辆的过车信息,对于任意车牌号码只记录首次通行的一条过车信息。
选定路口名称、车牌号码、时间段,分析得到该时间段内选定的车牌号码首次通过该路口时的过车信息。
违法多发时间段智能研判通过对特定时间段内违法车辆的统计分析,可分析出哪些时间段内交通违法事件较多,如国庆期间、大型活动期间等。
根据分析结果,有助于公安交通管理部门在这些时间段内,做出相应的对策。
违法多发地点智能研判通过对特定地点的违法车辆统计分析,可分析出哪些地点交通违法事件较多。
这些分析结果有助于公安交通管理部门找出违法多发地点,以辅助决策是否需要对这些道路进行加强管理,消除潜在的交通事故隐患。